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Preface
The author of the book is Dr. Yuriy Poplavko, a professor at the Microelectronics

Department of the Kiev Polytechnic Institute, founded 120years ago by Dmitry

Mendeleyev and now called the National Technical University of Ukraine named

after Igor Sikorsky. The electronic material sciences is studied and taught at the

department for many years, and Dr. Yuriy Poplavko published in this area several

books in Russian and Ukrainian; this book extends this experience.

Electronic materials science is part of “Solid-state physics” but accommodated to

the electronic engineering. In general, modern materials sciences cover a very wide

range of issues, but in this book mainly the electrical properties of metals, semicon-

ductors, dielectrics, and magnets are described; in particular, those that are of impor-

tance for specialists in electronics.

Electronics is a science and engineering discipline that concerns study and appli-

cation of electrical phenomena inherent in substances (mainly, solids). Based on

these studies, electronic devices are created, as well as the art of electronic circuits

and systems construction is developed. It is also possible to define electronics as a

science of electrons interaction with electromagnetic fields or as a science and meth-

odology of creating electronic materials, instruments, and devices. Theoretical prob-

lems of electronics concern with the study of electrons interaction with macroscopic

fields inside the workspace of an electronic device as well as with the study of inter-

action of electrons with microscopic fields of ions, atoms, molecules, or crystal lat-

tice. Practical problems of electronics boil down to design of electronic devices that

perform various functions, such as conversion and transmission of information, con-

trol, computing as well as the energy supplying.

Thus, electronics materials sciences are important for specialists in electronics. It

should be also noted that at present not only educational, but also monographic lit-

erature, cannot keep pace with rapid development of materials science, in other

words, of an applied solid-state physics. This concerns many areas of knowledge

and technology—from the preparation of materials to the electronic devices. In this

context, nanophysics and nanotechnology are particularly fast-growing areas, and it

is clear that they are never mentioned in the books on solid-state physics issued

20–30years ago.
This book presents considerably simplified mathematical treatment of theories,

while emphasis is made on the basic concepts of physical phenomena in electronic

materials and their simple explanation. Most chapters are devoted to the advanced

scientific and technological problems of electronic materials; in addition, some new

insights of theoretical facts relevant for technical devices are presented. This approach

of presentation is due to the contemporary tendency for mutual penetration and syn-

thesis from different fields that at first glance belong to different areas of science.

First Vice-Rector of National Technical University of Ukraine

“Igor Sikorsky Kiev Polytechnic Institute”

Full Member of the Academy of Sciences of Ukraine Yuriy Yakimenko
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Introduction
Electronics primarily use crystals, polycrystals (ceramics), glasses, composites,

amorphous substances, liquid crystals, and substances produced by the compaction

of nanocrystalline structures.

Crystals are characterized by well-ordered (near-perfect) internal structure that

can be described by three-dimensional (3D) spatial periodic pattern. Distinctive

property of crystals is their translational symmetry, that is to say, the elementary cell

composed of a few atoms can be “infinitely” translated in all directions, creating a

regular crystal lattice. From outside, crystals are usually separated by the faces, that

is, smooth flat surfaces that converge at strictly defined angles.
Although a crystal may not be shaped like a polyhedron, it will still manifest such

characteristics that will allow distinguishing strictly ordered crystalline state from

any disordered glassy or amorphous state. Crystals are characterized by a certain

symmetry of their physical properties that correspond to symmetry of internal struc-
ture. This symmetry determines many physical characteristics of crystal, especially

the anisotropy of its electrical, thermal, mechanical, and magnetic parameters.

Fig. I.1 shows photos of natural quartz (SiO2) and KH2PO4 crystals artificially grown

from aqueous solution, and these crystals are widely used in electronics.

Polycrystals consist of a large number of very small crystals (crystallites).

Although the macroscopic structure of polycrystalline sample seems disordered,

its microscopic component parts (i.e., crystallites or blocks) are high-grade crystals

with perfect microscopic structure, and, therefore, the polycrystal practically has the

same properties as single monolithic crystals (Fig. I.2).

The glass-like and amorphous-state solids are distinguished by the absence of

any distant (translational) symmetry. Distribution of atoms in these bodies is

characterized not by a long-range ordering (as in crystals) but by the neighbor order-

ing. In the range of several nearby atoms, the structure of glass appears as being

ordered, thus enabling to determine specific coordination number for neighbors.
xiii



FIG. I.1

Crystals of quartz (A) and ammonium dihydrophosphate (B).

FIG. I.2

Scheme of crystallites (grains) with its borders (A) and block (mosaic) structure inside the

crystallites (B).

xiv Introduction
However, the crosscorrelation arrangement of remote atoms in a glass is violated.

Nevertheless, the ordering of glassy state is higher than that in the amorphous state,

which means that the coordination number is more definite in glass than in the amor-

phous state of a solid.

Other ordered solids alsomayhave great importance for practical use in electronics.

This applies primarily to two-dimensional (2D) systems (like films). In the 2D
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systems, a strictly ordered structure is seen only in plane. If such planar structure is reg-

ularly repeating in the semiconductor chip (creating superstructure), its electronic prop-

erties can be characterized by so-called quantumwells that is a typical characteristic of

2D nanostructures.

Fig. I.3 shows well-known 2D system—graphene, which has great prospects in

electronics.
FIG. I.4

Models of nanotubes.

FIG. I.3

Crystal structure of graphene—2D hexagonal lattice.
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Accordingly, the linear (wire-like) systems belong to 1D nanostructures, where

translation-like ordering is observed only along one direction (“quantum threads”).

The porous silicon can be, in particular, attributed to these systems. However,

another well-studied quasi-1D structure is shown in Fig. I.4, carbon nanotubes.

There are also systems whose dimensions along all three orthogonal directions

are commensurate with the distance between atoms. Such zero-dimension (0D) sys-

tems can be considered as “quantum dots,” in which only 10–103 atoms are the

ordered system. Fig. I.5 demonstrates germanium quantum dot grown on silicon sub-

strate. On the area of one square micron, more than 1,000 of these quantum dots can

be accommodated.
FIG. I.5

Three-dimensional images of quantum dot image using a scanning electronic microscope.

FIG. I.6

Zinc oxide nanostructures used in sensors: (A) hexagonal nanocrystals; (B) thin tubular

nanocrystals.
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Nanostructures are characterized by a huge variety of shapes. Fig. I.6 gives exam-

ples of ZnO nanostructures that can be used in various sensors (humidity, gas, and

even smell sensors).

“Scalp-like” finest ZnO nanocrystals shown in Fig. I.6B actually have an arrange-

ment that is thousands of times denser than human hair.
I.1 CONNECTION BETWEEN ELECTRONIC MATERIALS
PHYSICS AND GENERAL PHYSICS
Technical university course of electronic materials science, also known as condensed
matter physics or solid-state physics, usually is studied in the final part of a series of
physics courses so that it can be knowledge gained by students in previous courses of

physics. The mapping between solid-state physics, classical mechanics, quantum

mechanics, and relativistic mechanics is illustrated in Fig. I.7. Solids-state physics

is located between classical and quantum mechanics.

Fig. I.7 shows that classical physics is a field of research of low velocities υ (as
compared with the speed of light c) and a certain ratio of Planck constant h̄ to the

action parameter S. Planck constant has a physical dimension of “momentum” that

is the product of “energy× time ¼ impulse× length.” The action parameter S char-

acterizes movement of particle when its way is multiplied by its impulse. At that,

both axes used in Fig. I.7 are dimensionless, because the dimension of S is the same

as the dimension of Planck’s constant h̄.
Condensed matter physics (which is the generalization of solid-state physics) is

based not only on classical mechanics, but also on principal methods and notions of

quantum mechanics (see Fig. I.7). Einstein’s relativistic mechanics is not used in the

solid-state physics, but some of laws of relativistic quantummechanics are important
FIG. I.7

Connection between different areas of physics.
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for understanding the nature of magnetism in atoms, thin films, and nanosized struc-

tures. Solid-state physics explores the nature of solid body formation and its structure

(atomic and energetic), as well as its basic physical properties—electromagnetic,

optical, thermal, mechanical, and others—that contribute to widespread use of solids

in electronics, instrumentation, electrical, and mechanical engineering.

Electronic materials science examines rather complex spatial lattices composed

of microscopic particles—atoms, ions, or molecules. The forces acting between par-

ticles have a predominantly electrostatic origin. Although atom as a particle is neu-

tral, its electrical charges are not localized at a single point; they are slightly spaced.

Therefore, during the formation of a solid body, in which atoms are located close to

each other, the opposite charges attract each other, while charges with equal sign

push off. Thus, the forces acting between atoms have both attraction and repulsion

in them. The influence of one atom on the motion of electrons in another atom is such

that the resultant force is always the force of attraction.

The mutual attraction of atoms (or ions, or molecules) that acts at a long distance

is actually the cause of formation and existence of solids. However, the attraction

dominates only until atoms come near each other so closely that they almost collide.

Then the repulsion begins to dominate, as those forces are short-range ones. At a suf-

ficiently small distance, the repulsive force becomes equal to the force of attraction;

then a few atoms or ions form the molecule, whereas a whole set of atoms constitutes

the solid body.

For materials science, it is important to establish the nature of repulsive forces. As

electron is 100,000 times smaller than atom (so as atomic nucleus), from the point of

view of classical mechanics the atom looks like “emptiness,” as the space occupied

by electrons and nucleus is so small. However, solid-state physics (especially in its

important section—crystallography) makes quite a reasonable assumption that atom

(or ion) behaves as slightly deformable but solid ball. For this reason, a widely used

concept in materials science and solid-state physics is the atomic or ionic radius (data
for atoms and ions of various elements can be seen in reference tables). One can

assume that crystal can be represented in a form of regular lattice, composed of solid

balls (ions, atoms, or molecules). High “hardness” of apparently empty atom balls is

explained by quantummechanics; namely, when atoms approach each other, the pos-

sible space for bound electrons rapidly decreases, because uncertainty of respective

coordinates diminishes. According to Heisenberg’s uncertainty principle, the posi-

tion x and impulse p of a particle cannot be established simultaneously with arbi-

trarily high precision: Δx �Δp > h̄/2. The shorter distances between atoms lead to

greater uncertainty in impulse and, thus, to an increase in the magnitude of impulse.

As a result, the kinetic energy of electrons increases as well as their total energy,

which finally results in repulsion. Energetically favorable position for atoms imposes

certain distances between them. Therefore, repulsive force, which provides balance

in the solid structure, has quantum nature.

Basic materials of electronics are semiconductors, metals, insulators, magnetics,

and nanomaterials. Obviously, most important for electronics are their electrical

characteristics, and, among them, electrical conductivity (σ). Besides, this parameter
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is very convenient for the classification of solids. The unit for measurement of con-

ductivity is [S/m] (Siemens per meter). It determines current density j [A/m2] in a

given material, arising under applied electrical field E [V/m] according to Ohm’s

law: j ¼σЕ. It is important to note that temperature dependence of conductivity

σ(T) is quite different for various types of electronics materials (Fig. I.8).

In dielectrics and metals, the σ(T) dependences are opposite. While in dielectrics,

with temperature rise, conductivity increases exponentially (because atomic thermal

motion in a matter generates new charge carriers), in metals conductivity decreases

approximately as Т�1 owing to charge carrier scattering on the lattice thermal vibra-

tions. Therefore, at low temperatures, conductivity in metals becomes very large,

reaching infinity when at zero temperature (in case of superconductivity). In dielec-

trics, in contrast, low-temperature value of σ becomes close to zero, because charge

carriers are not generated in the absence of thermal motion (and any radiation

effects). Even at room temperature (Т � 300К), dielectrics have very low conduc-

tivity (σ < 10–10S/m), and for this reason they are often are referred to as “electrical

insulators.”

With regard to σ(T) dependence, metals and dielectrics are qualitatively different

(see Fig. I.8). Yet in semiconductors the σ(T) dependence looks like in dielectrics;

the difference lies in much higher conductivity of semiconductor. If temperature

becomes higher, this difference becomes less noticeable (in dielectrics and semicon-

ductors, charge carriers appear through the temperature-driven activation process).

Various properties of solid materials are related to the nature of their chemical

bonds and to energy spectrum of electrons. The study of atomic structure and elec-

tronic energy spectra of crystalline and noncrystalline solids is a fundamental prob-

lem of solid-state physics, because it facilitates a conscious search for materials with

predetermined properties.
FIG. I.8

Temperature dependence of conductivity in solids: (A) normal scale, (B) logarithmic scale for

σ and inversed temperature.
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Distinguishing characteristic of solids is their structural ordering that is depen-

dent on positions of neighboring atoms. The correlation of their position may man-

ifest itself exclusively in the short-range ordering of atoms. In the amorphous solids,

a short-range ordering is significantly limited; sometimes, their atomic regulation

may be restricted to the microcrystallites that are disordered with respect to each

other. However, most solids have the long-range ordering, that is, undistorted crystal

lattice that extends to relatively large areas. A wide variety of possible geometric

structures and spatial relationships in lattices leads to a large number of different phe-

nomena in solids.

Any crystal may manifest some deviation from ideal geometric structure. In addi-

tion, any physical body has a finite size; thus a crystal is always limited, either by

external surfaces or by internal borders between crystallites. This assertion is trivial,

but it is essential for many physical phenomena. It is not possible to entirely neglect

the disturbances in body of a real crystal, caused both by the inclusions of foreign

atoms in main lattice and by the impurities and violations of local lattice periodicity.

The thermal motion of atoms in crystal lattices also leads to a deviation from

strict periodicity. Indeed, periodic lattice reflects not real positions of atoms, but their

imaginary equilibrium positions, where they would find themselves at temperature

of absolute zero; only this case corresponds to the ground state of a crystal. Each

deviation from the ground state means a disturbance. However, at normal tempera-

tures, these deviations are so small that ordered lattice dominantly determines prop-

erties of a crystal.

The properties of electronics materials are, at first approximation, reduced to two

complex problems:

• Determining the ground state of solids and reasons for its stability (i.e., clarifying

the nature of forces that hold atoms in lattices).

• Describing behavior of solids under external influences (i.e., justifying and

predicting various physical properties of solids such as electrical, thermal,

mechanical, etc.).

The first set of complex problems are characterized by terms such as crystal struc-

ture, nature of chemical bonds, cohesion forces, and energy of bonding. However, it

is only at first glance the solution of these problems is independent of behavior of

solids under the external influences. In fact, solution to the first problem can be

obtained only through a settlement of the second problem, because each experiment

implies the disturbance of ground state. Any conclusions about properties of solids in

the ground state can be made after investigation on how it is affected by the applied

electrical field, temperature, exposure to light, etc.

Several external important impacts will be discussed in this book:

• Electrical field. First of all, the charge transfer should be studied, that is, electrical
current. This investigation would enable phenomenological classification of

solids as metals, semiconductors, and dielectrics. The mechanism of electrical

charge transfer in an electrical field also makes it possible to determine



xxiIntroduction
mechanisms of conductivity (electronic or ionic). Second, the investigation of

solids in the electrical field enables to study the mechanism of electrical charge
separation, that is, electrical polarization, whose nature may be electronic, ionic,

and dipole.

• Magnetic field. Different responses of solids to the impact of magnetic field

depend on their chemical composition and structure. They give rise to such

phenomena as diamagnetism, paramagnetism, ferromagnetism, and

antiferromagnetism (and their combinations—ferrimagnetism). The widely used

investigation method is the magnetic field application during charge transfer

phenomena study in the electrical field. These additional parameters give rise to a

number of emerging effects and allow to obtain significant information about

main properties of solids.

• Temperature gradient. It determines the direction of energy flow from hotter to

colder areas of solids. It is noteworthy that simultaneously with heat transfer the

electrical charge transfer is also possible. The energy and charge transfer can be

described by various mechanisms.

• Illumination by light. Absorption, reflection, and scattering of light provide

important information about interaction of electromagnetic waves with various

solids.

• Irradiation by electrons, positrons, neutrons, and other corpuscular particles

serve as probe to study various properties of solids.

• Dosed implantation of additives into the crystal lattice enables to get important

information about crystal properties. This might be done through foreign atom

inclusion into crystal structure, formation of vacancies, and atomic substitutions

in a lattice, etc.
I.2 SOME COMMENTS ON THEORETICAL APPROACHES
Theoretical description of all the listed phenomena by using any universal model

seems impossible. Therefore it is necessary to apply approximations. Therefore in

specific cases of investigation, the simplified models should be used, which are suit-

able for a given problem. The purpose of various theories of solids should be eventual

reduction of various theoretical facets of phenomena into unified concepts.

One of such concepts is based on the idea of quasiparticles,which are elementary

excitations in the solids. In fact, even in case of very weak impact on solid the intro-

duced energy cannot be delivered exclusively to one element of crystal indepen-

dently of all others. The point is that the strong interaction exists between all

particles of a crystal (atoms, ions, and electrons), and, therefore, the energy, even

being applied to a single particle, should be rapidly distributed between other parti-

cles. This process can be modeled by emission and absorption of quanta of energy

attributed to imaginary particles. The concept of quasiparticles, which corresponds to

various forms of excitation in solids, can be considered as the basic principle for

solid-state physics.
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Thus the object of study is a solid in the excited state. Excitation energy can be

thermal energy that is imposed from outside or appear as external violation of crystal

lattice. The energy of thermal excitation is transferred to different subsystems of a

solid. For example, it can be transferred to valence electron or to ion, as well as it can

appear as kinetic energy of ionic lattice vibrations or as the energy of coupled spins in

a ferromagnetic.

The excited state that lies close to the energy of ground state may be characterized

by relatively small number of the independent oscillators. This method is used in the

lattice dynamics of solids to describe small oscillations of a lattice around its equi-

librium positions. Thus complicated collective vibration state is decomposed into the

normal independent vibrations. These vibrations can be quantized, and the corre-

sponding quanta are the phonons, the example of elementary disturbances. In some

sense, they resemble elementary excitation quanta of electromagnetic field—

photons.

The second example of formal description, simplifying multiparticle system with

strong collective interaction, is as follows. An idea is introduced that the motion of

charged particles can be described as a “gas” of charged particles. Obviously, each

particle must push off other similar particles from its surroundings. Formally, this

case can be described by the assumption that there is no interaction between parti-

cles, because any observed particle is accompanied by the “cloud” of opposite sign

charges that partly compensate the charge of given particle. Thus, the interaction,

which means other particles’ influence on a movement of given particle, can be

replaced by the inertial charged cloud that the given particle should “entail” during

its motion. In such a way, the system of interacting particles is replaced by the system

of noninteracting particles; however, dynamic properties of new quasiparticles are

changed.

In solid-state physics, there are many examples of elementary excitation. Along

with phonons, which are quanta of lattice vibrations, there are collective excitations

of electrons in metals, called plasmons. In the same way, magnetic spin system can

be described by spin waves with corresponding quanta—themagnons. In addition, in
dielectrics the elementary electronic excitations are the polarons, while in the semi-

conductors they might be the excitons. The nature of various quasiparticles might be

different. When describing electrons, it is necessary to consider that during their

movement through a crystal they are exposed to different interactions. Therefore

moving electrons can be described as different quasiparticles, depending on the

nature of interaction. Electrons can behave as free electrons, or polarons (escaped

electrons), or excitons (bound by local interactions), or Cooper pairs, etc.

The violations of crystal lattice, such as localized impurity atoms (or vacancies)

in the crystal lattice, can also be modeled by elementary excitations. These elemen-

tary excitations, at first approximation, can be considered as noninteracting. In a

more refined approach, their interactions also must be taken into consideration. How-

ever, in this case, a concept of “excitation” is also applicable, and it can be taken into

consideration by methods of the perturbation theory.
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Even when it is possible to neglect interaction of elementary excitations of the

same type, the question of interaction between different types of excitations remains

an important problem. With this approach, a significant variety of phenomena in

solids can be investigated. The process of establishing equilibrium in solids also

requires considering the interaction of quasiparticles, that is, energy exchange

between different systems of elementary excitations.

The concept of elementary excitations should be applied only in case of weak

deviations from a ground state. If the number of collective excitations and quasipar-

ticles is quite large and the relationship between them is too strong, then the

described theoretical model becomes very complicated due to a large number of

details, and the concept of quasiparticles ceases to be effective.
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Before describing the most diverse properties of materials used in electronics, it is

necessary to consider the features of their structures, in which these properties are

realized.

The formation of crystal, amorphous, and other substances from atoms is accom-

panied by a decrease of the energy in a system as compared to unconnected atoms.

The minimum energy in solids corresponds to a regular arrangement of atoms that

agrees with the specific distribution of electronic density between them. In accor-

dance with the electronic theory of valence, interatomic bonds are formed due to

the redistribution of electrons in their valence orbitals, resulting in a stable electronic

configuration of noble gas (octet) due to formation of ions or of shared electron pairs

between atoms.
1.1 ATOMIC BONDING IN METALS, SEMICONDUCTORS,
AND DIELECTRICS
Any connections of atoms, molecules, or ions are conditioned by electrical and mag-

netic interactions. At longer distances, electrical forces of attraction dominate

between particles whereas, at short distances, repulsion of particles increases

sharply. The balance between such long-range attraction and short-range repulsion

is the cause of the basic properties of substances. The atomic connection is attribut-

able to the restructuring of atomic electronic shells, thus creating chemical bonds. In
other words, chemical bonds are the phenomenon of atomic interaction by means of

overlap of their electronic clouds, and this is accompanied by a decrease of the total

energy of a system.
Electronic Materials. https://doi.org/10.1016/B978-0-12-815780-0.00001-3
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2 CHAPTER 1 Structure of electronic materials
Chemical bonding is characterized by both energy and length.Ameasure of bond

strength is the energy, expended in case of bond destruction, or the energy gained

during compound formation from individual atoms. Consequently, the energy of

chemical bonds equals the work that must be expended to separate particles that

are constrained, or to alienate them from each other on the infinite distance [1].

During the formation of chemical bonds, exactly those electrons that belong to

the valence shells play a major role because their contribution to solid body forma-

tion is much greater than that of the inner electrons of atoms. However, division into

ionic residues and valence electrons is a matter of convention. For example, in metals

it is sufficient to consider that valence electrons are transformed into conduction

electrons whereas all other electrons belong to ionic residues.

In the atoms of a metal, their outer electronic orbits are filled with a relatively

small number of electrons that have low ionization energy. When these atoms come

together (i.e., when crystal is formed from atoms), the orbits of valence electrons

strongly overlap. As a result, valence electrons in metals become uniformly distrib-

uted in a space between cations, and these electrons have a common wave function.
Therefore valence electrons in most metals are fully collectivized, and thus such

crystals constitute a lattice of positively charged ions crowded by “electronic

gas.” Unlike, for example, covalent bonds, the complete delocalization of electrons

is a distinctive feature of metallic bonds.

It is in this way that the spatial distribution of valence electrons lies at the heart of

the classification of solids (dielectrics, semiconductors, and metals). The division of

crystals into different classes suggests that solids consist of:

• ionic residues, that is, nuclei themselves and those electrons that are so strongly

associated with their nuclei that the residues formed cannot significantly change

their configuration as compared with the atom;

• valence electrons, that is, electrons, the distribution of which, in solids, may

differ significantly from the configuration existing in isolated atoms.

The spatial distribution of electronic orbitals of certain atoms has a strong influence on

the bond strength and their direction. Fig. 1.1 schematically shows how major elec-

tronic orbitals for s-, p-, and d-states of electrons in the atoms might look. Only the

s-orbital is characterized by spherical symmetry. In contrast, the p-orbital has a very
specific form, and this is especially true for thed-orbitals: their forms are considered to

contribute to the specific properties of transitionmetals. Rare earthmetals have f-elec-
trons, and theymayplay a dual role: as residue electrons of “atomic core” and as “free”

electrons (because of their complexity, f-orbitals are not shown in Fig. 1.1).

Thus during chemical bond formation, valence electrons play a dominant role

because, at crystal formation, their contribution is much greater than that of elec-

trons, which form atomic internal orbitals in the residues.

A classification of the possible bonds of particles in crystals is shown in Fig. 1.2.

This division is rather conditional, because it corresponds to simplified models.

In many cases, the actual bonding is more complicated and often presents as an inter-

mediate case between simple models.
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FIG. 1.1

Forms of s-, p-, and d- orbitals: angular dependence of square wave functions.

FIG. 1.2

Various models of atomic bonds in crystals [2].

31.1 Atomic bonding in metals, semiconductors, and dielectrics
Molecular and metallic bonds are shown at the opposite sides of the scheme,

because they are absolute opposites. In molecular crystals, electrons usually are

completely locked in their molecules (or atoms; Fig. 1.3A). The nuclei are sur-

rounded by spaces (shown as black balls), where the density of the electronic cloud

reaches significant values.

The simplest examples of molecular bonds are atomic crystals of solid inert

gases: neon, argon, krypton, and xenon. These have completely filled electronic

shells, and such a stable electronic configuration undergoes only minor changes dur-

ing the formation of solids. Therefore, the inert gas crystal is an example of a rigid

body with strong electron bonding exclusively inside atoms, whereas the electron

density between atoms is rather small, because all electrons are well localized near

their own nuclei.



FIG. 1.3

Two-dimensional image of electrical charge distribution: (A) molecular crystal, in which

quadrupole electronic fluctuation (+ 2 … 2 +) results in the attraction of atoms, whereas

partial overlapping of electronic shells leads to repulsion ( …!), thereby balancing this

attraction; (B) metal crystal, black circles represent positively charged atomic residues,

immersed in electronic gas.

4 CHAPTER 1 Structure of electronic materials
The metal bond. As already noted, in metal atoms their outer electronic orbitals

contain a rather small amount of electrons that have low ionization energy. When

such atoms come closer (i.e., when a metal crystal or alloy is formed), orbitals of

valence electrons largely overlap each other. As a result, these electrons become dis-

tributed almost uniformly in the space between ions (Fig. 1.3B). Indeed, X-ray stud-

ies have practically indicated a uniform electronic density in the lattice of metals.

Therefore valence electrons in metals are a joint collective in the crystal as a

whole, and metal represents the lattice of positively charged ions wherein the

“electronic gas” exists. This is a reason for the delocalization of metal bonds; more-

over, metal bonds are unsaturated and nondirectional. Metals are, among crystals,

characterized by the highest coordination number (CN) of ions (usually in metals,

this number is 12; it is the number of the nearest neighbors to a given particle).

For comparison, it should be noted that in ionic crystals this number is often 6 or

8. Similarly, the CN in the covalent crystals is even smaller—it is 4 for semiconduc-

tors with a diamond structure.

The bonding in dielectrics and semiconductors differs significantly from metal

bonds. Fig. 1.4 schematically shows the energy dependence on the distance between
atoms for bonds in basic types of dielectrics and semiconductors (metal bonds are not

shown). Between particles (atoms, molecules, or ions) when creating a semiconduc-

tor or dielectric material, at relatively large distances, the forces of attraction dom-

inate: the corresponding energy is negative and characterized by the curve 1. At short
distances, the force of repulsion becomes much more powerful; its energy is positive



FIG. 1.4

Dependence of attraction energy (1), repulsion energy (2), and total energy (3) on the

distance between particles r : (A) ionic bond, (B) covalent bond; (C) molecular (quadrupole)

bond; and (D) hydrogen bond.
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and characterized in Fig. 1.4 by curve 2. The total potential energy of interaction

between particles is shown by curve 3 that the minimum energy corresponds to a

stable distance between the interacting particles (this is parameter of lattice).
The strong repulsion between approaching atoms or ions can be modeled by dras-

tic energy dependence: Urep� r�8 … r�12; this dependence characterizes the mutual

impenetrability of electronic orbitals: electronic shells of neighbor atoms or ions can

penetrate each other only very slightly. This is the reason that atoms, ions, or mol-

ecules can be presented by the “hard spheres” of certain radii, the size of which

remains practically unchanged [3].

The attraction forces that tie atoms, ions, and molecules together in solids are of

an electrical nature. It should be noted that crystals are classified just by the nature of
attraction forces. As shown in Fig. 1.4, the main types of chemical bonds in dielec-

trics and semiconductors are the covalent, ionic, molecular, and hydrogen bonds.

The metal bond (not shown in Fig. 1.4) can be considered a limiting case of the

covalent bond.

The ionic bond. Ionic crystals (such as sodium chloride, Na+Cl�) are chemical

compounds formed frommetal and nonmetallic elements. The energy of ionic attrac-

tion varies with distance rather slowly; therefore ionic bonds are the most long



FIG. 1.5

Two-dimensional image of electronic charge distribution in: (A) ionic crystal, where ion

attraction is balanced by partial overlapping of electronic shells; (B) covalent crystal, black

diffused circles represent atomic residues surrounded by regions, where electronic density

reaches significant values.
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ranging in comparison with others. Similar to atomic or molecular crystals (shown in

Fig. 1.3A), ionic crystals can be characterized by such a distribution of electronic

charge that is almost completely localized near ions. In the simplest model of the

ionic crystal (Fig. 1.5A), ions are “nearly impenetrable charged balls.” This approx-

imation is rather suitable for ions that have completely filled electronic shells.

Typically, cations and anions acquire electronic configuration of the inert gas,

and therefore the charge distribution in them has an almost spherical symmetry. Ions
with opposite charges attract each other due to long-range Coulomb forces; therefore

the energy of their attraction varies with distance very slowly:Uatt� r�1 (Fig. 1.4A).
At the same time, the repulsive energy of ions is inversely proportional to the intera-

tomic distance: Urep� r�8 … r�12 (depending on the properties of the given crystal).
Therefore the ionic crystal can be considered a molecular crystal in which the lattice

is built, not from atoms, but from the ions (e.g., ions Na+ and Cl� in the rock salt).

Thus charge distribution in the ion, located in a solid body, is only slightly different

as though it were an isolated ion. It is important that particles, which form ionic crys-

tals are not neutral atoms: between ions, large electrostatic forces exist that play a

major role and determine the main properties of ionic crystals (that differ signifi-

cantly from the properties of molecular crystals).

Thus in the simplest model of an ionic crystal, all ions are presented as

“interacting nearly impenetrable charged spheres”; this approximation is sufficient

for ions with entirely filled electronic shells. Whereas in the atomic (or molecular)

crystal, all electrons remain locked in their native atoms, in the ionic crystal, valence

electrons are moved from cations to anions.

Therefore the ionic bond occurs between particles of two types, one of which eas-

ily loses electrons, forming positively charged ions (cations) and other atoms that
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readily get electrons then form, respectively, negatively charged ions (anions). Most

of the electropositive cations belong to groups I and II of the periodic table, whereas

most anions belong to groups VI and VII.

As a rule, ions in crystals are packed tightly, as each of them is surrounded by the

largest number of oppositely charged ions. Stabilization of the ionic solid structure

takes place at CNs 6, 8, and, occasionally, even 12. It should be noted that ionic radii

vary noticeably with the value of the CN. Ionic bonds, unlike metal bonds, are sat-
urated, but, as in metals, they are not directed [4].

The covalent bond in crystals is typical for semiconductors. The dependence of
binding energy on interatomic distance is shown in Fig. 1.5B; attractive forces in

case of covalent bonds are not so long ranging as in the case of the ionic bond:

the attraction energy changes with distance as r�2 … r�4.
In principle, the nature of the covalent bond is very close to that of the metal bond;

however, in covalent crystals, valence electrons are shared only between the nearest
neighboring atomswhereas, in metals, valence electrons are shared within the crystal

lattice. Usually, a covalent bond (i.e., homeopolar bond) is formed with a pair of

valence electrons that have opposite spin directions. During covalent chemical bond

formation, the reduction of total energy is achieved by the quantum effect of

exchange interaction. The simplest example of a covalent bond is the hydrogen mol-

ecule H2, wherein both electrons belong simultaneously to both atoms.

The diamond might be a classic example of a covalent crystal (Fig. 1.5B), where

carbon atoms are located in a rather roomy configuration: their CN is only 4. There-

fore, diamond (as with semiconductors of similar structure—germanium and silicon)

is characterized by a comparatively high-density electronic cloud in the atomic inter-

stitials: electrons are concentrated mainly near the lines connecting each carbon atom
with its four nearest neighbors. Although diamond is dielectric, the high charge den-

sity in areas between atoms is a characteristic feature of semiconductors.

Covalent bonds, unlike metal bonds, are strongly directed; moreover, they are

saturated. The saturation of a covalent bond is the ability of atoms to form a limited
number of covalent bonds. The number of bonds formed by the atom is determined

by its outer electronic orbital. The directivity of covalent bonds is caused by their

peculiar electronic structure and geometrical shape of electronic orbitals (the angles

between two bonds are the valence angles).
Sometimes, covalent bonding might have pronounced polarity and increased

polarizability that determines many chemical and physical properties of correspon-

dent compounds. The polarity of a covalent bond is due to the uneven distribution of

electronic density accruable to a difference in the electronegativity of atoms (there-

fore covalent bonds are divided into nonpolar and polar bonds). The polarizability of

bonds can be expressed by the nonsymmetric spontaneous displacement of binding

electrons [5].

The following polar connections are distinguished [4]:

• The nonpolar (simple) covalent bond arises from the fact that each atom provides

one of its unpaired electrons, but the formal charge of atoms remains unchanged,

because atoms that form the bond equally have a socialized electron pair.
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• The polar covalent bond, wherein atoms are different, the degree of overlap of the

socialized pair of electrons is determined by the difference in the

electronegativity of atoms. The atom with a greater electronegativity more

strongly attracts electrons; therefore its real charge becomes more negative. With

the electronegative charge an atom acquires, there is additional positive charge of

the same magnitude.

• The donor-acceptor bond arises when both connecting electrons are provided

by one of the atoms (called the donor) whereas the second atom, involved in

the formation of a bond, is the acceptor. When creating this pair, formal

charge of the donor is increased by one and the formal charge of the

acceptor is reduced by one. The electron pair of one atom (donor) goes into

a common use, whereas another atom (acceptor) provides its free orbital,

because the donor atoms usually serve atoms that have more than four

valence electrons.

• The σ-bond and π-bond are approximate descriptions of some types of covalent

bonds in different compounds. Therefore the σ-bond is characterized by the

maximum electronic cloud density along the axis joining the nuclei of atoms. The

formation of the π-bond is characterized by the lateral overlap of electronic

clouds “above” and “below” the plane of the σ-bond.

Unlike metallic coupling, the emergence of a covalent bond is accompanied by such

redistribution of electronic density that its maximum localizes between the interact-

ing atoms. As in metals, in case of a covalent bond, the collectivization of the outer

valence electrons is seen, but the nature of electronic allocation is different from that

in metals. In the ground state of covalent crystals, that is, at T¼0K, there are no par-

tially filled electronic energy bands.

In other words, the covalent crystal cannot be described by uniform distribution

of electronic density between atoms, as is typical for simple metals. Conversely, in

covalent crystals, the electronic density is increased along the “best destinations,”

leading to chemical bonds. The stronger the covalent bond, the greater the overlap
of electronic clouds of interacting atoms. If this bond is formed between similar

atoms, the covalent bond is the homeopolar and, when atoms are different, it is

the heteropolar.
In cases where two interacting atoms share one electron pair, a single connection

is formed; when there are two electron pairs, the double bond is created, and when

there are three electron pairs, a triple bond is created. The distance between bound

nuclei is defined as the length of the covalent bond. Bond length decreases when the
order of the bond increases. For example, the length of a “carbon-to-carbon” bond

depends on multiplicity: for a CdC bond, its length is 1.54�10�1nm; in case of a

C]C bond, the length is 1.34�10�1nm, whereas for C^C, it is only

1.20�10�1nm [3]. With an increase of the bond order, its energy increases.

The directivity of covalent bonds characterizes the features of electronic density
distribution in atoms. For instance, in germanium and silicon crystals (that have a

diamond structure), each atom is located in the center of a tetrahedron, formed by



FIG. 1.6

Structure of main semiconductors: diamond (A), sphalerite (B), and wurtzite (C) [6].
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four atoms, their closest neighbors (Fig. 1.6A). In this case, tetrahedral bonds are

formed when each atom has only four nearest neighboring atoms.

Most covalent bonds are created by two valence (hybridized) electrons—one

from each interacting atom. In case of such a connection, the electrons are localized

in the space between the two atoms; thus the spins of these electrons are antiparallel.

As shown in Fig. 1.5B, the plane scheme can give only an approximate representa-

tion of the actual location of atoms. In fact, the relative position of these atoms in real

crystals can be quite complex, as shown in Fig. 1.6B and C. The structure of the min-

eral sphalerite (zinc sulfide, ZnS) is typical of AIIIBV semiconductors, such as gal-

lium arsenide. The wurtzite structure (calcium selenide, CaSe) is typical of AIIBVI

semiconductors.

Simplified schemes of electronic density distribution in covalent and ionic crys-

tals are shown in Fig. 1.7A and B. However, sphalerite and wurtzite belong to polar

crystals that have a hybrid bonding.

The hybrid ionic-covalent bond.Aswith the model of a “purely covalent” struc-

ture, a model of a “purely ionic” crystal is idealized. In real crystals (especially, in

some AIIIBV and AIIBIV types of semiconductors and in active dielectrics), the inter-

mediate case between ionic and covalent bonds exists. In the covalent silicon crystal

(Fig. 1.7A), electrons are equally distributed around atoms; therefore, the electronic

density between atoms is rather large. In an ionic crystal, the attraction of cation and

anion is compensated by the repulsion of partially overlapping electronic shells.

The concept of intermediate type bonds agrees with the theory of ion deformation

by their polarization. This may occur, for example, by the distortion of an anion’s

electronic orbital, mainly by the different electronegativities of adjacent ions. There-

fore, the electronic density between ionic residues increases, that is, the mixed

covalent-ionic bond with a greater degree of charge separation becomes the polar
bond. The exact presence of such bonds determines the noncentrosymmetric struc-

ture of some crystals. The hybrid ionic-covalent bonding is the main cause of pyro-

electric, ferroelectric, and piezoelectric properties. Most such active (functional)
dielectrics belong to crystals or to other ordered polar systems (liquid crystals, elec-

trets, polar polymers, etc.). Thus the physical hypothesis, relevant to the nature of the



FIG. 1.7

Simplified scheme of transition from covalent and ionic bonds to mixed polar bond: (A) in

covalent bond, electronic density (ρ) distribution is quite symmetric (arrows symbolize

opposite orientation of spins in connecting electron pair); (B) in ionic bond, cation and anion

are attracted (big arrows), whereas a small overlap of electronic shells ensures repulsion

(small arrows); electronic density distribution is almost symmetric, (C) asymmetric mixed

bond that leads to polar properties of crystals, wherein both attraction and repulsion are seen:

a covalent bond is formed by electron pair with opposite spins; electronic density distribution

is asymmetric, and can be characterized by displacement δ.
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internal polarity (which is not caused by an external electrical field), deserves par-

ticular attention. This hidden (or latent) polarity manifests itself in polar crystals as

the ability to provide electrical (vectorial) response to any nonelectrical scalar, vec-

tor, or more complicated tensor impacts [5].

The tendency of polar crystals to generate an electrical response on nonelectrical
impact leads to their generation of electrical potential under uniform heating of crys-

tals (pyroelectricity) or under uniform deformation (piezoelectricity). These are

mostly crystals with hybrid ionic-covalent bonding. Exactly this peculiarity causes

a reduction in crystal symmetry; therefore polar crystals always belong to noncen-

trosymmetric classes of symmetry.1

It is obvious that the primary cause of the peculiarities of polar crystals is the

asymmetry of electronic density distribution along atomic bonds. The fundamental

reason for this asymmetry is a distinction in the electronegativity of atoms (a physical

property that describes the tendency of an atom to attract electrons). Electronegativ-

ity depends on atomic number, as well as on the size and structure of outward

(valence) electronic orbitals [1]. The higher the atomic electronegativity, the stron-

ger the aptitude of atoms to attract electrons toward themselves.
1Comments. In contrast, crystals with exclusively ionic bonds as well as crystals with exclusively cova-

lent bonds are nonpolar. Usually, they belong to the centrosymmetric classes of crystals: in typically

ionic crystals, a central symmetry exists, and there are no special orientations in atomic connections. In

the same way, simple covalent crystals also belong in centrosymmetric structures: each atom provides

for bond one unpaired electron; thus four socialized electron pairs are located symmetrically.
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The difference of atoms by electronegativity might be very substantial. Therefore

atoms with higher electronegativity strongly attract conjunctive electrons, and its

true charge becomes more negative. Conversely, the atom with lower electronega-

tivity acquires an increased positive charge. Together, these atoms create a polar con-

nection and, correspondingly, the noncentrosymmetric structure. Simultaneously,

such connections do not lead to the appearance of internal fields, but can provide

a peculiar response to external impact that is quite different in various noncentrosym-

metric crystals.

For example, in case of directional mechanical influence onto a polar crystal, an
electrical response arises (piezoelectric effect). The point here is that the elastic dis-
placement of atoms compresses (or stretches) their asymmetric connections, and

thereby induces electrical charges on the crystal surface (piezoelectric polarization).

In contrast, if atomic connections in crystal are centrosymmetric, no electrical

response is possible to any uniformmechanical impact (however, the inhomogeneous
thermal or mechanical impact makes atomic bonds asymmetric, which results in the

appearance of an electrical response in any crystal).

The fact is that, in many crystals (e.g., in various semiconductor compounds), the

type of bonding has an intermediate character between covalent and ionic. It is note-

worthy that under conditions of very high pressure, any material with ionic or cova-

lent bonding would acquire the property of ametal bond, and the material would turn

into a metal. Thus very high pressure leads to a forced convergence of atoms with

great overlap of their outer electron shells. (It should be noted that, in some rare

cases, even at normal pressure, a phase transition of “dielectric-metal” is possible;

this transition might be stimulated by temperature change or by an external electrical

or magnetic field) [5].

The energy of ionic, covalent, and metallic chemical bonding is characterized by

similar orders of magnitude. In this respect, they are much inferior to molecular bonds.

Molecular bonds (van der Waals bonds) always exist, but only when much

stronger valence bonds are absent do these molecular bonds become the main type

of chemical connection, primarily, in molecular crystals. Forces of attraction in this

case are relatively small, being short range: the energy of intermolecular attraction

varies with distance as Uatt� r�4 … r�6 (Fig. 1.4C). It is evident that this kind of

attraction is weak in comparison with ionic and covalent forces; therefore van der

Waals bonds are additive and nonsaturated.
In case of nonpolar molecules, the forces of attraction are due to the accidental

deformations of electronic shells. Quantum fluctuations of electronic density in mol-

ecules always exist; thereby, virtual electrical dipoles (or quadrupoles) lead to

molecular attraction (in Fig. 1.4C, van der Waals bonding is shown schematically

and only as dipole-to-dipole interaction). The electronic polarizability of orbitals

determines optical dispersion in materials; therefore forces of attraction of this type,

sometimes, are called dispersion forces.

In case of polar molecules, the orientation interaction also contributes to the

usual molecular interaction. The influence of a molecule’s intrinsic (permanent)

dipole onto the induced dipole of another molecule is the inductive interaction.
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In general, in case of van der Waals bonding, the main contribution is provided by

the dispersive forces; however, when molecules have large dipole movements, the

contribution of the orientation effect might be significant. As a rule, the inductive

interaction is negligible [4].

The hydrogen bond appears between hydrogen atoms and the electronegative

atoms P, O, N, Cl, and S belonging to other molecule. The nature of this bond lies

in the redistribution of electronic density between atoms, conditioned by the hydro-

gen ion H+ (proton; Fig. 1.4D). Crystals with hydrogen bonds (dielectrics and semi-

conductors) show properties similar to molecular crystals, but there is a reason to

allocate them to a special class. Hydrogen is unique in the following respects:

• the residue of hydrogen ion is a “bare” proton measuring approximately 10�13 cm
(i.e., 105 times smaller than any other ion);

• hydrogen needs only one electron to constitute a stable helium type; the

electronic shell (unique among other stable configurations having only two

electrons in the outer shell);

• the ionization potential (energy required to remove an electron from an atom) in

hydrogen is high: 13.6eV (in alkali-halide metals, it is �4eV).
Because of these properties, during crystal structure formation, the effect of hydro-

gen may differ significantly from the influence of other elements. Due to the high

ionization potential of the hydrogen atom, it is difficult to completely remove its lone

electron. Therefore the formation of ionic crystals with hydrogen occurs differently

than, for example, in the case of alkali-halide metal crystals [2]. The hydrogen atom

may not behave in a crystal as a typical covalent atom: when the H atom loses its

electron, it can create only a single covalent bond, shared with another atom.

Because the size of the proton is approximately 10�13cm, it is localized in the sur-

face of large negative ions; therefore such a structure arises, which cannot be formed

with any other positive ions. The energy of the hydrogen bond is less by order of mag-

nitude than the energy of the covalent bond, but it is greater than the energy of van der

Waals interactions in the order of magnitude. Although hydrogen bonds are not very

strong, they play an important role in the properties of correspondent crystals.

The hydrogen bond is directional; molecules that form the hydrogen bond tend to

have a dipole moment that indicates the polar nature of this bonding. In some crystals,

the hydrogen bond leads to their piezoelectric, pyroelectric, and ferroelectric prop-

erties. Furthermore, it should be noted that molecular and hydrogen bonds are very

important in various structures of liquid crystals.
1.2 SYMMETRY OF CRYSTALS
In many solids, structural symmetry plays a crucial role for the explanation of prop-

erties. Different materials are most frequently used in electronic special effects in

crystals, polycrystalline materials, and polymeric films due to the peculiarities of

their macro- and microsymmetries.



131.2 Symmetry of crystals
A crystal is a body that, due to its intrinsic properties, is limited by flat surfaces—

crystal faces. Amore complete definition of crystal should characterize such peculiar

intrinsic properties that distinguish crystallized substance from amorphous materials

and can explain the multifaceted shape of a crystal. The relationship between the out-

ward geometry and the internal structure of crystal and its physical properties is set-

tled by crystallography. It studies the physical properties of crystals through a

specific method—the symmetry that connects physical properties of crystals with

their structure. The physics of crystals formulates certain principles that establish

a community of crystal symmetry and their physical phenomena; these major prin-

ciples were advanced by Neumann and Curie [7].

The manifestation of symmetry in geometric forms is the ability of the shape to

regularly repeat its parts. In other words, the reason for a geometrically correct exter-

nal crystal shape is the regularity of the internal structure that lies in the spatial lattice

of a crystal. This spatial lattice is the abstraction that allows the description of proper

and regular alternation of atoms, molecules, or ions, and results in the macroscopic

shape of the crystal. This lattice is infinite, and it is constructed by the translation of

the unit cell of the crystal along crystallographic coordinates by endless repetition in

a space with identical structural units. As a simple example, Fig. 1.8 shows various

two-dimensional (2D) translations of unit cells on the surface. All imaging pairs of

vectors ai and bi are lattice translation vectors, but they are not primitive vectors.

The metric of the unit cell of crystal is determined by the ideal distance between

the nearest atoms or ions of a similar kind. In most simple crystals, for example, in

the majority of metals the structural unit consists of only a single atom. In dielectric

crystals, the unit cell may comprise a plurality of atoms, ions, or molecules. The crys-

tal lattice may be built as a result of unit cell translational transformation, in other

words, by various point symmetry operations [6].
The symmetry elements and operations. To describe the symmetry of a crys-

tal’s physical properties as well as to determine the symmetry of geometric forms, a

quite ordinary idea is to consider only single space elements (the unit cell of crystal).
In the theory of symmetry, the object of study is the figure, that is, a certain set of

spatial points.

The imaginary geometrical object, over which symmetry operations are per-

formed, is the symmetry element of the finite figure. As symmetry elements, the

planes, axis, and center of symmetry (center of inversion) may be used.
FIG. 1.8

Unit cells in a two-dimensional lattice.
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The symmetry operation involves combining the point (or part of a figure) with

another point (or part of the figure). Both combined parts of figure are symmetric.

The point symmetry operation should be left in place at least on one point of the fig-
ure. It is the intersection point of all elements of symmetry. If symmetry operations

are applied to three-dimensional (3D) figures, the twists and turns as well as the

inverted turns and the reflection in a plane of symmetry are selected.

The symmetry elements are distinguished as first and second types. The former

includes the symmetry plane, rotary axis of symmetry, and the center of inversion

(center of symmetry). Complicated symmetry elements, such as inversion axis

and rotary-reflection axis, belong to the second type of symmetry elements.

The symmetry plane is a mirror-reflecting plane that provides a combination of

symmetrically equal points; when recording symmetry elements of a particular class

of a crystal, the plane of symmetry can be referred to as P. For example, the mirror

plane, being a plane in the cube diagonal, divides the cube into two equal mirror-

mating parts. In the international system, the mirror plane is represented by the letter

m. It perpendicularly bisects all segments, connecting balanced (symmetrically

equal) points.

The rotation symmetry axis of n-order is denoted as Ln. When a figure turns by a

specific angle of α ¼ 360ο/n (called elementary angle), a superposition of symmetric

points (equal compatible) can be realized. The rotary axes are denoted as 1, 2, 3, 4, 5,

6, 7, …, ∞, where the numbers indicate the order of axis.

For example, Fig. 1.9 shows a set of elements of the symmetry of a cube, which

has a center of symmetry (in the cube geometric center), three axes 4 (fourth order),
four axes 3 (third order), six axes 2 (second order), three planes of symmetry parallel

to the faces of a cube, and six diagonal planes of symmetry. Due to the large amount

of symmetry elements, the crystals of cubic symmetry are called highly symmetric.
Other classes of crystals have much smaller number of symmetry elements.

If an arbitrary figure, and not a crystal, is considered, there could be any order of
the rotary axis. For example, the sphere has an infinite number of rotational axes,

including axes of infinite order. The cylinder has a single axis of infinite order

and an infinite number of axes of order 2 (Fig. 1.10).

In certain cases, combining of a figure with its initial position must be made not

only by elementary rotation angle, but also by the auxiliary reflection plane, perpen-

dicular to the axis about which the figure rotates. The complex axis (or axis of

complex symmetry) is the mirror-rotary axis Lni. Operations that function by

mirror-rotary axes can be implemented with the help of an inversion axis (denoted
also as Lni).

The order of the rotary axis of the crystal and mirror rotary axes is strictly limited.

These axes can be only of the first, second, third, fourth, and sixth orders. If there are

several symmetric axes, the axis with an order higher than 2 is the principal.
Both ends of a rotary symmetry axis might be different, in this case, it is the polar

axis; for instance, in Fig. 1.11A, the polar axis 4 extends through a tetragonal pyr-

amid. Polar axes are typical of a certain type of crystals (non centrosymmetric clas-

ses). As shown in Fig. 1.11, the b plane of symmetrym is perpendicular to the axis 4;



FIG. 1.9

Elements of symmetry of cube: axes of symmetry are numbered whereas planes of symmetry

are denoted by the letter m.

FIG. 1.10

Geometric figures representing the limiting symmetry group [7].
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FIG. 1.11

Polar and bipolar rotary axes of 4th order: (A) tetragonal pyramid; (B) tetragonal bipyramid;

and (C) tetragonal prism.
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in this case, the symmetry of a figure is referred to as 4/m. If the axis lies in the plane
of symmetry, delimiters are not needed: 4m. To refer to the symmetry of various

crystals, it is possible to use designations: m, 2m, 3m, 4m, and 6m. Markings of

the first-order axis of symmetry are not used: that is, “1” near the sign “m” is not

needed as an axis of symmetry of first order is always present (when one turns

the figure on 360o, any figure will coincide).

Besides the usual symmetry axes, the inversion axes exist. Such an axis of order n
(axis Lni) combines the joint action of a rotary axis and inversion center. The center of

symmetry (the inversion center) is a singular point inside a shape (or inside the unit
cell) that is characterized by the fact that any straight line drawn through the center of

symmetry (denoted by symbol C) meets the same (respectively) point figures on the

opposite side of the center at equal distances. A symmetric transformation in the cen-

ter of symmetry is the mirror image point (Fig. 1.11B). At this point, as in a photo-

graphic lens, the image is inverted.

Sometimes, two symmetrically equal figures cannot be superposed other than by

reflection. For example, in Fig. 1.12, two molecules of an organic compound are dis-

played (these do not have rotational axes of symmetry). The figures that can be super-

posed with each other only by the mirroring are the enantiomorphous ones. The

phenomenon of enantiomorphism in crystals is expressed by the formation of left

and right forms (e.g., in quartz crystal), which reflects “enantiomorphism” in its

physical properties. For example, in the left form of crystals, the rotation of the polar-

ized light plane is clockwise, whereas in right form, it is counterclockwise. This phe-

nomenon is important from the viewpoint of the practical use of such crystals.

The concept of the “symmetry element” is broader than the concept of “symmetry

operation.” The symmetry element includes all degrees of operation. For example,

the axis of symmetry 4 (otherwise denoted L4) implies a set of operations, including



FIG. 1.12

Enantiomorphism in certain molecules [6].
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40¼1, 41¼4, 42¼2, and 43¼4�1. The first operation is the operation of identifica-
tion, the second is the turn on 90°, the third is the turn on 180° (turns on 180° in oppo-
site directions are equivalent), and operation 43 is the turn on 270° in a certain

direction, equal to the rotation in the opposite direction 90° (4�1).
The classes of symmetry are characterized by a set of crystal symmetry elements

that describes a possible symmetric transformation. For each crystal, the unit cell can
be chosen from which the whole crystal lattice can be built via translations

(translations are such displacements that can multiply the unit cell to create a

crystal).

As a simple example, Fig. 1.13 illustrates some 2D cells (2D lattice). On a plane,

each unit cell is defined by two axes (the basis vectors), from which the basic ele-
mentary parallelogram can be constructed. Such parallelograms must fill the entire

plane of the 2D crystal with no gaps. It is important to note that, in the 2D crystal,

only five different types of lattices are possible with a different set of symmetry ele-

ments (such elementary lattices are the Bravais lattices).
In the 3D space, the unit cell of a crystal lattice is the parallelepiped, built on

three basic vectors (Fig. 1.14). The points of intersection of base vectors, composing
FIG. 1.13

Basic two-dimensional lattices: (A) square with ja j¼ jb j, φ¼90°; (B) hexagonal with
ja j¼jb j, φ¼120°; (C) rectangular, ja j 6¼ jb j, φ¼90°; and (D) centric rectangular (axes are

shown as for primitive, so for rectangular unit cells ja j 6¼ jb j and φ¼90°).



FIG. 1.14

Choice of unit cells for different classes of crystals: (A, B, and C) elementary translations

on X, Y, and Z directions (called crystallographic coordinate system); α—angle opposite to

X-axis; β—angle opposite Y axis; and γ—angle opposite Z-axis.
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the spatial lattice, are the junctions. A junction may be located, as in material par-

ticles, in the center of gravity of the particle (or group of particles). As in the 2D

(plane) lattice grid, the volumetric 3D primitive unit cell of a crystal does not depend

on its shape and it has a constant size for a given lattice.

The spatial crystal lattice is based on parallel transport of the unit cells that are

touching each other by whole faces, filling the entire space without gaps. Thus the

choice of elementary translations is not unique; therefore the shortest of these are

usually selected that correspond to basis vectors a, b, and c of a lattice. This choice
is always carried out by such a way when unit cell would have themaximal number of
symmetric elements, and thus can represent the point group of symmetry of the entire

lattice. The symmetry of the crystal structure limits the choice of unit cells that can

describe it. The choice of the base, and therefore the lattice itself, must comply with

the symmetry of crystal structure.

All variety of crystals in 3D structures can be described using only 14 types of

lattices (Bravais lattices). They differ by the choice of unit cells and are classified by

crystal syngony. Therefore three directions, outgoing from a single point of the

selected parallelepiped, should be taken as the coordinate axes of a crystal, and thus
define the crystallographic axes X, Y, and Z (Fig. 1.14).

The rest of the unit cell parameters are the angles between axes: α—between axes

Y and Z; β—between axes Z and X; and γ—between axes X and Y. Primitive Bravais

cells are the main cells that allow crystal classification by the crystallographic syn-

gonies. Any crystalline structure can be presented with one of 14 Bravais cells listed

in Table 1.1.

Any linear periodic structure can be obtained by elementary translation. To

choose a cell, three guided conditions should be used:

• the symmetry of the unit cell must correspond to the highest symmetry of the

crystal;

• the unit cell should have largest possible number of identical angles, or corners

and edges; and

• the unit cell should have the minimal volume.



Table 1.1 Fourteen Bravais Cells

Crystal System
(Lattice Basis)

Lattice type

Primitive
Base-
Centered

Body-
Centered

Face-
Centered

Triclinic a 6¼b 6¼c;
α 6¼β 6¼γ 6¼90°

Monoclinic a 6¼b 6¼c;
α¼γ¼90°; β 6¼90°

Rhombic (orthorhombic)
a 6¼b 6¼c; α¼β¼γ¼90°

Trigonal (rhombohedral)
a¼b¼c; α¼β¼γ 6¼90°

Tetragonal a¼b 6¼c;
α¼β¼γ¼90°

Hexagonal a¼b 6¼c;
α¼120°; β¼γ¼90°

Cubic a¼b¼c;
α¼β¼γ¼90°

191.2 Symmetry of crystals
Next, different types of Bravais lattices are usually distinguished as primitive,

volume-centered, border-centered, base-centered, and rhombohedral. Division along

the crystallographic syngonies determines a choice of the coordinate system and the

triples of basis vectors a1, a2, and a3, or, in other words, the metric (γ, β, and α and a,
b, or c).



Table 1.2 Distribution of Syngonies of Crystallographic Point Groups

Syngonies Classes of Symmetry

1 Triclinic 1,1

2 Monoclinic m, 2/m

3 Orthorhombic mm2, 222, mmm

4 Trigonal 3,3, 3m, 32,3m

5 Tetragonal 4, 4/m, 4mm, 422, 4/mmm,4,42m

6 Hexagonal 6, 6/m, 6mm, 622, 6/mmm,6,62m

7 Cubic 23, m3,43m, 432, m3m
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According to the syngonies, there are seven types of crystal structures: triclinic,
monoclinic, hexagonal, rhombohedral (trigonal), orthorhombic, tetragonal, and

cubic. There are 32 classes of symmetry possible in structures with 3D point sym-

metry, and their distribution in crystal syngonies are shown in Table 1.2 [7].

The items used in this set of symmetry elements are not a random choice but are

strictly legitimate mathematical groups. The aggregates of these symmetry elements

are introduced according to certain rules. Symbolic images of 10 polar crystal classes

are shown further in this work; it is only within these classes that pyroelectric and

ferroelectric properties can possibly exist.

The principal peculiarity of the lowest category of symmetry is the lack of such

symmetry axes that they are greater than the second order. The lowest categories of

symmetry are classified as triclinic, monoclinic, and orthorhombic syngonies. The

triclinic lattice is the only one that has no elements of rotational symmetry or mirror

planes. The lowest-category structures are rarely encountered in nature, and they

have lattices based on a cell with three unequal edges and three unequal angles.

In crystals belonging to the middle category of symmetry, a symmetry axis obvi-

ously exists, which is beyond the second order (major axis). In addition to the major

axis, the structure might have a plane m and the center of symmetry C. The middle

categories of symmetry are the trigonal, tetragonal, and hexagonal crystal systems.

The crystals of highest category of symmetry are crystals of cubic symmetry

(cubic system); their main distinguishing feature is the presence of four threefold

axes (4L3).
Among the many thousands of natural and artificially synthesized crystal struc-

tures studied to date, more than half account for the highest category of symmetries.

Almost all metals and their alloys crystallize in a cubic system with classm3m or in a

hexagonal class 6/mmm. The semiconductors, such as germanium and silicon, are

also classified asm3m class; however, the vast majority of semiconductors, including

gallium arsenide (GaAs), is related to the point group of cubic symmetry 43m
(sphalerite-type structure), as well as to the point group of the hexagonal system

6m2 (wurtzite structure).

Almost no substances crystallize in the groups 4, 3, 6, and 432.
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Connection between symmetry and physical properties. The characteristic

features of crystals are their symmetry and anisotropy. The properties of some aniso-

tropic crystal, unlike isotropic crystal, exhibit very high sensitivity to external influ-

ences. Influences such as heat, mechanical stress, and electrical and magnetic fields

(or adding foreign atoms into crystal) can change conditions of the dynamic equilib-

rium of the crystal’s constituent particles, that is, they can change the symmetry of

the crystal and, thus, change its properties. The ability to manage properties using the

abovementioned external influences allows the creation of crystal-based converters

of various types of energy.

The connection between the physical properties of crystals and their symmetry

was formulated by Von Neumann:

The symmetry of physical properties of a crystal is not lower than the symmetry of
its structure.

This means that the structure of crystal, in any case, comprises all elements of the

properties’ symmetry (but may also have other symmetric elements).

The application of Neumann principle in specific experimental situations was

detailed by Pierre Curie. In accordance with the Curie principle, a crystal, being

under the impact of external influence, demonstrates such symmetry elements as

are common to a crystal in the absence of impact, and the symmetry of impact itself

in the absence of a crystal. Thus in the system “crystal-impact,” only the common

element of symmetry remains. A geometric illustration of the Curie principle may

be the superposition of two symmetric figures: this gives a figure possessing only

those symmetry elements that are common to both figures at a predetermined point

in their mutual arrangement.

Thus the concept of symmetry is expanding. Symmetry is regarded as a state of

space that is characteristic of the environment in which a phenomenon occurs. For

example, the following factors should be taken into account during crystal growth:

• the status and structure of the environment (e.g., solution or melt);

• the movement of seed during crystal growth with respect to the environment in

which the crystal is forming; and

• the impact of other physical factors on growing crystals.

The shape of the grown crystal retains only those elements of its own symmetry that

coincide with the symmetry of the medium; therefore some of the crystal’s symmetry

elements disappear externally. Only those elements of proper symmetry should be

accepted that coincide with the symmetry of the environment.

Thus the crystal responds to changes in the conditions of crystallization. There-

fore different natural shapes of a crystal correspond to crystallization conditions.

Under essentially different physical and chemical conditions, the minerals of the

same composition acquire different structures (phenomenon of polymorphism).
For example, the forms of pure carbon are polymorphic: cubic diamond, hexagonal

diamond, multilayer graphite, globular fullerene, quasi-1D carbon, flat graphene,

cylindrical nanotubes, etc.
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Using the known point symmetry of a crystal, the Curie principle allows to pre-

dict what physical effects (typical for a given symmetry) can occur. However, the

symmetry conditions (that follow from fundamental laws) are considered as not nec-

essary, but rather as sufficient, because of their “abstract” nature for implementation

to a physical phenomenon.

Direct and inverse piezoelectric effects can occur only in 20 of the 32 possible

classes of crystals, each of which is characterized by its symmetry group. These

groups comprise a set of symmetry elements: axes of symmetry and planes of sym-

metry. Crystals with the center of symmetry cannot be piezoelectric. There are

11 such classes of crystals out of 32 (however, there is another class 432 that refers

to the noncentrosymmetric classes, but piezoelectricity is not observed in it in spite of

the center of symmetry being absent).

The 10 polar groups of crystals that exhibit a pyroelectric effect are called the

“pyroelectric group” (Fig. 1.15). A common feature of this group is that they lack

certain elements of symmetry: the center of symmetry, transverse plane of symmetry,

and any axes of symmetry of an infinite number, perpendicular or oblique with

respect to the current axis.

Physical and crystallographic installations of crystals. To investigate the rela-

tionship between crystal properties and crystal symmetry, it is necessary to consider

the orientation of a plate sample cut from a single crystal (as well as the orientation of

crystalline rods or disks) as to the crystal elements of symmetry. This operation is

performed using crystal installation that is determined by the choice of the coordi-

nate system with respect to the symmetry elements of the crystal [8].

As a rule, two settings of crystals are used: the crystallographic installation (used
during electronic spectra study in semiconductors and metals) and the physical
installation (used in crystal physics including material sciences).

In the crystallographic installation, the coordinate axes should be chosen parallel

to the directions of space lattice translations. In this case, the crystallographic axes of

a coordinate system may not be mutually perpendicular to each other (in crystals

belonging to the triclinic, monoclinic, rhombohedral, or hexagonal systems).
FIG. 1.15

Ten polar crystallographic symmetry groups [6].
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Together with the crystallographic coordinate system that is not orthogonal for all

classes of crystals, the orthogonal coordinate system, with axes denoted by either X,
Y, and Z, or 1, 2, and 3, is selected to describe the physical properties of crystals. In

this case, the symmetry axes or normals to planes of symmetry are chosen as

coordinate axes.

For example, in monoclinic syngony, the Y-axis is oriented along a single axis of
the second order, or along a direction perpendicular to the single plane of symmetry.

The remaining two axes X and Z can be chosen arbitrarily, usually by a “binding” to

the most advanced face or edge of a crystal. In the orthorhombic system, the crys-

tallographic axis must be directed along the axes of second order, or perpendicular to

the plane of symmetrym. In the classmm2, the symmetry axis is defined as axis Z; for
a tetragonal crystal, the Z-axis is the axis of the fourth order.

In all classes of point symmetry, theX- and Y-axes (except for 4, 4, and 4/m,where
they are chosen randomly) are oriented along twofold axes or perpendicular to the

plane of symmetry m. In the hexagonal system, the Z-axis is oriented along the axis

of symmetry of the highest order. In classes 3m and 6m2, the X-axis must be directed

perpendicular to the plane of symmetry. In cubic crystals, the axis 2 is selected as

Z-axis (for classes 23 and m3), or 4-axis and 4-axis (for other classes). The X- and
Y-axes are oriented along the axes of symmetry. Importantly, in all cases the X-axis
and the Y-axis are selected in such a way as to form the right-hand coordinate system.

In case of any spatial lattice symmetry, the size of the unit cell (a1, a2, and a3) is

selected as a scale (individual segments). Coordinates of any point of crystal are

uniquely determined by the direction of the symbol.

The crystallographic direction is a direction of line that runs at least two lattice

points. One of these points can be taken as the origin: [000]. The crystallographic

direction r is completely determined by aligning on it the lattice point closest to

the origin, and it is denoted as [mnp], where m, n, and p are the Miller indices.
The vector R that coincides with the given direction can be written as:

R¼ma1 + na2 + pa3:

Irrespective of the angle between the coordinate axes, the crystallographic axes must

follow Miller indices: the X-axis is [100], the axis Y is [010], while the Z-axis is
[001]. The indices of axes are written in square brackets. The position (orientation)

of each face of a crystal can be described by using the ratio of unit segments a, b, and
c to segments A, B, and C that cut off axes by a given face (Fig. 1.16). The set of

relations a/A, b/B, and c/C can always be expressed as the ratio of integers a/A:b/
B:c/C¼h:k:l. These three numbers h, k, and l determine the position of each edge

of the crystal, and they are commonly calledMiller indices of edge, written in paren-
theses as (hkl).

In this description, the crystal face is displayed by the position of unit normal n to

it, while a set of Miller indices is the component of the normal vector N to a given

face relative to the basis of the reciprocal lattice of the crystal: b1, b2, and b3, which is

also called the reciprocal basis; that is,

N5hb1 + kb2 + lb3,

because n1 : n2 : n3¼A : B : C¼1/a : 1/b : 1/c.



FIG. 1.16

Explanation of symbols: the position of the plane is uniquely determined by integer intercepts

on the crystallographic axes of the coordinates.
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Fig. 1.17 shows the main crystallographic directions with an example of a cubic

lattice.

The reciprocal lattice. This notion is introduced by Gibbs and represents the

Fourier transformation of the Bravais lattice that is also known as the direct lattice
(that exists in real space). The reciprocal lattice exists in the reciprocal space, also

known as the impulse (momentum) space.
If one makes a Fourier transformation with the reciprocal lattice, the original

direct lattice will be found again, because the two lattices are Fourier transformations

of each other [3]. The concept of a reciprocal lattice is used to solve many problems

related to wave processes in crystals, for example, in X-ray experimental study or

when using electronographic and neutronographic methods of crystal investigation.

Moreover, the reciprocal lattice is widely used in the physics of semiconductors and
FIG. 1.17

Marking of main crystallographic directions and planes.
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metals to describe the motion of electrons in the periodic structure. In that case, the

concept of the Brillouin zone is introduced.
If a normal direct lattice is based on the translation vectors {a1, a2, a3}, the axes of

the reciprocal lattice {b1, b2, b3} are defined as the vector products:

b1¼ a2�a3½ �,b25 a3�a1½ �,b3¼ a1�a2½ �:
Furthermore, it is possible to set a reciprocal lattice by the scalar products:

b1 � a1ð Þ¼ b2 � a2ð Þ¼ b3 � a3ð Þ¼ 1,

and

b1 � a2ð Þ¼ b1 � a3ð Þ¼ b2 � a3ð Þ¼ b2 � a1ð Þ¼ b3 � a2ð Þ¼ b3 � a1ð Þ¼ 0,

inasmuch as

b1?a2,b1?a3,b2?a3,b2?a1,b3?a2,b3?a1:
Thus the absolute value of each of the vectors b1, b2, and b3 is inversely proportional
to direct lattice distances:
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Direct and reciprocal lattices are mutually connected, that is, a lattice, built on vec-

tors a1, a2, and a3, is the reciprocal lattice relatively b1, b2, and b3, when

|b1|¼ a2a3� sin αð Þ=V, |b2|¼ a3a1� sin βð Þ=V, |b3|¼ a1a2� sin γð Þ=V,
in which connection:

cos α∗¼ cos β cos γ� cos αð Þ=sin β sin γ;

cos β∗¼ cos α cos γ� cos βð Þ=sin α sin γ;

cos γ∗¼ cos α cos β� cos αð Þ=sin α sin β,

where V is the volume of a unit cell of the direct lattice, whereas α*, β*, and γ* are

angles between the axes of the reciprocal lattice.

In physics of crystals, the accurate establishment of rules is very important, that

is, rules of orientation of symmetry elements along coordinate axes, because this

affects the unambiguous determination of main directions and faces in crystals.

The choice of positive directions of axes in crystals is imposed by certain conditions.

For example, to study the electrical properties of pyroelectric crystals, the positive

direction of the axis (that coincides with polar axis) should be selected as the direc-

tion that shows positive electrical charges while heating [7].

The conception of the “reciprocal lattice” is introduced in crystallography mainly

to describe the periodic distribution of reflectivity of a crystal relative to X-rays. The

reflection of X-rays from planes of crystal is described by the Wulff-Bragg formula

2d sin θ ¼ nλ,
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where d is the interplanar distance for the family of parallel planes of reflection; θ is
an angle, supplementary to the angle of incidence (or angle of reflection, calculated

from the atomic plane); n is an integer factor that characterizes the order of the dif-

fraction spectrum; and λ is the wavelength. From the Wulff-Bragg conditions, it fol-

lows that, at constant λ, the big d corresponds to a small θ, that is, the greater the

interplanar distance, the closer the direction of reflected rays to the direction of

the incident beam. The reflection of X-rays from an infinitely extended crystal

should be dotty, ideally.
1.3 BASIC STRUCTURES OF CRYSTALS USED
IN ELECTRONICS
In any crystal structure, a definite group of bound atoms exists that corresponds to the

major structural unit—the basis. This is a set of particles, coordinated within an ele-
mentary cell; therefore, the whole crystal structure can be obtained by repetition of

this basis using translations. An important parameter of a structure is the CN. For a
given atom (or ion), this is the number of the nearest (neighboring) atoms or ions in

the crystal structure. This number is determined somewhat differently for molecules

and crystals. The number of interior atoms is the bulk CN, whereas the number of

atoms located on the surface of a crystal is the surface CN.
If the centers of the nearest atoms or ions connect with each other by straight

lines, it generally gives rise to the coordination polyhedron [8]. The atom, for which

the coordination polyhedron is built, is located in the center of the polyhedron

(Fig. 1.18). The coordination polyhedron is not related to the outward form of a

crystal.

The size of the structural unit (atom, molecule, or ion) depends on its location in a

particular structure. However, when considering different structures, it is important

to compare the sizes of structural elements. In part, the term “atomic radius” is used,

but it should be noted that an isolated atom has no certain radius, because its elec-

tronic cloud, theoretically, extends to an infinite distance from the nucleus, although
FIG. 1.18

Coordination polyhedra: (A) dumbbell, CN¼2; (B) triangle, CN¼3; (C) tetrahedron CN¼4;

and (D) cuboctahedron, CN¼12.
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really it becomes very diffuse at a distance of a few angstroms. The only atomic

radius that has certain sense is the Bohr radius of the outer orbit.

In case of metals, the radii of the metal ion could be defined by dividing in half the

interatomic distance of pure metal. In fact, whenever the atom of any metal is

described, three main types of radii are known: ionic (ri), metallic (rm), and covalent
(rc). For example, in sodium ri¼0.95, rm¼1.57, and rc¼1.59. It is seen that covalent

and metallic radii are very close in size; this is expected because metallic and cova-

lent bonds are related. However, the ionic radius of a cation is smaller, because the

outer electrons are removed from the atom, while remaining electrons are located on

the levels of internal electron clouds (i.e., located much closer to nucleus).

In all nonmetals as well, three radii can be chosen: ionic (ri), covalent (rc), and
van derWaals (rv). It should be noted that the typically covalent radius is much smal-

ler than the ionic and van der Waals radii. For example, in oxygen, rc¼0.66,

ri¼1.40, and rv¼1.40Å. This can be explained as follows: suppose that the radius

of the atom is determined by the position of the maximum in the radial distribution of

the electronic density curve. When the atom attaches electrons and creates an anion,

this maximum shifts to a longer distance due to the enlargement of the number of

external electrons and the increased screening from the nucleus. Therefore the curve

of radial distribution of electronic density shifts toward a larger radius.

In ionic crystals, the shells of cations and anions are completely filled with paired

electrons; therefore the overlap of such shells is small. However, in covalent crystals,
their shells are occupied by paired electrons and therefore the overlap is as large as

possible; this interpenetration of electronic orbitals should cause a reduction in the

size of the atom. The van derWaals radii, as expected, are very close to ionic radii. In

case of a van der Waals connection, as well as for ionic bonding, completely filled

electronic shells are situated adjoining each other. As a result of a slight overlap, the

interatomic distances get larger values.

During consideration of complex structures, the following circumstances must be

considered:

1. In ionic structures, the amount of anions surrounding any cation can be determined

by the ratio of their radii. When the covalence part of the bond increases, the

coordination of the particle will be determined by hybrid orbitals, and the CN

should be less than would be expected from an exclusively ionic model.

2. When there is a choice between “ionic” and “layered” structures, in case of

covalent compounds the latter is preferred, especially at low temperatures. If

hydroxyl groups are present, their hydrogen bonds also tend to stabilize the

layered structure.

3. In complex structures, the charges—attributed to atoms in assumption of an ionic

model—aspire for compensation (saturation) within inner surroundings.

4. If stoichiometry allows, multivalent cations are located far away from each other;

thus each anion is directly associated with only one cation.

5. The cations, after maximal mutual distancing, seek to form linear bridges through

anions. This effect is most typical for multivalent cations with a small radius.
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Next, some typical structures of chemical elements and binary compounds in solids

are discussed as examples.

Typical structures of metals. Early ideas of the structure of metals lie in the

model of “free electronic gas.” According to this model, it is assumed that atoms

of a metal are entirely ionized and they are densely packed in the environment of

free electrons. With this model (with free electrons and nondirectional bonds), high

electrical conductivity and ductility of metals are easily explained.With regard to the

structure, electronic gas occupies a small volume (free electron radius is estimated as

10�13cm); therefore, ions of metal form a most densely packing.

For example, the structural type of copper corresponds to a dense three-layer

packing of identical balls according to a face-centered cubic elementary unit

(Fig. 1.19A). This cubic unit cell contains four atoms; its CN¼12, whereas its coor-

dination polyhedron is cuboctahedron. This type of structure is intrinsic for simple

metals (gold, silver, nickel, aluminum, etc.) as well as for noble gases in the solid

state (e.g., Ne, Ar, Cr, Xe).

The balls shown in Fig. 1.19A are not hard: in crystallography, the outer elec-

tronic shells of ions, atoms, or molecules are modeled. These electronic shells can

be imagined as a “cloud” of electrons that are resilient, but can partly penetrate into

each other. This manner of atoms modeled as “hard balls” is a convenient method to

describe structures of crystals.

The structural type of magnesium is another example of the simple structures of

metals (Fig. 1.19B). The arrangement of atoms in this case corresponds to a hexag-

onal (two-layered) shape with the most dense packing. All atoms in this case are the

same, with CN¼12. Ideally, in a densely packed hexagonal metal, the ratio of the

unit cell height to the distance between neighboring atoms is c/a¼1.633, although c
and a are different in various metals. The structural type of magnesium is typical of

many metals: Be, Cd, Mg, Ni, Zn, etc.

In addition, there are other structures of metals (not shown in the figure), namely,

the α-tungsten structure. This is a space-centered cubic structure, in which the unit

cell contains two atoms. The CN of such a structure is CN¼8, while coordination

polyhedron is a cube. A structure of this type is typical for some metals: Ba, Cr,

α-Fe, K, Li, Mo, Na, and others.
FIG. 1.19

Location ions in the structures: (A) copper and (B) magnesium.



FIG. 1.20

Structural typing of diamond (A) and graphite (B).

291.3 Basic structures of crystals used in electronics
Basic structures of semiconductors. The structure of the diamond that was pre-
viously shown schematically in Fig. 1.5B is shown in greater detail in Fig. 1.20A.

This structure is characterized by the manner in which atoms occupy face cells of

two units that are inserted into each other, offset by 1/4 along the diagonal of the

cubic unit cell.

The structure of the diamond is peculiar to materials with sp3-hybridization of

atomic orbitals. Each atom forms four bonds with its neighbors. The basic structural

unit cell of the diamond contains eight atoms, with CN¼4, while coordination poly-

hedron is regular tetrahedron. The density of structural packing in diamond is much

lower than in others. Germanium, silicon, and gray tin also have structures similar to

that of the diamond. Similar to this structure is the structure of zinc blende, that is, if

two diamond sublattices are occupied by different types of atoms, such as in crystals

ZnS or GaAs.

The structure of graphite is characterized by a cleavage. In the hexagonal mod-

ification (Fig. 1.20B), graphite layers are placed such that atoms of third layer are

located just above the atoms of the first layer at a distance far greater than the dis-

tance between the atoms inside the layer. The unit cell contains four atoms, with

CN¼3, and a coordination polyhedron that is an equilateral triangle with a central

atom that is located slightly above or below the plane of the triangle.

Like other layered structures, graphite has some polytypic modifications.

The sphalerite and wurtzite structures. Crystals of ZnS are crystallized in a cubic

sphalerite structure (also called the zinc blende structure), or they are crystallized in a

hexagonal wurtzite structure. In both structures, each zinc ion is tetrahedrally sur-

rounded by sulfur ions; in turn, each ion of sulfur is surrounded by ions of zinc. This

structure should be seen as densely packed with sulfur ions and in which the zinc ions

occupy half of the tetrahedral voids. Accordingly, the structure of sphalerite has

cubic packing; therefore this structure resembles a diamond, in which the unit cell



FIG. 1.21

Structure of sodium chloride: (A) centers of ion location, (B) tetrahedral surrounding of ions.
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contains four sulfur anions and four zinc cations with CN¼4. The wurtzite structure

has a hexagonal packaging of the unit cell that is schematically shown in Fig. 1.21C.

The CN is 4 in both structures.

The sphalerite and wurtzite structures are characteristic of many semiconductor

crystals: AgI, AlR, GaR, GaAs, CdS, CdTe, SuI, SuF, NgS, NgSe, ZnS, ZnSe, ZnTe,

ZnO, etc.

There are certain differences between diamond-type semiconductors and metals.

In semiconductor compounds, each bond has a pair of electrons, and these electrons

are localized with these bonds. Metals are characterized by a higher number of bonds

than the number of electron pairs, whereas the electrons are not localized, but

“smeared” throughout a structure.

The basic structures of dielectrics. The structure of rock salt (otherwise halite,
sodium chloride, or NaCl) is shown in Fig. 1.21. Chlorine anions form a face-

centered cubic structure while sodium cations fill all octahedral voids. The unit cell

contains four sodium ions and four chloride ions; the CN¼6; the coordination

polyhedron—an octahedron—is shown in Fig. 1.21B. The structure of halite is char-

acteristic of alkali halide crystals (except cesium haloids) and some oxides of tran-

sition metals (MnO, FeO, etc.), as well as for nitrides and carbides of transition

groups Ti and V, haloids of silver (AgCl, AgBr, AgF), tin sulfides, and selenides.

The structure of cesium chloride is characterized by anions of chlorine that

occupy the cubic cell, whereas cesium cations retain voids between them. In the com-

pound CsCl, the radius of the Cs+ cation is 1.69 A while anion Cl� has a radius of

1.81 A. Smaller Cs+ ions should determine the CN; its ionic radii ratio is 0.93 and

CN¼8, which is observed in reality. The coordination polyhedron is cubic; therefore

the structure of CsCl is cubic space-centered (Fig. 1.22).

It should be emphasized that these (and many other) images of crystal structures

represent only the spatial arrangement of the centers of atoms (middle position of



FIG. 1.22

Cubic structure of cesium chloride (A) and fluorite (B).
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their nuclei). However, the maximum electronic density is located around nuclei or

along areas between adjacent cores. The CsCl type of structure is peculiar for some

alkali halide crystals (CsBr, CsI, RbCl, RbBr, RbI, TlCl) and for some metal alloys

(FeTi, NiTi, CdAg, AgLi).

The fluorite (CaF2) structure is characteristic in some compounds of the ABII

type (Fig. 1.21B). Preserving conditions of neutrality results in the fact that the

CNs of cations and anions are different. The calcium ion is surrounded by eight ions

of fluoride whereas each fluoride ion is surrounded by four calcium ions. This struc-

ture is most favorable for the emergence of Coulomb interaction forces between par-

ticles. Compounds that crystallize in the fluorite structural type are SrF2, ZrO2, Li2O,

CuF2, K2O, CeO2,. Cu2Se, Na2O, etc.

The rutile (TiO2) structure. The radius of the Ti4+ cation equals 0.68 Å while

radius of the anion O2� is 1.40Å. The ratio of the radii is 0.49; therefore, around

the titanium ion, there are six anions of oxygen. Thus each titanium atom is sur-

rounded by the octahedral group of O2�, and each oxygen ion is surrounded by three
Ti4+ cations, thereby forming a triangle (Fig. 1.23A). Crystals that belong to the

structural group of rutile are MgF2, MnО2, CгО2, гPbO2, ZnF2, etc.

The structure of corundum (Al2O3) is typical of some sesquialter oxides, such as

Fe2O3 (hematite), Ti2O3, and Cr2O3. In corundum, each aluminum atom is surrounded

by distorted octahedral groups of oxygen atoms. In accordance with the requirements

of preserving neutrality, every oxygen atom is surrounded by a tetrahedral group of

aluminum atoms.Details of the structure of corundum are shown in Fig. 1.23B: oxygen

atoms form a hexagonal densely packed structure that comprises the layers O and A1,

whereas one-third of the possible locations in aluminum remain unoccupied.

Moreover, there are other, less stable forms of A12O3, demonstrating the

“flexibility” of some structures. One of A12O3 modifications crystallizes in the NaCl

structural type; however, this structure is faulty: of three cationic places, one remains

free. Another A12O3 modification crystallizes in the structural type of spinel.



FIG. 1.23

Structures of rutile (A) and corundum (B).
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The spinel structure is peculiar to many oxides with the formula Me3O4. In this

structure, oxygen atoms form a dense cubic packing. The structure is formed by con-

nected structural units (Fig. 1.24). Panel a in Fig. 1.24 corresponds to a case where

metallic ions are found in octahedral sites, whereas panel b showsmetallic ions occu-

pying the tetrahedral sites. In addition, there are some vacant positions.

Typical representatives of the spinel structure are MgAl2O4 as well as magnetite

(Fe3O4), hercynite (FeAl2O4), and chromite (FeCrO4). It is possible to assume that

they are all folded by one two-valence cation, two trivalent cations, and by four oxy-

gen anions. The correspondent unit cell contains 32 oxygen ions, which is 8 times

more than that specified in the formula. This oxygen skeleton is completed by 8

of 64 possible tetrahedral and 16 of 32 possible positions of octahedral cations. In

some spinels, the tetrahedral positions are occupied by two-valence ions.
FIG. 1.24

Spinel structure: (A) octahedral coordination in Al, (B) tetrahedral coordination in Mg.



FIG. 1.25

Perovskite structure.
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The structure of perovskite (CaTiO3) is peculiar to orthorhombic systems,

wherein Ca2+ ions (with CN¼12) are found inside cuboctahedral cavities, created

by octahedrons that are connected to each other by the vertices, whereas Ti4+ ions

are found inside the octahedron. Many compounds with octahedral location of cat-

ions form a perovskite structure.

Typical representatives of such compounds are ferroelectrics of BaTiO3 type,

potassium iodate (KIO3), and potassium-nickel fluoride (KNiF3).

The structure of perovskite is shown in Fig. 1.25. At first glance, it is in some

respects similar to the structure of cesium chloride, but with one important distinc-

tion: each oxygen atom in the group (TiO6)
8� is located between two titanium atoms;

therefore the linkage Ti-O-Ti is linear. Thus it is possible to assume that the structure

of perovskite is created from groups of TiO6, bound in the vertices, and Ca2+ is

located above the center of each face of the octahedral group.

A general charge compensation must occur in the structures within inner sur-

roundings. Therefore a structure in which charge compensation could take place only

at large distances cannot be steady. In other words, large structural units should not

have a residual charge, whereas paired electrons of covalent bonds must not move on

long distances.

The structures of molecular crystals. When the particles creating a crystal are

whole molecules, they are associated in the crystal by intermolecular forces. Because

these forces are many times weaker than forces that bind particles in the ionic,

atomic, or metal crystals, molecular crystals have a low hardness, low melting point,

and significant volatility.

Inert gas crystals have the simplest cubic structure. Although their lattice is

formed by atoms of inert gas, the nature of bonds relates to molecular structure,

as the valence force plays no role in the formation of these crystals. Due to the
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spherical shape and spherical symmetry of the interacting atoms, the crystals of inert

gases energetically form the most advantageous structure: a face-centered cubic lat-

tice that is characterized by very dense packing of atoms.

Substances made of diatomic molecules usually form crystals of a more complex

structure. Especially complicated structures are formed in materials containing poly-

atomic molecules. Only the most symmetric and relatively simple molecules such as

CH4, CBr4, and so on crystallize in a cubic system. The tetrahedral angle between

them equals 109°280, which corresponds to the lowest energy of electron repulsion.

The most common molecular crystal is ice (H2O). Its crystalline structure resem-

bles the structure of a diamond because each molecule is surrounded by the four clos-
est molecules, which are located at the same distance and are placed at the vertices of

a regular tetrahedron whose angles are 109°280 (Fig. 1.26). Due to a small CN, the

structure of ice looks like netting that shows low density.

At present, there are 14 known crystalline modifications of ice, but the most com-

mon is the hexagonal structure. In ice, the hydrogen bonds that form between water

molecules play an important role. Each oxygen atom is surrounded by four other oxy-

gen atoms, linked via the hydrogen atom. Two of four hydrogen atoms are located

closer to the given oxygen atom, and they create a water molecule. Two others are

attached with this molecule by hydrogen bonds, and they are a part of other water

molecules. The distance between two nuclei of oxygen atoms of neighboring mol-

ecules is 2.76Å.

Such an arrangement is very far from the dense stacking of molecules: in such

cases (when packing balls of radius 1.38Å), the molar volume of ice would be

approximately two times smaller, because when molecules order in the more dense

structure, their mutual orientation cannot be stored, but it is necessary for the emer-

gence of hydrogen bonds. The distortion of a bond’s angles requires considerable
FIG. 1.26

Model of ice.
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energy expenditure. This explains the friable structure of ice and why the density of

ice is less than that of water.

With modifications too, ice is as crystalline and as amorphous a structure, differ-

ing by the relative positions of water molecules and different properties. After ice

melts, the ice water partially preserves the structure of ice.

Many types of molecular crystals including, particularly, macromolecular com-
pounds (polymers) are complex substances with molecules of high molecular weight.

They are constructed from a large number of elementary units that are repeated.

Polymers are formed by the interaction of identical simple molecules—monomers.
These compounds are rubber, artificial fiber, plastics, cellulose, protein, etc. In

their properties, themacromolecular compounds resemble colloids because the dimen-

sions ofmacromolecules are close to the size of colloidal particles.Most polymers have

no crystalline structure (polystyrene, polyvinylacetate, rubber, etc.).However, there are

some polymers with pronounced crystalline structure, such as polydiacetylene.

Organic substances mainly consist of molecules that have stable structure, such

that they can form crystals. Moreover, the concept of intermolecular radii and com-

pact packaging can be introduced for molecular crystals, taking into account the

characteristics and geometrical structure of molecules. Molecular crystalline struc-

tures tend to have lower symmetry than inorganic structures.

Some macromolecular compounds have such structures wherein crystalline

regions alternate with amorphous ones. For example, in natural cellulose, 70% of

molecules are well ordered, while in 30% are disordered. The properties of polymers

can change quite widely, depending on their molecular and supramolecular (crystal-

line or amorphous) structure, and they thus find different applications in practice.

The solid solutions. A crystal or polycrystal can consist of several components

(e.g., two components in metals that are alloys). Usually, these components cannot

chemically interact with each other (forming compound) but have the ability to be

mutually dissolved (as liquid, but in the crystal state), forming so-called solid solu-

tions (or mixed crystals). Here, atoms of one element are introduced into another lat-

tice, creating solid solutions of intrusion or solid solutions of substitution.

The solid solutions of intrusion arise when atoms of an element that dissolves are

placed in an empty space in the lattice of solvent. Obviously, the size of atoms of the

element that dissolves must be smaller. Usually, it should be less than 0.63 of solvent

atom size because, if it is larger, there might be a distortion of the lattice.

The solid solutions of the substitution are formed by partial substitution of atoms

of the solvent by atoms that dissolve. This process can occur without incurring sig-

nificant stresses in a lattice only in such cases where the size of atoms does not differ

greatly. Both types of atoms must be sufficiently close in their chemical properties,

and it would be the best if they belong to similar subgroups of the periodic table.

Polytypicism is a property of such structures that are built of identical structural

elements but have a different sequence of their location. In the plane layers, the struc-

ture of the polytypic lattice usually remains unchanged; however, in directions perpen-

dicular to the layers, the lattice parameters are different, even though they multiple

distance between adjacent layers. The phenomenon of polytypicism is usually seen
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with densely packed but layered structures. It is associated with a difference in the rel-

ative orientation of atoms and results in a change in their identity period.

An example of a compound in which a large number of polytypic structures is

found is the semiconductor silicon carbide (SiC). This crystal exists as in the sphal-

erite cubic modification—in hexagonal modification. The simplest structure for sil-

icon carbide is the six-layer packaging (n¼6). However, there are other polytypic

structures of SiC wherein n¼4; 15; 21; 33; 65; 192; 270; 400; 594; or 1200. Another

semiconductor crystal—ZnS—has approximately 10 modifications. Moreover,

polytypic structures are observed in graphite, molybdenite, and other crystals. Poly-

typicism significantly affects the physical properties of crystals, especially their opti-

cal properties.

Isomorphism is a property of chemically closed atoms, ions, or other structural ele-

ments to replace each other in a crystal lattice and form a continuously variable com-

position. Here, atoms with the same valences, bonding type, and polarization that are

similar in size (with deviation of notmore than 5%–7%) are chemically closed. Isomor-

phic substances with close but not identical composition crystallize in a similar form.

Both germanium and silicon crystals are examples of isomorphism. The density,

lattice parameters, and hardness in an isomorphic row of mixed crystals Ge-Si vary
linearly. However, as the energy spectra of germanium and silicon are different, the

electron’s energy bandgap, specific conductivity, and thermoelectromotive power in

this series of Ge-Si semiconductors vary nonlinearly. By selecting different isomor-

phic compositions, it is possible to vary the range of operating temperatures and elec-

trical characteristics of semiconductor compounds. Crystalline touchstring can cause

crystallization and ordering of another isomorphic substance from a supersaturated

solution or melt. The ability of isomorphic substances for mutual growth is used in

crystal growth technology.

Polymorphism is the property of certain substances to exist in multiple crystalline

phases, differing in symmetry of structure and in physical properties. Polymorphic

modifications are called allotropic elements. At conformable physicochemical con-

ditions, polymorphic modifications can form stable phases. Each of these phases is

stable at a fixed range of temperatures and pressures, and is called the polymorphic
modification. The relative stability of different phases is determined by the value of

free energy and external conditions. Basically, polymorphic modifications differ in

their structure, sometimes by the type of chemical bonds.

The change in environmental conditions might influence polymorphous transfor-

mation. During these transformations (usually, phase transitions of type I), the
release or absorption of heat is seen, as well as the jumps of internal energy and

entropy. Thus an abrupt change of many physical properties is observed that depends

on the arrangement of atoms in a structure: density, specific heat, thermal conduc-

tivity, electrical conductivity, etc.

In addition, there are other types of polymorphic modifications that differ very

little in their physical properties. The polymorphic transitions between such phases

characterize the phase transitions of type II, and generally are described as the

“order-disorder” phase transitions.
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1.4 LATTICE DEFECTS IN CRYSTALS
In solid-state theory, in its first approximation, it is always assumed that the structure

of crystals is ideal, that is, the location of atoms in unit cells as well as around all

crystals is strictly periodic. However, in practice in real crystals, these ideally perfect

structures are impossible.

Defect formation. Defects in the crystals are formed, for instance, during their

growth under the influence of thermal, mechanical, and electrical fields (technolog-

ical defects), as well as under crystal irradiation by neutrons, electrons, X-rays, and

ultraviolet radiation (radiation defects). There are point defects (zero-dimensional),

linear defects (one-dimensional; 1D), planar defects (2D), and volume defects (3D).
In case of a 1D defect, its size in one direction is much larger than the distance

between neighboring atoms (lattice parameter) whereas in the other two directions,

the size of the defect has the order of a lattice parameter. In a 2D defect, its size in two

directions is much larger than the distance between the nearest atoms, and so on.

Mechanisms of defect appearance may be quite various. For example, Fig. 1.27

demonstrates a possible mechanism of crystal growth [9]. Atoms are relatively

weakly linked to a flat surface of ideal crystal (Fig. 1.27A) but would have better

connected near a step formed by two planes (Fig. 1.27B). It is obvious that the atom

will be strongly linked in the corner formed by two steps (Fig. 1.27C): this mecha-

nism of crystal growth seems more likely. However, crystal growth becomes even
FIG. 1.27

Possible mechanisms of crystal growth.
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easier if it happens through screw dislocation (Fig. 1.27D). In case of such a struc-

ture, the new atoms easily add and form an endless spiral around the disturbance.

Crystal growth in this way is much faster, because it does not require the formation

of a new embryo, as in the cases shown in Fig. 1.27A and B.

Defect formation in a crystal occurs because of different reasons.

First, atoms sometimes leave their ideal position in the crystal lattice, and there-

fore create defects of structure through thermal fluctuations. With this mechanism of

defect formation, a small part of the crystal’s own atoms lose their regular places in a

lattice (they become the vacancies), or squeeze among other regular atoms, creating

interstitial atoms; in both cases, the ideal structure of a crystal becomes locally

broken.

Second, defects can be formed due to other reasons. For example, some atoms

come out of the crystal surface; this is the simplest mechanism of point-defect

(vacancies) formation near the surface of a crystal. Thus these vacancies—

unoccupied sites in crystal lattice—are not accompanied by interstitial atoms.

Vacancies of this type are called Schottky defects. In most crystals, the energy of

vacancy formation is close to 1eV.

In case of defect formation by the Frenkel mechanism, interstitial atoms or ions

arise inside a lattice. Due to thermal fluctuations or power external influence (e.g.,

bombardment of crystal by ions), the foreign atom (or ion) can take root in the regular

crystal structure from outside and create “extra” interstitial atoms. It is this very

method of introducing foreign atoms into a crystal lattice that is used in modern elec-

tronics technology: the point is that a semiconductor should be obviously doped with

impurities, whose atoms not only have different sizes but also can have different
valences.After annealing, these foreign atoms replace the atoms in the crystal lattice,

forming a solid solution. Thus the nonideal defect structure can be planned specially
by technological means.

The need for defect management in structures (quite necessary for semiconduc-

tors) is due to fact that defects substantially affect such parameters of crystals as con-

ductivity, dielectric and magnetic energy losses, electrical strength, and other

properties of semiconductors, magnetics, and dielectrics, as well as strongly affect

the mechanical parameters (strength) of metals.

Therefore many properties of solids are structurally sensitive. However, some

other properties (e.g., density, specific heat, elastic characteristics) are only slightly

dependent on the presence of defects. These properties are structure-insensitive,
being determined, first of all, by the nature of fundamental atomic bonding as well

as by crystal chemical composition.

Defects are very diverse. Sometimes, they are associated with one another, and it

is difficult even to assign them to a definite class. However, it is possible to divide the

main types of structural defects according to their dimension.

The zero-dimensional (point) defects are characterized by structure violation in

the nodes or interstitials of the crystal lattice. These defects are caused, primarily, by

the disordered location of main atoms in the crystal. Point (zero-dimensional) defects

include all defects that are due to the displacement or replacement of individual atom
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(or small group of atoms). They arise in the process of crystal growth, but might also

be a result of radiation exposure. Moreover, point defects may be made by implan-

tation; these types of defects are most studied, including their motion, interaction,

annihilation, or evaporation.

These defects include:

• vacancies—free, unoccupied by atom lattice point;

• impurity atoms—replacing one type of atom by another type of atom by

substitution in a lattice;

• intrusion of impurity atom into the interstitial space of the crystal lattice;

• Frenkel pair—vacancy together with interstitial atoms; and

• Schottky defect—vacancy arising due to the release of an atom on the surface.

Usually, Schottky defects are seen in ionic crystals as a pair of cationic and anionic

vacancies. This defect is often found in the alkali halide crystals. The presence of

Schottky defects decreases crystal density, as atoms that create vacancies diffuse

to a surface (Fig. 1.28).

The defects generated by Frenkel’s mechanism are usually vacancies and inter-

stitial atoms. These defects are typical, for example, for ionic crystals of silver
halides where superionic conductivity exists. Vacancy and interstitial atoms can

move within a crystal lattice by the influence of thermal movement. Furthermore,

Frenkel’s defects are easily formed in structures of diamond-type crystals (silicon

and germanium). These defects do not change crystal density.

In general, crystal can have both Frenkel’s and Schottky’s defects; thus those that

dominate that formation require less energy. In ionic crystals formed by two kinds of

particles (positive and negative), point defects occur in pairs. Two vacancies of the

opposite sign usually form Schottky’s defect. The pair consisting of interstitial ions

and the vacancies left by them is usually the Frenkel’s defect. As already noted, the

simplest zero-dimensional defects in crystals are the vacancies and interstitial atoms
FIG. 1.28

Scheme of Schottky defect formation: (A) atom going out from crystal surface; and (B) shifting

another atom onto empty position of first atom [9].



FIG. 1.29

Schematic representation of interstitial atom (A), vacancy (B), and impurity atom (C).
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(Fig. 1.29). The displacement of atoms or ions (point defects) causes deformation

and elastic fields around defects [9].

According to classification, except for proper point defects, other types of defects

are possible, namely, the impurity defects (Fig. 1.29C): if the size of a defect atom or

ion is different from the main atoms of crystal. Such defects, for example, are donor

or acceptor impurities in semiconductors; similar are the impurities introduced in

semiconductors to form the centers of recombination, the charge-carrier-scattering

centers, etc. Around such defects, there arise local tension and distortion of the crys-

tal lattice (Fig. 1.29A and B).

If the crystal is ionic, the vacancies in it lead not only to lattice distortion, but also
to the appearance of effective charges with a sign, opposite to the sign of the charged

ion that is missed. However, during defect formation in crystals, the principle of elec-
troneutrality is efficient. The electrical interaction is very large and therefore the sum
of all charges of defects generated in a crystal should be equal to zero:

X
niqi¼ 0,

where ni is the concentration and qi is the charge of the originated defects. Thus, for
example, the displacement of an ion from the lattice site into the interstitial position

is accompanied not only by charged ion appearance in the interstitial space, but also

by charged vacancy in the crystal lattice. As with Schottky’s defects, Frenkel’s

defects in ionic crystals provide local electroneutrality.

In the atomic crystals (doped semiconductors), the compensating charges appear

due to electrons. The introduction of impurity atoms in semiconductors results in the

appearance of donor and acceptor centers. The donor center is caused by such an

impurity that the valence is higher as compared to the basic atom of the crystal. These

centers provide additional electrons in the conduction band of a crystal. Donor cen-
ters in silicon or germanium crystals very often are formed by phosphorus atoms. The

host atom in a lattice has four valence electrons (Si+4). The replacement of some sil-

icon atoms in crystal by phosphorus atoms (P+5, donor impurity) results in “extra”
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electron (�e) as the compensating charge that provides common electroneutrality in

a crystal. Thus the positively charged (+e) ion of a donor generates an electron with a
negative charge (�e).

The acceptor centers are created in silicon (or germanium) by impurities where

the valence is one less than the valence of basic crystal atoms. For example, such an

impurity is boron (B3+). Thus when fixed in a lattice, the (immovable) impurity ion

has a negative charge (�e). The lack of one electron is seen as a hole (+e), that is, the
mobile positive charge. Therefore the acceptor type of impurity is a lower-valence

atom than the own atoms of the crystal, and it gives rise to holes in the valence band.

The polaron is a charge carrier, partially bound in a crystal lattice (most often,

this is a bound electron or hole). The polaron is not a “static” defect in the crystal,

being muchmore mobile than the vacancies or interstitial ions. However, a polaron is

much less mobile than an electron or a hole. As a rule, polarons are peculiar to ionic
crystals wherein, under the influence of thermal motion or irradiation, some elec-

trons (and holes) appear. In ionic crystals, the appearance of local deformation of

ionic lattice (i.e., local polarization of lattice) is energetically favorable for electron.

Thus the electrical field of the electron (or hole) is partially screened by the polar-

ization that reduces the electrostatic energy of an electron (hole). Being a mobile

charged formation, a polaron cannot be fully considered a “point defect,” but as a

special state of conductive electron in the ionic crystal.

The excitons can also be interpreted as mobile point defects in crystals. The pres-
ence of excitons is, as a rule, a characteristic feature of semiconductors and dielec-

trics. In case of exciton appearance, ions (or atoms) in a crystal do not change their

location, but become significantly different from their neighbors by infringement of

its electronic state. Such a “defect” isFrenkel’s exciton. Because the excited state can
be found in any ion, and there is strong interaction between the outer electronic shells

of ions, the energy infringement can be transmitted from one ion to another. There-

fore moving Frenkel’s exciton in a crystal is not related to the change of ion posi-

tions; thus it has (as polaron) a much higher mobility than vacancies, interstitial

atoms, and impurities of replacement. In general, the exciton cannot be fully consid-

ered a localized defect.

The diffusion. In processes of semiconductor device technology, a heteroge-
neous distribution of donors or acceptors is usually necessary to create the p-n junc-
tions for diodes or transistors. In addition, during semiconductor device operation,

the heterogeneous (in space and in time) distribution of charge carriers often arises.

Whenever there is nonuniform concentration, the phenomenon of diffusion takes

place, and it often plays an important role in the given situation. Therefore diffusion

has received a great deal of attention in semiconductor research [9].

Diffusion is the directional movement of molecules, atoms, or charge carries

from a region of high concentration to a region of low concentration. Diffusion is

caused by the aspiration of any system to reach their equilibrium state, that is, in this

case, a leveling of concentration. In the first case (technological), it is the smoothing

of admixture additive concentration; in the second case (electronic device operation),

it is the decrease of excess concentration of charge carriers.



FIG. 1.30

Time dependence of concentration clot in a one-dimensional model of diffusion:

(A) degradation with time without external influence; and (B) charge carrier diffusion and

simultaneous drift with time in the electrical field (t0< t1< t2).
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In Fig. 1.30A, in a local area with a coordinate x0 at time t0, an excessive con-

centration of particles nmax is created. This is a nonequilibrium state; therefore, over

time (t1, t2,…) under the influence of thermal chaotic motion, the maximum concen-

tration decreases and the area of increased concentration becomes blurred, aiming for

full alignment.

In cases when donors or acceptors are locally imbedded in a semiconductor,

rather high temperature is needed to smooth down their concentration, and this is

an important stage in semiconductor device technology. (At room temperature, a

great amount of time is necessary to change the position of admixture additives in

the crystal lattice.)

In many semiconductor devices, the locally increased concentration of charge
carriers is created (usually by injecting of carriers into a specimen from an external

circuit). It is obvious that such a concentration of charge carriers is the nonequili-

brium state. Therefore electrical current flows from both edges of concentration

peak, as shown in a 1D model (Fig. 1.30A). This flow, in which the concentration

n(t,x) changes rapidly, is called the charge carrier diffusion. The effect of diffusion
is eventually to bring the concentration of charge carriers toward their equilibrium

situation wherein their concentration is uniform throughout. As time changes, the

peak spreads out in both directions and decreases, although the center of the peak

remains at the same place x0.
A quantitative consideration of these processes reduces to the basic law of diffu-

sion:Fick’s law, which specifies that, in nonuniform concentration, the density of par-
ticle flow j0 (i.e., the number of particles, crossing unit area per unit time) is given by

j0 ¼�D � ∂n=∂x,
where D is a constant called the diffusion coefficient. This law states that the flow of

diffusion is proportional to the gradient of concentration. Thus the more rapidly n
varies, the larger is the flow. The negative sign in a given formula is introduced
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for convenience in order to make parameter D a positive quantity. As seen from this

equation, j0 is opposite to dn/dx.
Fick’s law is valid whether particles are neutral or charged. In semiconductors,

where moving particles are charged carriers, the flow j0 is proportional to the elec-

trical current: j¼e � j0, because, to obtain the value of the electrical current, one needs
to multiply j0 by the charge of the carrier.

After the creation of a clot with increased concentration of charge carriers at time

t0, if the gradient force field is switched in (usually, it is an electrical field), the clot of
particles will diffuse as before, and the center of the clot will also drift because the
applied electrical force influences these particles (Fig. 1.35B; this case can be

applied also to the movement of defects under a thermal gradient influence).
The 1D defects—dislocations—are crystallographic defects or any irregularity

within a crystal structure. The presence of dislocations strongly influences many

properties of solids.

Dislocationmay, furthermore, be interpreted as the linear boundary of a structural

violation in a crystal. Mathematically, dislocations can be defined as a type of topo-

logical defect, sometimes called the soliton. In other words, dislocations are such

violations of crystal structure that have greater length (up to macroscopic size),

but their lateral dimensions do not exceed several interatomic distances. Therefore,

1D (linear) defects are defects that, in one direction, are much larger than the crystal

lattice parameter, whereas, in two other directions, they can be compared to it. There

are two primary types of dislocations: edge and screw. Mixed dislocations are the

intermediate cases between these two.

The edge dislocation is the border of “excess” atomic plane that splits the crystal.

It corresponds to a row of convergent atoms along the end of an additional plane of

atoms within the crystal. Fig. 1.31A shows the atom arrangement around edge dis-

location whereas the right panels of the figure (b, c, d) demonstrate the possible

movement of such dislocations in a crystal.

In other words, the edge dislocation is a defect when an extra half-plane of atoms

is introduced, distorting the nearby planes of atoms [9]. If an external force is applied
FIG. 1.31

Edge (linear) dislocation (A) and its displacement to left side from one part of the crystal in

relation to another (B, C, and D).
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to one side of the crystal, this extra plane will pass through the planes of atoms,

breaking and joining bonds with them, until it reaches the crystal (or grain) boundary.

Dislocation is described by two parameters: the line direction (i.e., the direction of

running along the bottom of the extra half plane) and the Burgers vector that

describes the magnitude of distortion. In case of edge dislocation, the Burgers vector

is perpendicular to the line direction.

The formation of dislocations in a semiconductor crystal occurs in a process of

crystal growth because crystal cooling is not uniform (the surface cools faster than

the volume). As a result of uneven thermal expansion, tensions appear in the crystal

lattice. When temperatures are higher than the temperature of ductility, the stressed

state of the lattice can be, to some extent, “removed” due to the formation of linear

dislocations. Below this temperature, dislocations in crystal become “frozen.”

The screw dislocation is a result of change in atom location in one part of a crystal

in comparison with another. It corresponds to the axis of the spiral structure of dis-
tortion that is associated with normally parallel planes (Fig. 1.27D). As shown, screw

dislocations are formed during crystal growth and then they remain in the structure. It

is possible to say that the problem of crystal growth can be solved by the possibility

of screw dislocations rising. If the surface plane crosses only part of the way through

the crystal and then stops, the boundary of this cut becomes the screw dislocation. It

comprises a structure wherein a helical path is traced around a linear defect (dislo-

cation line) in the crystal lattice. In purely screw dislocations, the Burgers vector is

parallel to the line direction.

As point defects, dislocations can move through the crystal lattice. However, the

movement of dislocations is associated with many limitations, because a 1D dislo-

cation should always be a continuous line. There are two main types of dislocation

movements: displacement and sliding.

The dislocation displacement is due to the addition (or removal) of atoms from

the superfluous half-plane that may occur as a result of thermal diffusion. During this

sliding, the extra half-plane of dislocation that takes a definite position in the crystal

lattice combines with the atomic plane that is located under the plane of sliding,

whereas the neighboring atomic plane becomes the extraneous half-plane. This

smooth sliding of the dislocation line can be caused by the shear stress applied to

the crystal surface.

It is well known that a rod of soft metal, after a series of bends and straightening,

stops its bending and eventually breaks. This is the example of strain hardening. At
each bending, many new dislocations occur in a metal; when their number becomes

so large that they cannot move, the crystal loses its ability for plastic deformation and

it breaks on any further impact on a crystal.

The 2D and 3D defects. Two-dimensional (planar) defects include intergranular

or intercrystallite borders, as well as crystal surfaces and modulated structures inside

a crystal. Therefore most common 2D defects are the boundaries between grains that
are peculiar for polycrystalline materials. They consist of a large number of single-

crystal grains that are randomly oriented and tightly interconnected. These structures

usually are polycrystalline metals as well as dielectric or magnetic ceramics.



FIG. 1.32

Schematic (A) and atomic (B) representation of grain boundaries.
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Intergrain borders—interfaces of crystallites—are not necessarily flat surfaces.

Boundaries between grains (crystallites) in polycrystalline materials might have sig-

nificant curvature. Layers of atoms near these boundaries are the areas of the dis-

turbed crystal lattice; thus the thickness of defect layers usually equals several

atomic layers, providing smooth transition between disordered regions (Fig. 1.32B).

The polycrystalline (block) structure of ceramic materials and metals can signif-

icantly affect their electrical, magnetic, and mechanical properties.

The surface of a crystal, by its essence, is also a 2D structural defect. Therefore,

each real crystal differs from the ideal crystal due to variations in the structure and

properties of a surface. The surface is a special state of crystal, with different sized

elementary cells that have other symmetry and other energy. Atoms (ions) located on

the surface layer are joined by broken chemical bonds which are not saturated.

Located on the surface are unpaired electrons of atoms (ions) that tend to form

new connections.

Most often, the state of the surface is characterized by the bonding of neighboring

atoms—either in pairs, or in more complex associations. Surface atoms are combined

into larger unit cells, as compared with the volume of a crystal. For example, on the

surface, a silicon unit cell has 7�7 atoms (in germanium 2�8 atoms) whereas their

fundamental unit cell contains only two atoms. Thus the elasticity of atomic bonds on

the surface is changed and, as a result, the characteristic “melting point” is reduced

by 10%–30%. Note that crystal growth occurs just from the surface as well as the

melting of the crystal, its evaporation and condensation, and the diffusion of atoms

deeper into the crystal.

The electronic energy spectra of the crystal surface significantly differ from the

electronic spectra of the crystal volume. As discussed later, the unique properties of

nanocrystalline materials are due exactly to the fact that in nanoparticles (which

have a small number of atoms: 10–1000), the ratio of surface-located atoms to

volume-located atoms is 90%–20%.



46 CHAPTER 1 Structure of electronic materials
The physics of modulated structures can be regarded as a boundary area

between the physics of nanomaterials and physics of structural defects. In case

of nanophysics, the planar (by-layer) modulation of semiconductor structures

may result in a specific electronic spectrum—so-called quantum wells. In some

types of magnetics, the arrangement of electronic spins in crystals also exhibits

periodic complexity in their magnetic ordering, as compared to the usual crystal

structure. Modulated structures can be explained as the coexistence of different

periodicity in a crystal.

The 3D (volumetric) defects. They are, first of all, the clusters of vacancies that
form pores and channels; various imbedded defects, such as gas bubbles; accumula-

tion of impurities in a form of sectors and areas of growth. Three-dimensional defects

reduce crystal flexibility, affect its elasticity, and strength as well as change the elec-

trical, optical, and magnetic properties of a crystal. Fig. I.2 in the Introduction sche-

matically shows 3D structural defects in polycrystalline materials. Inside of each

crystallite, many interplanar structural defects can be observed.

Thus 3D defects are solid interstices, liquid or gaseous phases in a crystal, clus-

ters, and other complications with a macroscopic structure. In materials used in elec-

tronic technology, 3D defects might also have a fundamental nature, but this case is

not considered here.

As a result, some conclusions follow:

• Part of atoms (or ions) of a crystal may be absent in their positions that correspond

to the ideal crystal lattice scheme. These defects are vacancies. Foreign

(impurity) atoms or ions, replacing basic particles that form a crystal, or inserted

between them, can also be seen in crystals. Point defects in a crystal can also be its

own atoms or ions that are shifted from their normal positions (internode atoms

and ions),

• In the process of crystal growth, as well as during its plastic deformation and in

many other cases, dislocations arise. Dislocations are places with ordered

accumulation of impurities. The distribution and behavior of dislocations under

external influences determine many important mechanical properties of a crystal,

including strength, ductility, and other aspects. In particular, the mobility of

dislocation determines the plasticity of crystals; dislocations also cause the

appearance of internal stress and fracture of crystals. The problem of plastic

(i.e., irreversible) flow of metals can be solved by the prevention of

dislocation movements. Dislocations impede the process of magnetization

and electrical polarization because of their interaction with domain

boundaries movement.

• Defects in crystals cause elastic deformation of the structure that leads, in turn, to

the appearance of internal mechanical stresses. For example, point defects,

interacting with dislocations, can increase or decrease the strength of

crystals. Defects in crystals affect absorption spectra and luminescence, light

scattering in crystal, etc.; such defects change electrical conductivity, thermal

conductivity, ferroelectric properties, magnetic properties, etc.
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1.5 STRUCTURE AND SYMMETRY OF QUASICRYSTALS
AND NANOMATERIALS
As described earlier, crystal structure is defined as a system with long-range ordering

of particles. If the structure of the crystal unit cell is known, 3D periodicity makes it

possible to predict the location of atoms of any other cell and the relative positions of

atoms of the entire structure as a whole. This means that crystal has translational
symmetry. The structure of the crystal can be described by the displacement of a sin-

gle unit cell on three basic vectors of translations.

Translational symmetry results in regular crystallographic planes in crystal, thus

making clearly identified narrow peaks of X-ray scattering. This feature of the X-ray

diffraction pattern is the distinguishing characteristic of crystals. Polycrystalline

bodies, in their structure, are similar to single crystals, because they are composed

of small randomly oriented crystals. During X-ray beam scattering in polycrystals, a

conical symmetry is formed that also gives distinct diffraction maxims, which can be

used to obtain lattice parameters as in a single crystal.

Significant difference occurs in the X-ray spectra of amorphous solids that are
characterized by the blurred picture of diffuse X-ray scattering without clearly iden-
tified narrow rings. Such solids in their amorphous state do not show strict 3D peri-

odicity. Thus while defining an amorphous structure, the terms “disordered,”

“noncrystalline,” “amorphous,” and “glassy” are synonymous. The arrangement

of atoms in amorphous solids, however, is not completely random (as it is in gases).

The interactions between atoms in an amorphous body are similar to the forces in

crystals and, although there is no long-range ordering, the short-range ordering, gen-
erally speaking, is preserved [8].

Short-range ordering in the arrangement of atoms is characterized by such param-

eters as the length and the angles of bonds as well as by the number of their nearest
neighbors. It should be noted that in the amorphous state, because of violations of

their structure, these options have some statistical dispersion, and their average

values may differ slightly from those values in a perfect crystal.

The quasicrystals show a new type of symmetry, different from all aforemen-

tioned cases. They demonstrate such elements of symmetry that previously were

considered as impossible. The translation symmetry of a perfect crystal obeys rigid

restrictions as to the order of rotary symmetry axes, which describe the symmetry of a

crystal.

As shown earlier, the ideal crystal, except with a trivial axis of the first order, can

have symmetry axes only of second, third, fourth, and sixth orders. Solely, these axes

can provide the parallel transfer of unit cell when it is multiplied to create a crystal.

The symmetry of a perfect crystal does not allow the existence of axes of symmetry

of the fifth, seventh, or higher orders. Elementary cells that have such axes cannot

completely fill even the plane (and, moreover, the volume).

Nevertheless, in 1984, for the first time a metallic alloy was discovered with

unusual properties: with the axis of symmetry of the fifth order (Dan Shechtman,



FIG. 1.33

Models of quasicrystals structures: (A) icosahedron and (B) dodecahedron.
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Nobel Prize for 2011). This alloy was obtained by a rapid cooling of molten

aluminum-manganese (with the speed of cooling near 106 degrees Kelvin per sec-

ond). Grains of this alloy have the form of a dodecahedron with rotary symmetry

axes of fifth order.

As known, symmetry axes of the fifth order have two types of “regular convex

polyhedra” (Fig. 1.33): icosahedron and dodecahedron (the existence of these regular

convex polyhedra was first noted by Euler). The icosahedron is a regular polyhedron

consisting of 20 faces—equilateral triangles—and it has 12 vertices and 30 edges

(Fig. 1.33A). The dodecahedron is a polyhedron consisting of 12 faces (pentagons)

and it has 30 edges and 20 vertices (Fig. 1.33B). The dodecahedron and icosahedron

can be inscribed into one another, similar to a cube and an octahedron. It should be

noted that the icosahedron and dodecahedron can be described by identical elements

of symmetry, including symmetry axes of the fifth order. As in ideal crystals, the

symmetry of the axis of the fifth order is prohibited; therefore the icosahedron

and dodecahedron are never used in the translational symmetry of classic

crystallography.

As mentioned, the diffraction pattern of X-ray scattering for the aluminum-

manganese alloy shows regular peaks, corresponding to a structure with a rotary

symmetry of the fifth order. This diffraction pattern can be formed only when the

atomic structure has the axes of symmetry of the fifth order. This means that icosa-

hedral symmetry characterizes not only grains of metal, but the arrangement of atoms

in unit cells as well. The presence of different reflexes in the X-ray spectrum shows

the special arrangement of atoms in the structure called shechtmanite (a quasiperi-
odic crystal), whereas the presence of symmetry axes of the order 5 indicates that this

material, in the usual sense, cannot be considered a crystal. Some additional research

of shechtmanite by methods of electron microscopy confirmed the homogeneity of
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this material and the existence of rotational symmetry of the fifth order in the small

areas with sizes of a few tens of a nanometer.
At present, many alloys of similar structures are discovered and synthesized, and

they are called the quasicrystals. For example, the quasicrystals can be obtained by a

sudden cooling of molten aluminum, copper, and iron that, during solidification,

form grains of the dodecahedron type. In most synthesized quasicrystals, using

X-ray diffraction studies, the icosahedral symmetry has been identified with point

group of symmetry, inherent to the rotary axis of the fifth order. In addition, other

quasicrystals are synthesized with rotary axes of symmetry of 8th, 10th, and 12th

orders (all these symmetry axes are prohibited in the translational symmetry of ideal

crystals).

Quasicrystals usually consist of metal atoms and (sometimes) of silicon, for

example, the alloys Al-Li-Cu, Al-Pd-Mn, Zn-Mg-Y, Al-Cu-Co-Si, Al-Ni-Co, and

Au-Na-Si. The structure of quasicrystals is characterized by a combination of alter-

native local symmetry (icosahedral) that is far from ordering, providing sharp peaks

in diffraction pattern, observed in experiment. Following the discovery of quasicrys-

tals with fifth-order axis of symmetry, it seems natural to involve the model that can

describe structures by regular icosahedrons and dodecahedrons.

For example, the icosahedral clusters can be used as a model, consisting of iden-

tical solid spheres that represent atoms. The tetrahedral structure can be formed with

four closely linked spheres, limiting their planes passing through the centers of

spheres. A compound of 20 tetrahedrons creates a small, distorted icosahedron.

A similar structure can be obtained by solid sphere wrapping by 12 equidistant areas.

However, between 12 peripheral areas, representing atoms, there are gaps that inev-
itably occur; each atom would be approximately 5% further apart than the distance to

the central atom. Compact filling of space by such an icosahedron-type cluster

should be quickly broken, that is, the icosahedral packaging cannot spread to the

entire crystal [10].

Some structures, which have short-range icosahedral ordering, acquire the term

the metal glasses. They are formed by a very rapid cooling (�106K/s) of the melt of

somemetals. Such structures have only short-range ordering, and, being amorphous,

form an X-ray spectrumwith broad diffuse maxima. In quasicrystals, however, X-ray
peaks are expressed clearly.

To explain the spectra of quasicrystals, the presence of icosahedral clusters with
regular distortions on borders is supposed, which could provide long-range ordering

in the structure and, therefore, create X-ray diffraction patterns with narrow peaks.

Therefore, to describe some complex quasicrystals, the structural units containing a

few dozen atoms are proposed. However, a problem arises as to the physical nature of

appearance and stability of such complex clusters. Furthermore, X-ray and neutron-

diffraction methods showed that, in real structures of quasicrystals, only a small frac-

tion of their atoms have an icosahedral environment.

Thus, for actually existing long-range ordering, all quasicrystal structures should

have some “nontranslating” arrangement. In other words, filling of infinite space by

atoms in these structures can be determined by such an algorithm when a long-range
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order is ensured without full translational symmetry. The lack of translational con-

straints allows the structure to have a quasicrystalline axis of the fifth order. Orderly

arrangement of structural units can provide a positive interference of X-ray waves

scattered by atoms in some areas, and the formation of narrow and strong diffraction

reflexes.

Some ideas as to quasicrystals modeling in 1D and 2D structures are discussed

further. Ensuring long-range order in a 1D structure in the absence of translational

symmetry is possible in various ways. For example, long-range order in atom distri-

bution can be modeled by the linear chain of atoms with constant interatomic dis-

tance “a” that shifts with the next atom on distance Δ¼ε �a �sin(2πja), where j is
the serial number of atom while ε and σ are some numbers. If the number σ is irra-

tional, displacements of atoms are different, even if one considers an endless chain of

countable atoms. This 1D structure might have translations.

However, the coordinates of all atoms are determined by a definite law, that is,

this sequence is totally ordered structure. The lack of translational symmetry in this

case is not due to chaotic displacement of atoms (that is typical for amorphous

structures), but by imposition of two nondisproportionate periodicity in their

arrangement, whereas the ratio of their periods is an irrational number. The lack

of random displacements of atoms that leads to the nontranslational arrangement

makes an X-ray diffraction pattern, characterized by distinct maxima. Built in such

a manner, the chain of atoms is the example of 1D-quasicrystals. This example

shows the feasibility of using irrational numbers in constructing models of

quasicrystals [10].

The “Penrose mosaic” shown in Fig. 1.34 can be used as a mathematical model of

2D quasicrystals. This structure is fundamentally different from the classic “frozen”

form of perfect crystals. R. Penrose developed the algorithm on how to fill an infinite

plane with no overlaps and voids by using figures of only two types. These figures

that are needed to build the Penrose mosaic are the rhombuses with the same side.

The internal angles of wide rhombus equal 72° and 108° and internal corners of

“narrow” rhombus are 36° and 144°.
A mosaic made of rhombuses can fill all “endless” flat surfaces, but only at an

aforementioned selection of special corners of rhombuses. Notably, that ratio of

“narrow” rhombuses to “broad” rhombuses is exactly equal to the “golden section”

(Golden section is a number (√5�1)/2¼0.618… equals to the ratio of two parts of

a whole (Φ and S) that is subject to the following rule: Φ /(Φ+S)¼S /Φ.)
Because the “golden section” is an irrational number, in the considered mosaic it

is impossible to identify any “unit cell” containing a whole number of each type of

rhombuses that could fill the plane. Therefore the Penrose mosaic is not a 2D-crystal
in the traditional sense, but it is a 2D-quasicrystal.

It is important to pay attention to the following facts:

First of all, it is essential that the construction of mosaics is realized by defined

algorithms, which is why this mosaic is not a random, but ordered, structure. Sec-

ondly, when calculating the scattering of X-rays for structure, formed by atoms

located in vertices of the Penrose mosaic, it is found that the diffraction pattern
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Penrose mosaic as example of two-dimensional quasicrystalline structures.
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has a rotary symmetry axis of 10th order. The Penrose filling contains 10 squares

with exactly the same orientation. Thirdly, rhombuses of mosaics (with parallel

sides) form five families parallel to each other’s lines, intersecting at angles that

are multiples of the angle 72°.
Thus, the Penrose mosaic has a long-range ordering, providing diffraction pattern

of fifth-order rotational symmetry.

After the invention of “shechtmanite,” a 3D generalization of the Penrose mosaic

is studied that has icosahedral symmetry. Experiments show that in most real qua-

sicrystals, their atoms have nearest neighbors lying in the vertices of a regular

dodecahedron. However, the construction of the structure from hard figures with

20 vertices of the dodecahedron by real atoms may engage in no more than eight

vertices. Therefore, the first coordination sphere of each atom has a strong volatility.

Such structures are characterized by both short-range ordering and long-range order-

ing (with not usual translating), which can be built only from two types of rhombo-

hedrons. This mosaic is not possible to obtain traditionally by the translations of one

elementary cell.

It should be noted that the algorithm of 2D-rhombuses or 3D-rhombohedrons in

Penrose mosaics consists of several steps, and therefore has alternatives. Although

real quasicrystals grow, some failures of its structure are possible because quasicrys-

tals can be formed in regions of their violations. The presence of such “amorphous”
inclusions should lead to widening of peaks in X-ray diffraction pattern, as observed
in experiments. In addition, an evidence of the presence of disordered local areas is

the low conductivity of metal alloys of synthesized quasicrystals.
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In the melt metals, depending on alloy components, microsymmetry is created

correspondingly to features of the electronic structure of ions that coexist in the melt.

Microstructure in melts might be quite diverse; they might have axes of symmetry of

the fifth order (as well as axes of symmetry of higher orders), that is, such transla-

tional symmetries are forbidden in an ideal crystal. The thermal effect on crystal has

the symmetry of a sphere; therefore, it contains any element of symmetry (including

axes of any order). Usually, quasicrystals are obtained by a sudden cooling of such

alloys, where nontranslational symmetry axes are dominating in the microstructure.

Therefore, in case of imbalance cooling (by the “heat shock”), primarily the

structures of short-range order become stabilized (e.g., with the axis of the fifth

order), which is typical of the local electronic structure of a given melt and not for-

bidden by sphere symmetry (according to the Curie principle). The remaining sym-

metry elements (in considering the case of the axis of the fifth order) become

“frozen” after structure heatstroke, providing a sort of “long-range ordering.” These

formed clusters may have enough inner energy to withstand thermal movement and

therefore store the elements of symmetry, unusual for perfect (translational) long-

range order. In crystals that experience sharp changes of temperature, these unusual

elements of symmetry are stored; therefore the properties of such alloys are not

traditional.

The symmetry of nanomaterials.Nanomaterials exhibit short-range ordering of

their atoms. Their relatives are, for instance, well-studied amorphous metal alloys

(metal glasses). In such substances, their structure is changed quite significantly,

allowing the creation, for example, of ferromagnetics with such magnetic properties

that, in principle, cannot be obtained in the materials with long-range ordering

of atoms.

Topological models of amorphousmaterials are well developed and are based on
the random dense packing of both hard and deformable spheres: this is close to that

seen in nanostructures. With regard to inorganic glasses with covalent bonds and ran-

dom packing of atoms, these structures correspond to the model of a random and

continuous grid of atoms. All of the said models are characterized by a set of

different-size spheres, randomly packed to the largest density [8]. They differ in

the rules of packaging, in the interaction potentials, in the relaxation modes, etc.

In many configurations of random dense packing, the crystallographic structural ele-

ments are allocated, as well as the noncrystalline packing of clusters that can be illus-

trated by the Bernal polyhedra (Fig. 1.35).

As known, the CN in crystals might be 4, 6, 8, and 12. In the amorphous metallic

alloys, the CN for alloys of transition metals with copper remains only close to

CN¼12 regardless of the compound (in ideal model CN¼12). In reality, for exam-

ple, in Ni-Li and Cu-Ti alloys, the average CN is 12.8. In the alloys of rare earth

metals and transition metals, as usual, CN¼12; however, in the amorphous alloys,

CN generally decreases. For example, in DyFe2 alloy CN¼7.1 � 1, while in the

alloy TbFe2, CN¼8.4 � 1.8; thus the environment of iron atoms is approximately

the same as in the crystal. Thus the short-range ordering in amorphous and in crys-

talline states of metallic alloys is different.
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Models of amorphous structures clusters: 1—tetrahedron; 2—octahedron; 3—trigonal prism

with three semioctahedrons; 4—Archimedes’ antiprism with two semioctahedrons; and 5—

tetragonal dodecahedron.
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Nanomaterials are small particles of matter (clusters), consisting of 10–1000
atoms, and their properties depend on the number of atoms in a cluster as well as

on the relative position of atoms. The size of a nanocluster also has an influence

on its shape and symmetry [11].

Consider, for example, the cubic symmetry crystal of magnesium oxide (MgO;

Fig. 1.36). An important property of nanoparticles is seen: the difference in the out-

ward form of the samematerial—crystal,microcrystal, and nanoparticle [12]. In this
example one can see a resizing change in the shape of a body. When the size is larger

than 100�100nm2, long-range ordering prevails, and MgO crystal has this intrinsic

to its cubic form. However, the microcrystal of MgO tends to have a hexagonal
shape, whereas the MgO nanosized particle shows a nearly dodecahedron form.

Another important example that demonstrates how internal bonding and symme-

try influence the properties of materials is of the various forms of carbon. In the peri-

odic table of elements, carbon relates to subgroup 4; the electronic shell of carbon

atom has four valence electrons with configuration s2p2, allowing carbon to have

valences �4, +2, and +4.

The classification of carbon structures is shown in Fig. 1.37. The classic (3D) struc-

tures of carbon are diamond and graphite. The diamond is a 3D form of carbon; its
FIG. 1.36

Various forms of MgO structure: 4nm—nanoparticle; 5�100nm2—microcrystal;

100 � 100nm2—usual crystal.
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Classification of different forms of carbon.
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structure is formed from the electronic state of sp3-hybridization. In the diamond crys-

tal, each carbon atom is surrounded by four others that are in the tetrahedral sites; neigh-

boring atoms are combined together by a strong covalent bond that determines the

hardness of the diamond. The distance between the atoms in the diamond is 0.154nm.

In graphite, carbon atoms are connected with each other, thus forming the hex-
agonal netting, in which each atom has three neighbors. In such a quasi-2D (plane)

form of carbon, its structure originates from the state of sp2-hybridization
(Fig. 1.38B). The layers of plane nettings of graphite are accommodated one above

another. In covalent chemical bond formation, three electrons from each atom take

part in creating σ-bonding. The distance between atoms, arranged in hexagonal mesh

nodes of graphite, is 0.142 nm—less than in the diamond. Thus neighboring atoms

within each layer of graphite are linked by stronger covalent bonds.
FIG. 1.38

Carbon atom location in various structures: (A) diamond, (B) graphite, (C) carbine,

(D) fullerene C60, and (E) fullerene C70.
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However, these layers fit together by the weak van der Waals forces, in which

four electrons are involved. The hexagonal graphite netting is located at a distance

of 0.335 nm from each other, that is, the distance between atoms is more than twice

that in the layers. This bonding between layers is the π-bond. A large distance

between layers determines the weakness of forces that combine layers.

This structure—strong segments, poorly linked—constitutes specific properties of

graphite, particularly its flexibility that explains a slight sliding of layers relative

to each other, as well as the low hardness of graphite and large anisotropy of its

properties.

The carbine is a linear polymer of carbon that can be obtained in vitro in the form

of long chains of carbon atoms, parallel to each other (Fig. 1.38C). The string (linear)

structure of carbine is formed by the sp-hybridized carbon atoms. In the very long

molecule of carbine, carbon atoms are strongly linked in chains by the triple bond,
as well as by the double bonds between them. Carbyne can be obtained in forms of

fiber, powder, and films of different structure: disordered long chains, amorphous

and quasiamorphous material with microcrystalline inclusions, and bilayer-oriented

chains. Crystalline-type samples of carbyne have the shape of plate-form crystals, as

well as samples in the form of fiber up to 10 mm in length.

The graphene (Nobel Prize for the year 2010) is the plane polymer of carbon: the

layer of carbon atoms with a thickness of only one atom is connected by the sp2-
bonds in the 2D hexagonal crystal lattice. Graphene can be represented as a single

plane of graphite, separated from bulk crystal (see Fig. I.3 in Introduction). Graphene

is characterized by big mechanical stiffness and large thermal conductivity. The high

mobility of charge carriers in the graphene at room temperature makes it a promising

material for use in various electronic devices. In particular, graphene can be regarded

as an important material for nanoelectronics that allows, in some cases, to replace the

silicon in integrated circuits.

The fullerenes are molecular compounds belonging to one of the relatively new

forms of carbon. They are closed polyhedra composed of carbon atoms that are

located on a surface of convex polyhedron (Fig. 1.39D and E). The discovery of ful-

lerenes was also awarded the Nobel Prize. The most stable form of fullerenes is the

molecule C60—a polyhedron made of hexagon and pentagon faces.

The fullerites are condensed systems consisting of fullerene molecules. In addi-

tion, the topical compounds are the fullerides—fullerite crystals doped with alkali

metal atoms. Some fullerides exhibit high-temperature superconductivity, for exam-

ple, in the fulleride-superconductor RbCs2C60, the critical temperature is 33K.

The carbon nanotubes (Fig. 1.39) are lingering cylindrical structures with diam-

eter from one to several tens of nanometers and lengths up to several micrometers.

They consist of one or more sheets rolled into a tube hexagonal graphite planes (gra-

phene) and usually terminate in a hemispherical head. There are both metallic and

semiconducting carbon nanotubes.Metallic nanotubes well conduct electricity even
in near-absolute zero temperatures, whereas in the semiconductor type of nanotubes
at temperature close to absolute zero electrical conductivity is nearly zero but

increases with a rise in the temperature.



FIG. 1.39

Single-walled carbon nanotubes: (A) schematic representation and (B) fullerene-like closed

end of the nanotube.
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1.6 STRUCTURES OF COMPOSITES AND METAMATERIALS
The term “composite” is implied for multicomponent system in which several mate-

rials are combined, being different in composition or form, in order to obtain the spe-

cific property of the final material. In this case, individual components of a system

retain their individuality and properties to such an extent that they exhibit interphase

boundary, and operate the achieving the improved properties that are inaccessible to

each component separately. Thus, the properties of composite materials are largely

related to the geometric arrangement of components.

As an important example, the piezoelectric composite materials are considered.

These composites are used in underwater sonars, for medical ultrasound diagnostic,

in some electronic instruments, etc. In the simplest case, an ultrasound composite

receiver can be constructed of piezoelectric and polymer components (Fig. 1.40).
FIG. 1.40

Element of piezoreceiver consisting of piezoelectric rods in polymer.
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Cylindrical rods made of piezoelectric material occupy a relatively small volume of

composite, yet they provide practically the same signal in the receiver as would be

obtained from a solid piezoelement, because the rods are hard whereas the polymer is

very malleable; therefore the mechanical signal almost entirely acts on the rods. Thus

the electrical capacity of composite piezoreceiver is tens of times smaller, because

the permittivity of polymer is hundreds of times less than that of the piezoelectric

element.

Therefore piezoelectric composites are very promising materials because they

open the possibility of effective control over their electrical and mechanical param-

eters. The advantages of such composites are the high coefficient of cohesion, low

acoustic impedance (in good agreement with the impedance of water or human tis-

sue), mechanical flexibility combined with low mechanical quality factor. In addi-

tion to increased piezoelectric efficiency, some piezoelectric composites can show a

magnetoelectrical effect. These composites are composed of magnetostriction

ceramics and piezoelectric ceramic and are capable of producing an electrical

response (voltage or current) under the influence of an external magnetic field.

The classification of various composite structures is proposed by R. Newnham

[13]. Properties of composite can be divided into three major effects: the effect of

sum, the effect of combination, and the effect of product.

1. The effect of sum. Assume that one of many physical properties of composite and

its components are considered. Suppose that component 1 has a property

characterized by parameter Y1 while component 2 has parameter Y2. Then, the
composite will have some intermediate value of this parameter—a value between

Y1 and Y2. In case of a two-component system, the given property is described in

the composite with summary function Y*, shown in Fig. 1.41. In case of sum

effect, the obtained dependence of the summary parameter from volume fraction

of components may be characterized not only by linear dependence, but also

might have a concave or convex shape. Thus, and it is very important, that the

average value of Y* in composite will never be more than Y1 or less than Y2.
This example is commonly used in the microwave range composite material

with predetermined permittivity, set within ε*¼5…40. This composite can be
FIG. 1.41

Effect of sum in two-component composite.
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prepared from ceramic powder of rutile (ε1¼100) and polymeric polyethylene

(ε2¼2.5). The dielectric permittivity of such composites depends on the volume

fraction of ceramics, but it cannot exceed value ε1.
2. The effect of combination. It is assumed that components of the composite are

characterized by two different properties: Y and Z. In this case, sometimes, the

average value of obtained certain parameter in a composite may exceed the

parameters of both components of the composite. The effect of the increase in the

output parameter is determined by the ratio Y/Z that depends on both parameters.

For example, in some of piezoelectric composites basic properties of components

are combined: high piezoelectric modulus of piezoceramics and low permittivity

of polymeric matrix (as in Fig. 1.40). As a result, the piezoelectric sensitiveness

of composite (that is dependent on ratio of piezoelectric modulus to permittivity)

increases substantially. Therefore, this composite has a significant advantage

over the properties of components.

3. The effect of product. Besides, such a two-component composite is considered,

wherein one of components has a significant property Y, which is absent in the

second component. However, in the second component, a quite different property

Z is present, which does not have the first component. In this case, it is expected to

obtain, in the resulting composite, these brand-new features and this is the effect

of a product.

For example, based on this concept, themagnetoelectrical ceramic composite material

has been developed, consisting ofmagnetic components with significantmagnetostric-

tion effect (CoFe2O4 that is nonpiezoelectric), and the piezoelectric component

(BaTiO3, exhibiting no magnetic properties) [14]. Under the action of a magnetic field

on composite, cobalt ferrite shows magnetostriction, which is transmitted to the grains

of barium titanate as the stress and results in generation of electrical charges (of volt-

age) due to the piezoelectric effect of BaTiO3. Thus, due to the composite material, the

inexpensive ceramic sensors of magnetic field monitoring are elaborated.

Metamaterials are composites in which the heterogeneous medium contains

inclusions; however, in this case, unlike other types of composite materials, inclu-

sions are miniature, sometimes even nanoscale, radioelements. Due to these inclu-

sions, metamaterials have unique electrophysical and optical properties, caused by

the resonant interaction with electromagnetic field.

In metamaterials, a very interesting idea is realized: the possibility to obtain the

negative refractive index for microwaves or light. In these materials electromagnetic

wave, for example, light is not refracted as usual, that is, it deviates not to the right,

but to the left at the negative angle (Fig. 1.42A). Therefore these materials are often

referred to as materials with negative refraction (negative index materials—NIM) or

left-handed materials (LHM). V.G. Veselago, who theoretically predicted the exis-

tence of metamaterials, called them “left environments.”

In theusualmedium, directions ofvector of electric field intensityE, vector of inten-

sity of magnetic fieldH, and wave vector k form the right triplets, that is, they can be

describedbyright-handfingers (RHM). Incontrast, inametamaterial thesevectors form



FIG. 1.42

Effect of light refraction in conventional material and metamaterial: (A) direction of rays in

medium; (B) orientation of electromagnetic field vectors in ordinary (RHM) material and

metamaterial (LHM).
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the left-hand triplet (Fig. 1.42B). However, in left-hand material, LHM, the Poynting

vector S that shows direction of energy propagation remains in the right triplet.

It is well known that electromagnetic waves can propagate similarly as in vacuum

(ε¼1, μ¼1) in a dielectric medium with positive permittivity and permeability.

Parameters ε and μ are fully defined for each particular material due to one or other

atomic or molecular structure. In ordinary materials, these parameters are defined by

electrical polarization (displacement of electrical charges with electrical moment

formation) and by magnetization (orientation of elementary magnetic moments).

Properties of atoms or molecules follow fundamental laws of physics, and they

always lead to positive static values of permittivity ε and permeability μ (at that,

in most substances μ is close to one).

However, there are exceptions—in ranges of frequencies where the own resonant
phenomena are observed: this is possible as for polarization so for magnetization. In

the first case, when the phase of dielectric “response” (elastic displacement of

charges) lags behind the phase of applied field, the response is described by the neg-
ative value of ε. A similar process can occur in case of magnetization, causing neg-

ative value of μ. Thus, when resonant response occurs, these narrow frequency
ranges are characterized by negative ε or μ (i.e., however, it is accompanied by a

very large absorption of electromagnetic waves).

In case of ionic polarization in dielectrics, their lattice resonance occurs in the

frequency range of infrared waves (�1013 Hz), while for electronic shells

polarization—in range of ultraviolet waves (frequencies >1016 Hz): both these

ranges are quite far from the frequency range of metamaterials expected applications.

Thus, at first glance, there is no basis for hoping to obtain resonant phenomena in

continuous homogeneous medium as in microwaves so in visible optical range.2
2Note. However, it can be noted that in piezoelectrics, the electromechanical resonance is possible that

also leads to negative value of ε. Usually, this resonance occurs at frequencies of 105…107 Hz (depend-

ing on size of piezoelement); to realize this resonance at microwaves, the size of piezoresonators should

be only a few micrometers. It is obvious that microelectronic technology is responsible for actualizing

this case.
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For this reason, the metamaterial can be obtained exclusively from the noncon-

tinuous and inhomogeneous medium: metamaterials always are the composites [15].

Usually, metamaterials are constructed from the discrete resonant micro- and nanoe-

lements: “meta-atoms” that mimic electromagnetic reaction of atoms and molecules

of natural substances. Meta-atoms are grouped in the form of single or multilayered

lattice, and their small size (much less than wavelength of radiation) makes it pos-

sible to treat the created lattice as a homogeneousmedium for a given wavelength (by

analogy with natural crystals); using the concept of “effective medium” for charac-

teristics calculating.

Newmaterials can be used in the development of new types of radioelectronic and

photonic functional electronics: devices with negative refraction for controlling radi-

ation in gigahertz and visible ranges that allow obtaining of a clear image of elements

with dimensions much shorter than the wavelength without diffraction distortion;

systems for electromagnetic invisibility, Stealth technology, and much more.

The negative refractive index n (Fig. 1.42A) is due to a strong spatial disper-

sion in metamaterial and to negative values of permittivity and permeability:

n¼�√(εμ)<0. Because ε(ω)<0 and μ(ω)<0, these materials are sometimes

called “doubly negative.” (Correspondingly, in conventional materials permeabil-

ity and permittivity have positive sign; therefore ordinary media sometimes are

called “doubly positive.”) The phase velocity of waves in the metamaterials is

directed in the opposite direction relatively to group velocity; therefore these

materials are also called “backward-wave media.” Metamaterials, interacting with

optical frequency radiation, usually are called photonic or optical metamaterials.

The main way to obtain metamaterials is based on their “assembly” of huge num-

ber of miniature discrete modules, cells, or nanoparticles. These modules (cells and

nanoparticles) are sometimes called meta-atoms. It is clear that they are not real

atoms, but consist of them, that is, they are made of ordinary matter—mainly metals

and dielectrics. Dimensions of meta-atoms greatly exceed atomic dimensions. They

form a spatial structure (matrix), for example, an artificial crystal lattice, so that the

number of meta-atoms even in a small piece of metamaterial reaches 103–109

(Fig. 1.43).

It should be noted here that meta-atoms do not have any chemical bond with each

other, unlike atoms of ordinary materials. Therefore the difference in technologies of

conventional materials and metamaterials production is understandable. The former

are obtained by chemical synthesis from atoms of chemical elements, the latter are

obtained as an assemblage of artificial elements by methods of micro- and nanotech-

nologies. Moreover, it is important that, for incident radiation, the metamaterial imi-

tates a homogeneous medium; for this, the dimensions of meta-atoms and distances

between them should be selected to be less than the working wavelength of radiation;

the smaller the dimensions, the better the homogeneity condition.

Externally, meta-atoms are tiny formations of wires, strips, plates, rods, disks,

rings, spirals, balls, films, coatings, and multilayer structures. The millimeter-sized

high-ε dielectric resonators and micrometer-sized piezoelectric resonators can serve

as dielectric meta-atoms. Moreover, meta-atoms can be in the form of nanoclusters;



FIG. 1.43

Practically implemented metastructure for research in microwave frequencies.
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finally, they can be a system of holes in flat elements (e.g., they may resemble a fish

net). It is important that the configuration and properties of meta-atoms (capacitors,

inductances of oscillatory circuits, or miniature resonators) ensure that they perform

functions of simplest capacitors, inductances, oscillatory circuits, or miniature

(nano-) resonators.

Thin layers of metamaterials deposited on a substrate are called metafilms or

metacoverings. In the simplest case, the metafilm is a patterned single-layer film

made of metal, semiconductor, dielectric, or magnetic material that is deposited

on a dielectric or semiconductor substrate. The pattern is determined by the config-

uration of the abovementioned electroradio elements with unique properties due to

resonant interaction with an electromagnetic field.

Thus metamaterials are artificial periodic structures with lattice constants much

smaller than the wavelength of incident radiation. These are media consisting of res-

onance elements in which negative propagation of waves takes place. The dimen-

sions of meta-atoms are smaller than the wavelength of radiation interacting with

them. They have the ability to simulate homogeneous material, whose properties

are absent in natural materials.

It is important to note that metamaterials in the optical wavelength range have

already been created, and they opened the door to create a new photonic and

quantum-optical technology—optical nanoantennes, nanolasers, nonlinear elements,

and other devices for generating and controlling light-transmitted systems developed

to overcome the diffraction limit. Metamaterials are the basis for such areas of sci-

ence and technology as nanoplasmonics and nanophotonics. A new class of
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composite materials has become widespread, in which the scale level of individual

component sizes reaches the nanometer range.

A nanocomposite is defined as the multicomponent solid material in which one

of components in the 1, 2, or 3 dimensions has a size not exceeding 100 nanometers;

moreover, nanocomposites are understood as structures consisting of a set of repeat-

ing component layers (phases), the distance between which is measured in dozens of

nanometers [12].

For example, a method for creating anodes from silicon nanospheres and carbon

nanoparticles for lithium batteries has been invented. Anodes made from a silicon-

carbon nanocomposite are much more closely adhered to the lithium electrolyte,

thereby reducing the charging or discharging time of a device. From nanocompo-

sites, consisting of cellulose base and nanotubes, it is possible to produce conductive
paper. If such a paper is placed in the electrolyte, something like a flexible battery

will appear. Furthermore, in the electronics industry, nanocomposites are used to

produce thermoelectric materials that demonstrate a combination of high electrical

conductivity with low thermal conductivity.

Graphene occupies a special place in the development of nanocomposite materials.

Nanocomposites containing graphene and tin can significantly increase the capacity of

lithium-ion batteries and reduce their weight. Recently, it has been found that the addi-
tion of graphene to epoxy composites leads to an increase in rigidity and strength of

material compared to composites containingcarbonnanotubes.Graphene isbetter com-

bined with epoxy polymer, more effectively penetrating the structure of composite.

Nanocomposites based on polymeric matrices and nanotubes are able to change

their electrical conductivity due to the displacement of nanotubes relative to each other

under the influence of external factors. This property can be used to create microscopic

sensors that determine the intensity of mechanical action over extremely short periods

of time. Moreover, nanotechnology can be used to produce photonic crystals.

Photonic crystals are nanostructured materials in which the periodic change in

the refractive index at wavelength scales of visible light creates so-called forbidden

bands for photons. These bands influence the propagation of photons of visible light

in a material (this effect is similar to how periodic potential in semiconductors affects

the determination of the electron flux allowed and the forbidden energy bands). The

structure of a photonic crystal can be characterized by a periodic change in the refrac-

tive index in 1, 2, or 3 spatial directions. Photonic crystals can be used in the light

sources on single crystal, because the pattern of their radiation as well as the direction

of beam propagation can be easily controlled.
1.7 SUMMARY
1. Solids are primarily crystals and polycrystals, as well as ceramics, glasses,

glass-ceramics, quasicrystals, amorphous substances, composites, and

nanocrystalline structures.
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2. Crystals are characterized by a near-perfect well-ordered internal structure.

Therefore crystals can be described by 3D spatial periodic structure. A peculiar

property of crystals is their translational regulation—elementary cell that

consists of a few atoms can be translated supposedly “infinitely” in all

directions, creating a regular crystal lattice.

3. Polycrystals consist ofa largenumberof small crystals (crystallites).Macroscopic

structure of polycrystals, outwardly, seems disordered, but microscopic

components of this structure (crystallites units) are small crystals with perfect

microscopic structure and similar properties as a large single crystal.

4. The glass-like and amorphous states of solids are characterized by the absence

of long-distant (translational) symmetry. However, these materials are

characterized by the order in the immediate surroundings adjacent to

each atom.

5. In 2D systems, the strictly ordered structure is possible only in a plane. In such

a system, if the planar regularity is repeated, the nanodimensional

superstructure (artificially created in semiconductor) can have peculiar

electronic properties, characterized by the so-called quantum wells (this case

relates to 2D nanostructures).

6. The 1D nanostructures might be linear (wire-like) systems, wherein translated

ordering is observed along a single direction.

7. There are, furthermore, systems wherein the dimensions along all three

directions are commensurate with the distance between atoms. Such zero-

dimensional (0D) systems can be “quantum dots,” wherein only 10–103 atoms

have an ordered structure.

8. The creation of ordered crystalline (and other) bodies of atoms is

accompanied by a decrease in energy. This corresponds to the certain

minimum of a system’s energy when atoms become ordered relative to each

other, with significant redistribution in electronic density.

9. According to the electronic theory of valence, the interatomic bond occurs

due to the redistribution of valence electronic orbitals, and that results in

the stable electronic configuration of noble gas (octet) through the formation

of ions as well as by the formation of electron pairs between atoms.

10. Any connections of atoms, molecules, or ions are carried out through

electrical interaction. At relatively large distances between particles, the

electrical forces of attraction dominate whereas, at small distances, the

repulsion between particles dramatically increases. The balance between long-

range attraction and short-range repulsion determines the basic properties of a

certain solid. The bond that occurs between atoms (as a result of spatial

restructuring of their valence electrons) and which is caused by these electron

interactions is the chemical bond.
11. At the heart of the classification of solids into metals, dielectrics, and

semiconductors is the spatial distribution of valence electrons. In molecular

crystals, for instance, electrons are completely locked within their

molecules. When crystals are formed from atoms of metal, the orbits of
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valence electrons strongly overlap each other. As a result, valence electrons

become distributed within the spaces between atoms and can be described by a

general wave function. It is believed that, in metals, an electronic gas
is formed.

12. The ionic crystals are chemical compounds that are formed by metallic and

nonmetallic elements. The forces of ion attraction are mostly long range:

the energy of attraction rather slowly varies with distance. Like molecular

crystals, ionic crystals are characterized by such a distribution of electronic

charges wherein they are almost completely localized near the ions.

13. The covalent crystals have, in principle, a similar nature of connection as the

metals-valence electrons become shared between atoms. The forces of

attraction in case of covalent bonds are not so long range as in the case of

ionic bonding. The covalent bond (otherwise called a homeopolar bond) is
formed by the overlapping (socialization) of pairs of valence electrons.

This link is provided with electronic clouds that are called a mutual electron
pair. At covalent chemical bond formation, the reduction of total energy

occurs due to an exchange interaction that plays an important role in this

process.

14. The van der Waals bonds are always present in atomic connections, but they

dominate only in the absence of valence bonds; in such cases, these bonds

become a principal type of chemical bonding (usually, in molecular crystals).
The van der Waals forces of attraction are relatively short range and weak as

compared with conventional valence forces. In nonpolar molecules, the forces

of attraction arise by mutual deformation of electronic shells. Because this

mechanism is investigated through optical polarization dispersion, the forces

of attraction of this type are dispersive ones. In polar molecules, the orientation
interaction contributes to the energy of bonding. Moreover, there exists an

induction interaction between the permanent dipole of one molecule and the

induced dipole of another molecule.

15. The hydrogen bonds are realized when two hydrogen atoms in one molecule

interact or when a hydrogen atom in one molecule interacts with an

electronegative atom such as P, O, N, Cl, or S of another molecule. The cause

of the hydrogen bond is the redistribution of electronic density between atoms,

induced by the small size of the hydrogen ion (H+; proton).

16. The defects in crystals are formed during their growth (under the influence of

thermal, mechanical, and electrical fields), as well as during crystal irradiation

by neutrons, electrons, X-rays, and ultraviolet radiation (radiation defects).

There are point defects (zero-dimensional), linear (1D) defects, plane defects
(2D), and bulk (3D) defects.

17. Parts of atoms or ions of a crystal may be missing locally, thereby violating an

ideal crystal lattice scheme: these defective places are the vacancies.
Furthermore, foreign (impurity) atoms or ions can exist in crystals, replacing

basic particles that form a crystal or take root between them. Their own atoms

(or ions) can serve as point defects in crystals, if they shift from normal

positions (interstitial atoms or ions).
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18. In the process of crystal growth or during its plastic deformation and in

many other cases, dislocations can appear. Moreover, dislocations can arise

in a crystal during its doping. The distribution and behavior of dislocations

under external influences determine many important mechanical properties

of a crystal, including strength, ductility, and so on. The mobility of dislocation

determines the plasticity of crystals; at the location of the greatest internal

stress, clusters of dislocation can occur that can cause the destruction of the

crystal. The problem of plastic flow (i.e., irreversible deformation) in metallic

crystals is solved by the association and movement of dislocations. These

dislocations impede the process of magnetization and electrical polarization

due to their interaction with domain boundaries.

19. Elastic deformations of crystal structure arise in the vicinity of defects that

lead, in turn, to the appearance of internal mechanical stresses. For

example, point defects interact with dislocations that result in the increase

or decrease of crystal strength. Defects in crystals affect the absorption

spectra of luminescence, light scattering in a crystal and can change electrical

conductivity, thermal conductivity, ferroelectric and ferromagnetic

properties, etc.

20. The vacancies in crystal lattice usually are Schottky defects. The formation of

vacancies can be explained by some atoms moving outside from the crystal

surface and they being replaced by other atoms from a volume. For most

crystals, the energy of vacancy formation is approximately 1eV. Lattice

defects that usually are called the Frenkel defects arise by mechanisms that

generate interstitial atoms or ions in a crystal.

21. The polarons are charge carriers bound in the lattice of an ionic crystal

(most often, they are bound electrons). The polaron is not a “static” defect

because it is much more mobile than vacancies or interstitial ions. The excitons
can be interpreted as the mobile point defects in a crystal. In the case of

excitons, atoms or ions of crystal do not change their location, but they become

significantly different from their neighbors by excited electronic states.

The movement of an exciton in a crystal is not connected with the change

of atom or ion positions, and therefore excitons (as polarons) have much

greater mobility than replacements of vacancies, interstitial atoms, and

impurities.

22. The dislocations are crystallographic defects or irregularities within crystal

structure. The presence of dislocations strongly influences many properties of

materials. The edge dislocation is a land of “excessive” atomic planes that

splits the crystal. It corresponds to the row of ordinary atoms along the edge of

an additional part-plane of atoms within the crystal. In other words, edge

dislocation is such a defect wherein an extra half-plane of atoms can move

through the crystal, distorting the nearby planes of atoms. The screw
dislocation is a result of changes of one area of crystal with regard to another.

It corresponds to the spiral axis of structural distortion, connected to

normal parallel planes. It comprises the structure wherein a helical path is

traced around a linear defect (dislocation line).
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23. The solid solutions are widely used in electronic components technology.

The presence of two components is possible in crystals or polycrystals (in

metals, these are alloys). The solid-state solution is a mixture that remains

in a single homogeneous phase. The interstitial type of solid solutions is a

result of the fact that atoms of the element, which dissolves, are placed in

empty spaces of the solvent lattice. The substitutional solid solutions are

formed by a partial substitution of solvent atoms. This process can occur

without incurring significant stresses in structure only when the size of

atoms does not differ greatly among themselves.

24. A structure is polytypic when it is composed of similar structural elements

but with a different sequence of their location. Polytypic lattice parameters in

a plane layer are unchanged but, in the direction perpendicular to layers, lattice
parameters are different, although they are always multiples of the distance

between adjacent layers. Polytypism is a special case of polymorphism: 2D

translations within layers are essentially preserved.

25. Isomorphism and polymorphism. The property of chemically closed atoms,

ions, or other structural elements to replace each other in the crystal lattice

and form continuously variable composition is isomorphism. The ability of

certain substances to exist in multiple crystalline phases, differing in symmetry

of structure and in physical properties, is polymorphism. The change in

environmental conditions may cause polymorphous transformation. During

these transformations (that usually are phase transitions of first order), heat
absorption and internal energy jumps are observed as well as changes in other

physical properties of matter. Furthermore, there are such polymorphic

modifications that differ by very little changes in physical properties.

Polymorphic transitions between states are phase transitions of second order
and usually are described as “order-disorder” type of transitions.

26. The symmetry of crystal structures determines their physical properties.

Therefore many properties of solids may be described by the peculiarities of

crystal symmetry. The relationship between the geometry of external shape

and internal building of crystals, aswell as their physical properties, are specified

by physical crystallography. The physics of crystals formulates some

principles that establish a connection between the symmetry of a crystal and

physical phenomena; central to these are Neumann principle and Curie

principle.

27. The mechanism of how the physical properties of crystals are conditioned with

their symmetry was formulated by Neumann: the symmetry of physical
properties of a crystal is not lower than the symmetry of its structure.Thismeans

that the structure of a crystal contains all elements of the symmetry of its

properties (but also may have other symmetry elements). Therefore,

information about crystal symmetry enables prediction of the possible

physical effects in a crystal.

28. In accordance with the Curie principle the crystal, being under external

influence, has only those symmetry elements that are common to the crystal in
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the absence of influence and impact (in case of lack of crystal)—that is, in the

system “crystal-influence,” only common elements of symmetry remain.
29. As the element of symmetry, an imaginary object can be used that supports

the realization of the operation of symmetry. To such elements of symmetry

belong the planes, axis, and center of symmetry (center of the inversion).

The combination of a point (or part of figure) with another point (or part of

figure) is called an operation of symmetry. Both parts of figures that are

combined are symmetric. Operations of point symmetry are left in its place, at

least, on one point of the final figure. This is the point of intersection of all

elements of symmetry.

30. Rotation andmirror rotation as well as inverted rotations and reflections in the
plane of symmetry are selected as symmetric operations. There are elements of

symmetry of the first and second kinds. The former include the symmetry

plane, rotary axis, and center of inversion (symmetry); the second include

some complex elements of symmetry: inversions and mirror-rotary axes. To

analyze symmetry, screw rotations and/or glide reflections are also used.

These are rotations or reflections, together with partial translation. The

Bravais lattices may be considered the outcome of translational symmetry

operations. Combinations of operations with additional symmetry operations

produce 230 crystallographic space groups.
31. The plane of symmetry is a plane of mirror reflection; this is an operation of a

similar point combination. To refer to a specific class of symmetry elements,

the plane of symmetry can be denoted by P. In the international system, a

mirrored plane is denoted by the letter m, it bisects all segments that connect

symmetric points that are perpendicular to it (part of the figure).

32. Rotational symmetry is symmetry with respect to some or all rotations in the

Euclidean space. The rotary axis of symmetry of the nth order is denoted as Ln,
that rotates around a certain angle α ¼ 360°/n. Moreover, the rotary axes are

marked by symbols 1, 2, 3, 4, 5, 6, 7,…,∞, where the numbers indicate the order

of axis. The n-fold rotational symmetry operation rotates the object by 360°/n.
Only n¼1, 2, 3, 4, and 6 are permitted in the periodic lattice. The inversion axis

is a combination of rotation and the center of symmetry operations.

33. The center of symmetry (inversion center, denoted as C) is a special point
inside a figure or unit cell; it is characterized by the fact that any line drawn

through the center of symmetry falls into the same point of figures on both

sides of the center at equal distances.

34. The class of symmetry is a set of symmetry elements of the crystal (or any

object) that describes its possible symmetric transformations. A unit cell can

be selected in any crystal and, on its basis, all crystal lattices can be built

using translations. These translations are the displacement of a unit cell

within a crystal. The full set of symmetry elements of any material is known

as the group of symmetry.
35. Crystals and textures that have a center of symmetry cannot show piezoelectric

properties. In the absence of external influences, only noncentrosymmetric
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structures are capable of being piezoelectrics. Among them, only the crystal

with a polar axis might be pyroelectric.

36. The quasicrystals exhibit a special, new type of symmetry, different from the

usual crystals. They have symmetry elements that previously were considered

impossible in crystals: classic crystallography does not allow symmetry axes

of fifth, seventh, and higher orders. With these axes, the elementary cell cannot

ensure complete filling even on the plane (and, moreover, in volume).

However, quasicrystals exist, and they can have axes of symmetry of fifth,

eighth, or higher orders.

37. Nanomaterials, as a rule, are small particles (clusters) of materials consisting

of 10–1000 atoms. Their properties depend on the number of atoms in the

cluster and on the relative position of atoms, as well as on the shape and

symmetry of clusters.

38. The composites consist of different materials united in a single whole, and have

important applications in electronic devices. They are used in various active and

passive components (e.g., piezoelectric with polymer). The physical and

technical properties of composites that ensure their applications, with

advantages over crystals, ceramics, and polymericmaterials, can be described by

three effects: the sum effect, the combinative effect, and the effect of the product.

39. Electromagneticmetamaterials are artificially structured in a special way to be
mediums that have electrical and magnetic properties, which are significantly

different from the original structural materials. For example, a metamaterial

can have a negative refractive index, which is never observed in natural

materials. The internal structure of metamaterials plays an important role in the

formation of their characteristics and parameters.

40. Nanocomposites are solid formations consisting of a basic matrix and

nanosized components that differ in their structural parameters and chemical

properties. Mechanical, electrical, thermal, optical, and other characteristics of

nanocomposites differ significantly from the properties of ordinary composite

materials made of the same basic substances or elements.
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Mechanical properties, which reflect the internal bonds between the molecules and

atoms of a material, are basically elasticity, durability, stiffness, and toughness.
Because electronic components are sometimes exposed to mechanical impacts dur-

ing operation, the mechanical strength of materials and, especially, their elasticity

(ability to reversibly deform under stress) have considerable practical interest. Infor-

mation about the mechanical properties of solids is needed for the development of

electronic solid-state devices, thus necessitating the study of many characteristics

of solids, including an understanding of the nature of chemical bonding.

Knowledge of mechanical properties is necessary when using solid components

as structural materials. For example, durability characterizes the counteraction to a

mechanical load that causes destruction of a solid. However, long before this destruc-

tion, the solid body exhibits elasticity—the ability to completely recover its shape

after the removal of the applied external impact. Besides, if the externally acting

force is large enough, plasticity is commonly observed before destruction, wherein

the change in the form of solid is not instantaneous; it is in the final stage of plastic

deformation at which failure occurs.

Taking into account the wide application of microelectromechanical systems

(MEMS) in modern electronics, many mechanical properties—such as mechanical

fatigue and resistance to radiation—should be considered important characteristics

of construction materials. It is necessary to note that, in various solids (glasses,

ceramics, plastics, etc.), resistance to compressive strength is much greater than that

to tension and bending strengths. Furthermore, many materials might have a rela-

tively high resistance to static loads; however, they can be quickly destroyed under

dynamic loads, that is, under the action of a suddenly applied force, they are fragile.
In this book, only those mechanical properties will be considered that are of high

importance for electromechanical and magnetomechanical effects. These are, specif-

ically, elasticity and elastic wave propagation in different structures, and they define
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the practical use of crystals in piezoelectronics, acoustoelectronics, magnetoelectro-

nics, acousto-optics, etc.

When describing the elastic properties of solids, the discrete structure of a mate-

rial may be ignored; therefore a crystal can be considered a continuous homogeneous
medium—continuum approximation [1]. This approach is justified up to frequencies

of 1012Hz, which is much greater than the operational frequencies of conventional

electronic devices (up to 1011Hz).

The forced deformation of a solid alters the mutual arrangement of its atoms,

with the resultant emergence of an effort within the material to try to restore the body

to its initial condition. The forces deforming the body are called internal, and the

value of such force per unit area is the stress. If stress (and its corresponding relative
deformation—strain), occurring under the action of external forces, quickly reaches
zero after the removal of the action, then this is a case of the so-called perfectly elas-

tic body [2]. In such cases, Hooke’s law holds valid: the relative deformation is

proportional to mechanical stress, and the behavior of the body during deformation

does not depend on the rate of strain. To apply Hooke’s law in anisotropic solids, it is

necessary to introduce the concepts of stress and strain tensors.
2.1 MECHANICAL STRESS TENSOR
The next model considers the elastic behavior of solids on the assumption that stress

is homogeneous and all parts of a body are in a state of static equilibrium. The theory
of elasticity studies phenomena occurring in a deformable body when a mechanical

stress is applied, where interatomic forces are considered as short-range phenomena.

In this case, forces acting on one part of a body are directly transferred to the other

parts of the body.

Further, a very simplified model is considered: the applied force is proportional to

the flattening of a solid, and the force per unit surface area is stress. It is uniform if the

force is independent of the location of any selected cell in a body. If this specified

condition is not satisfied, stress might be inhomogeneous. Moreover, because a crys-

tal may be anisotropic, mechanical stress may also depend on the chosen direction of

force application.

The concept of stress tensor for structures of various dimensions is illustrated in

Fig. 2.1. Initially, the one-dimensional (1D) structure is considered, followed

sequentially by the two-dimensional (2D) and three-dimensional (3D) structures

[1]. Fig. 2.1A shows a uniformly elongated elastic rod (1D crystal) that is loaded

by forces. Mechanical stress is not a vector, and, therefore, it cannot be indicated

by a single arrow but instead by a pair of arrows—similar in magnitude and opposite

in directions. An external power may stimulate the stretching of a rod (X>0) and

therefore its compression (X<0). Therefore, mechanical stress, unlike a force vector,

does not lead to any movement of the body, making the stressed rod remain in its

fixed position. Thus, the unit of measurement of 1D stress is associated with unit

of force: [X]¼ [N/m2].



FIG. 2.1

Homogeneous mechanical stresses in solids: (A) one-dimensional model, (B) two-

dimensional model, and (C) three-dimensional model.

732.1 Mechanical stress tensor
The 1D model is not only an idealization adopted for ease of understanding. In

some microelectronic devices, the metal, dielectric, or semiconductor materials are

applied as “quasi-1D” (extensive) small crystals or polycrystals. For example, in the

technology of piezoelectric composites, a set of oriented rigid piezoelectric rods

placed in a pliable polymer is used (see Fig. 1.40 in Chapter 1). Another example

is a set of nanorods (usually, ZnO) located on the substrate (a very promisingmaterial

in nanoelectronics. Thus, a “quasi-1D” representation of stresses, as shown in

Fig. 2.1A, has both theoretical and practical importance.

In the 2D case, the manner of stress application to a flat surface might be different

(Fig. 2.1B). A compressive or stretching stress can be presented as independently—

along two perpendicular axes, 1 and 2. In the case of an arbitrary direction of the

compressive/stretching stress, it should be decomposed into components along

two mutually perpendicular axes. In addition to the said stresses, a special type of

shear stress is possible: twin stresses X12 and X21. In this case of a condition of equi-

librium, that is, assuming no movement or rotation of a “quasi-2D” crystal, we have

X12¼X21.

The unit of stress in the planar model discussed herein remains the same: [X]¼
[N/m2]. Consideration of 2D crystal structure (similarly as in the 1D structure) is

important not only for theory but also in practice, as consistent with real

elements—the films (semiconductor, ferroelectric, piezoelectric, pyroelectric,

etc.). As an example, a very important 2D crystal semiconductor (graphene) is shown

in Introduction, Fig. I.3. Dielectric (piezoelectric) films are used, for example, to

excite high-frequency hypersonic waves in a crystal surface, and they are also

applied in many technical devices, based on surface acoustic waves (SAW).

For example, by thermal deposition of piezoelectric structures on a substrate

(e.g., BaTiO3 on silicon) at high temperatures, a piezoelectric film can be obtained.

During cooling from the temperature of synthesis (�1000K) to working temperature

(�300K), the film becomes mechanically stressed; therefore the thermal expansion
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coefficients of the substrate and piezoelectric film differ. These conditions must be

taken into account during the application of piezoelectric films (in acoustoelectro-

nics or in MEMS).

In most practical tasks, there is application of 3D crystals and textures. Mechan-

ical stress, in this case, is determined by the force acting on the surface and has the

dimension [X]¼ [N/m2]¼ [Pa]. Theoretical analysis suggests that stress is uniform
(and remains the same throughout in the crystal). Components of this stress (forces

acting on the opposite face of a cube) compensate each other. The normal compo-

nents of stress are indicated by the same indices: X11, X22, and X33; they act perpen-

dicular to the corresponding surface. Obviously, on opposite faces, there would be

the same “arrows”—representing stress components (data not shown in Fig. 2.1C).

For example, if stress component X33 tends to stretch the cube along axis 3, then, on
the opposite face of the cube, the same magnitude stress component �jX33 j acts by
being directed opposite to X33 and, thus, balances it.

Besides stresses directed normally to faces, there might also be shear stresses
directed tangentially to the faces of the considered cube. These include components

X13 and X23 on the upper face of the cube (Fig. 2.1C), components X31 and X21 on the

front face, as well as X12 and X32 on the right side of the cube. These stresses are

counterbalanced and do not induce any rotation of the sample.

Enumerated components form the stress tensor of second-rank Xij, which initially

appears similar to tensors of permittivity, conductivity, and permeability. However,

the mechanical stress tensor, by its physical nature, is quite different from the

second-rank tensors εij, σij, or μij, which have a structure consistent with the internal
symmetry of a crystal. Tensors of permittivity, conductivity, and permeability are the

material tensors, whereas the stress tensor is the field tensor, characterizing the struc-
ture of forces applied to the crystal from outside.

Because shear stress components (Xij¼Xji) do not create rotary mechanical

movements, the full stress tensor can be represented by symmetric matrix:

Xij ¼
X11 X12 X13

X21 X22 X23

X31 X32 X33

2
4

3
5:

Similar to material tensors, the stress tensor can be characterized by the surface of

second order:

X11 � x2 +X22 � y2 +X33 � z2 ¼ 1,

where X11, X22, and X33 are the main components of the matrix, reduced into diagonal

form. However, depending on the sign of Xij, such a characterizing surface may not

only be an ellipsoid but could also be assumed as an imaginary hyperboloid, whereas
the characteristic surfaces of the material tensors εij or σij are always ellipsoids [3].

When all components of tensor Xij are given with regard to the principal axes,

some important cases can be analyzed (Fig. 2.2):

(a) The line-stressed state (uniaxial stress): a proper matrix is shown in Fig. 2.2A;

the example is of a uniform tensile rod.



FIG. 2.2

Matrix example for stress tensor with geometric explanation of components.

752.2 Mechanical strain tensor
(b) The flat-stressed state (biaxial stress): an example and corresponding matrix are

shown in Fig. 2.2B.

(c) The volume-stressed state (three-axial stress): an appropriate matrix Xij and

example are shown in Fig. 2.2C.

(d) The hydrostatic pressure, at which X11¼X22¼X33¼�p (pressure). The

corresponding matrix is similar to that in Fig. 2.2C, but the Xjj directions in case

of a hydrostatic effect are opposite to that shown in the figure, and all

components have the same value.

(e) The pure shear stresses (Fig. 2.2D): the shear axis is perpendicular to the plane

of a figure.
2.2 MECHANICAL STRAIN TENSOR
Under the influence of mechanical stress, a solid body becomes mechanically

deformed. Moreover, the consideration of different strains starts with the 1D model
(Fig. 2.3A) [1]. On an elastic rod OB, the origin O is selected with a big segment OA,



FIG. 2.3

Homogeneous mechanical deformation in a solid: one-dimensional, two-dimensional, and

three-dimensional models.
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with length a, as well as a small segment AB, with length Δa. When this rod is

exposed to positive mechanical stress, it becomes uniformly stretched (Fig. 2.3A).

Segment OA acquires length (a+u) whereas the small segmentΔa gets an increment

Δu. Then, the relative deformation x (i.e., strain) at any point of the rod is defined as

x¼ lim
Δa!0

Δu
Δa

� �
¼ du

da
:

Thus, the physical value of strain is dimensionless. In the 1Dmodel, linear strain can
be indicated as stretching (x>0) or compression (x<0). Under the influence of a

large force on a solid, prior to its mechanical destruction, elastic (reversible) strain

in the solid can reach x¼10�2
…10�4. For example, in some dielectrics, when a large

external electrical field is applied (increasing up to its breakdown), the relative defor-

mation can reach values of x�10�3
… 10�4.

In Fig. 2.3B, the 2D model is considered. For example, this model can be applied

when various films are studied (as films are important components in microelectron-

ics). As in the linear model, it is assumed that the deformation of the film is uniform
over its entire area. This means that, after deformation, the straight lines remain

straight (not bent), and the parallel lines remain parallel (not sparked): the lines might

be only lengthened (or shortened) to the same extent.

From a planar model consideration, it can be seen that, in addition to linear strain

(e.g., x1 and x2), angular deformation is possible with shear strains x12 and x21. It can
be shown that all components of strain constitute the second-rank tensor xij where i,
j¼1, 2. In the 2D case, the corresponding matrix
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xij ¼ x11 x12
x21 x22

����
����

is symmetric with respect to the main diagonal: x12¼x21. The symmetric components

of the matrix define shear strain, whereas the diagonal components x11 and x22 rep-
resent the deformation of the compressive/stretching type.

In general, 3D deformation is the most important for many volumetric effects in

solids [1]. This case is shown in the lower panel of Fig. 2.3. Tensor xij as well as the
previously discussed mechanical stress tensor is symmetric, similar to the main diag-

onal. Diagonal components of this tensor xij (i¼ j) describe the compressive/stretch-

ing type of linear strains, whereas off-diagonal terms characterize different shear

strains.

Similar to the stress tensor, the symmetric tensor xij can be described by the sur-

face of a second-order equation:

x11 � x2 + x22 � y2 + x33 � z2 ¼ 1,

which, in case of positive factors of xii, represents an ellipsoid.

After being reduced to the diagonal matrix (when edges of corresponding ele-

mentary cube are parallel to the three principal axes of the crystal), the components

of strain xij are shown in Fig. 2.3, in the bottom panel. The main axes are three mutu-

ally perpendicular directions of the crystal.

Under a scalar (nondirectional) external influence, for example, when the tem-

perature changes the response (thermal deformation), the internal symmetry of a

given crystal (or texture) is reflected by the second-rank material tensor of thermal
expansion, αij. The discriminatory surface (indicatrix) for tensor αij is a second-rank
surface of the general type (not only ellipsoid), because components of the thermal

expansion tensor might be both positive and negative [3].

The thermal expansion tensor expresses a “connection” between scalar influence
(temperature) and the second-rank tensor response (strain). For comparison, charac-

teristic surfaces of permittivity or conductivity (as well as second-rank material ten-

sors) are always described by ellipsoids, because diagonal components of these

tensors are always positive. The point is that such material tensors (εij or σmn) define
the relationship between two vectors: one vector is the “influence” whereas the other
is the “response” (e.g., Di�εj�Ej).

Thus, the elastic deformation of a crystal is its reaction to an external action, and

it varies on the basis of scalar action (temperature δT), vectorial influence (electrical
field Ei), or tensor type of impact (Xij). In all of these cases, the response tensors

reflect the intrinsic property of a crystal.
As in the case of mechanical stresses (Fig. 2.2), some special cases can be picked

out for strains: linear, planar, and volumetric strains (similar to that in Fig. 2.2C). It is

necessary to note that “pure shear” strain (similar to that in Fig. 2.2D), in contrast to

these previously explained simple types of strains (linear and planar), does not
change the volume of a crystal.
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Earlier, only elastic deformation was considered, where a linear relationship

exists between relative deformation x and mechanical stress X. However, this line-
arity is maintained only up to a certain value of Xmax, which is the limit of propor-
tionality. With further increase of stress, linearity is violated because of the

appearance of inelastic deformation that could mean the beginning of a new state

of matter.

Irreversible deformation is a phenomenon wherein deformation becomes plastic.
In this case, after the removal of the external force, the body does not fully recover to

its previous form: a residual deformation persists. In case of plastic deformation,

Hooke’s law cannot be applied. An explanation of plastic deformation is possible

by linking it with the sliding or displacement of parts of the crystal lattice in certain

planes. Here, the geometrical coordination of atoms usually remains unchanged,

because displacement takes place in the whole number of interatomic distances. It

was experimentally shown that, in single crystals, consisting of only one element

in the unit cell (ions in metal), the sliding easily occurs along the direction of greatest
linear density on planes with the largest interplanar distance.

The earlier discussion of the case of a perfectly elastic body is very simplified.

In real solids, mechanical stress may neither exist indefinitely for a long time nor

fall instantly (with the removal of the external force). When deformed, the struc-

ture of a body continuously varies in a complex way at a particular rate, deter-

mined by the nature of the substance. Therefore, all real solids with arbitrary

deformations can be characterized by flexible properties. In practice, a body is

considered elastic if the external stress does not exceed a certain limit, that is,

when the strain is small (usually, x<1%). Only under this condition, and with

sufficient accuracy, is it possible for the linear relationship between strain and

stress to be valid.
2.3 ELASTIC STIFFNESS AND ELASTIC COMPLIANCE
An externally applied mechanical stress X can elastically and reversibly alter the

shape of a crystal—this is strain x. When the value of strain is small, the following

linear relationship holds true:

x¼ sX,

where s is the elastic compliance. This relationship is exemplified in Hooke’s law:

deformation x increases (or decreases) in a direct proportion to the applied mechan-

ical stress X. Hooke’s law can also be written as

X¼ cx,

where c is the elastic stiffness, also known as Young’s modulus.

Because strain is dimensionless and the unit of stress is [N/m2], the same unit is

retained for elastic stiffness: [c]¼ [N/m2]¼ [Pa] (Pascal). Elastic compliance is

defined as [s]¼ [Pa�1]. To measure c and X, sometimes, other (non-SI) units are
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used: 1kbar¼108Pa and 1 dyne/cm2¼0.1Pa. As “Pascal” is a very small unit,

multiples of the unit gigapascals (GPa) are usually used, where GPa is equal to

109Pa.

As xij and Xij are second-rank tensors, it can be expected that, in the anisotropic

crystals (or textures), each of the nine components of deformations x is induced by

the nine stress components of X:

xij ¼ sijklXkl:

This record, given in the tensor representation, factors in nine equations wherein the

right side has nine components. The first of these equations is

x11 ¼ s1111X11 + s1112X12 + s1113X13 + s1121X21 + s1122X22

+ s1123X23 + s1131X31 + s1132X32 + s1133X33:

Obviously, as with elastic compliance, elastic stiffness is a tensor of the fourth rank,
which, in principle, has 34¼81 components. In reality, however, the number of inde-
pendent components of these tensors is much less, because both stress and strain are

symmetric tensors; therefore they contain, even in the most general case, not nine but

six components. Accordingly, tensors sijkl and cijkl are symmetric tensors toward the

first two and last two indices:

sijkl ¼ sklij ¼ sijlk ¼ sjilk:

Consequently, these tensors contain no more than 36 components. In turn, such a

tensor with 6 � 6¼36 components is also symmetric toward the diagonal of the cor-

responding matrix. Therefore even the crystal that falls under the lowest category of

symmetry can be described by no more than 21 independent components of the elas-
tic compliance (or elastic stiffness) tensor.

To reduce the number of indices, it is acceptable to present elasticity equations

not by tensor sijkl (where i, j, k, l¼1, 2, 3) but, instead, by matrix smn, wherein m,
n¼1, 2, … , 6. The method to go from one type of recording to another is shown

in Table 2.1A, whereas components of the elastic stiffness matrix are given in

Table 2.1B.

By knowing all components of a tensor, for example, elastic stiffness tensor, it is

possible to calculate all components of an inverse tensor (in this case, the elastic

compliance tensor):

smn ¼ �1ð Þm+ nΔcmn
cmnj j ,

where jcmn j is the determinant and Δcmn is the minor of the matrix without m-row
and n-column.

In case of practical calculations, for example, where the piezoelectric or magne-

tostriction effect influences investigations and applications, other elastic parameters

of the crystal or texture, except elastic compliance and stiffness, are important. These

parameters are listed in the following paragraphs and can be calculated using the

known cmn or smn.



Table 2.1A Matrix of Elastic Compliances

Tensor indices i,j or
k,l 11 22 33

23 and
32

31 and
13

12 and
21

Matrix indices m or n 1 2 3 4 5 6

Notes: sijkl¼smn (m or n¼1, 2, 3); 2sijkl¼smn (m or n¼4, 5, 6); 4sijkl¼smn (m, n¼4, 5, 6).

Table 2.1B Matrix Components of Elastic Stiffness

x1 x2 x3 x4 x5 x6

X1 c11 c12 c13 c14 c15 c16

X2 c21 c22 c23 c24 c25 c26

X3 c31 c32 c33 c34 c35 c36

X4 c41 c42 c43 c44 c45 c46

X5 c51 c52 c53 c54 c55 c56

X6 c61 c62 c63 c64 c65 c66
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The density of elastic energy of the strained (or stressed) crystal can be deter-

mined from the expression for elementary mechanical work carried out by force

X to create deformation dx: dW¼Xdx. Depending on the given task and using

Hooke’s law in two forms, x¼ sX or X¼cx, it is possible to obtain the following

expression for elastic energy:

Welast ¼ 1

2
cx2 ¼ 1

2
sX2:

The compressibility hsi is an important parameter of solids, for example, when pie-

zoelectric or ferromagnetic structures are used as emitters and receivers of elastic

waves. Moreover, compressibility is an important characteristic of the substance that

allows us to judge the dependence of physical properties on interatomic (intermole-

cular) distances. The greatest compressibility is observed for crystals with long and

weak interatomic bonding [2].

Compressibility characterizes the dependence of relative change in volumeΔV of

the crystal under hydrostatic pressure p: ΔV¼�ps. Parameter hsi is formed as an

invariant of the elastic compliance tensor:

sh i¼ s11 + s22 + s33 + 2 s12 + s13 + s31ð Þ:
In cubic crystals and other isotropic solids, compressibility equals hsi¼3(s11+2s12).
It should be noted that compressibility is strongly dependent on the energy of

atomic bonds.

The bulk modulus of elasticity K is introduced as a parameter that is inverse to

compressibility, also called the bulk compression modulus. Bulk modulus can be

identified through the elastic stiffness tensor; in cubic crystals, K¼ (c11+2c12)/3.
Modulus K is the ratio of stress value to the relative compression value. The bulk
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modulus of elasticity describes the ability of a material to resist any change in its

volume. Moreover, the bulk modulus K characterizes the capability of an object

to change its volume, for example, under hydrostatic pressure. It should be noted that

the bulk modulus of a nonviscous liquid is different from zero, whereas for an incom-

pressible fluid, it is infinite.

Poisson’s ratio ν is often used to characterize the elastic properties of a material.

When a stretching force is applied lengthwise to a solid, the solid starts to stretch.

During this stretching, in the vast majority of cases, the cross-section of the material

decreases. Poisson’s ratio shows how the cross-section of a deformable body

changes under lengthwise stretching (or compression). Its value is the ratio of the

linear contraction of cross-section e’ to the elongation e, that is, ν¼je’j/e. In case

of an entirely brittle material, the Poisson ratio is zero, whereas for a completely elas-

tic material, ν¼0.7. For example, most steels have v�0.3; for germanium, v¼0.31;

for quartz glass, Poisson’s ratio is small (v¼0.17), whereas for rubber, Poisson’s

ratio is large: v�0.6 (ν is measured in relative units: mm/mm, cm/cm, etc.).

Note. There are materials (polymers) for which Poisson’s ratio is negative; these

materials are called auxectics. In these materials, upon application of a stretching

force, the transverse section of the body increases.

The elastic properties of crystals can be considered not only in macroscopic approx-

imation but also in a framework of microscopic theory that takes into account the

atomic structure of the crystal lattice and interatomic interactions. In this approxima-

tion, it is usually assumed that interactive forces between atoms are central, that is,

they operate along lines connecting the centers of atoms. Then it is possible to obtain

additional relationships between the elasticity coefficients cmn:

c23 ¼ c44; c13 ¼ c55; c12 ¼ c66; c14 ¼ c56; c25 ¼ c46; c36 ¼ c47:

These ratios that reduce to six independent components of elastic stiffness are the

Cauchy relations.
The shear modulus, or modulus of rigidity (abbreviated as G or μ), characterizes

the stressed state in case of net shear, that is, the ability of a material to resist any

change in its shape while maintaining its volume. Shear modulus is expressed by

the ratio of shear stress to shear strain that is defined as the alteration in the right

angle between planes, whereon shear stresses are applied to two mutually

orthogonal sites.

Young’s modulus (E) or modulus of longitudinal elasticity describes a material’s

resistance to stretching or compression during elastic deformation. The modulus of

elasticity is a set of physical quantities that characterize the ability of any solid body

to be elastically deformed under conditions where force is applied to it. In simple

cases, Young’s modulus is defined as the ratio of stress to elongation. In cubic crys-

tals, E modulus equates to three diagonal components of elastic stiffness that are

identical: E¼c11¼c22¼c33. Young’s modulus is measured in GPa—for example,

for aluminum, E ¼70GPa; for iron, E ¼180GPa, but the largest Young’s modulus

is seen for graphene, where E ¼1000GPa.
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In case of a homogeneous isotropic body, such as a fine-grained polycrystalline

solid (ceramics) with random orientation of grains (i.e., in the absence of textures),

both elastic modulus and Poisson’s ratio are the same in all directions. Thus values of

ν, E, G, and K are related by the following formula:

G¼ E

2 1 + vð Þ , K¼ E

3 1�2vð Þ :

Thus only two of these parameters are independent; therefore elastic properties of an

isotropic body can be described by only two elastic constants. Those are the Lame
parameters: μ and λ. They depend only on material properties and are very useful for

elasticity research, when stresses are expressed in terms of strains. Lame constants

can be expressed in terms of different elastic moduli by the formula:

μ¼G, λ¼ Eν

1 + νð Þ 1�2νð Þ¼K�2G

3
:

Here, E is Young’s modulus, K is the bulk modulus, ν is Poisson’s ratio, and G is the

shear modulus. The Lame constants can be calculated from the experimentally deter-

mined elastic modulus.

Therefore homogeneous and isotropic solid materials can be characterized by lin-

ear elastic properties, which are fully described by two major elastic components that

are any pair of moduli. If a pair of elastic moduli is known, all other moduli can be

derived by calculation.

It should be noted that only in the isotropic elastic body can the number of inde-

pendent elastic constants be reduced to two. However, many crystals, such as piezo-

electrics, pyroelectrics, ferromagnetics, and ferrimagnetics, are anisotropic. In

extreme cases, the number of elastic components of an anisotropic body can reach

21. In solids with some symmetric elements, the number of elasticity moduli reduces.

For example, elastic properties of a monoclinic system can be determined by 13 elas-

tic components; for crystals of a rhombic system, this number is nine, and so on.
2.4 ELASTIC WAVES IN CRYSTALS
In connection with the study of dynamic properties in solids, the concept of awave as
the space-time periodic process in crystal is considered. An alteration in time is

described by an oscillator model, which has parameters of mass m and elastic force

Fx dependent on strain: Fx¼�cx:

m
d2x

dt2
¼Fx:

Wave propagation along a linear chain of elastically coupled atoms (i.e., spatial char-

acteristics of wave) is due to the elastic coupling of atoms. Plane wave propagation

along a 1D crystal can be described by the equation

x¼ x0 exp i ωt�kxð Þ½ �,
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whereω¼2π/Τ is the angular frequency (T is oscillation period) and wave number is

k¼2π/λ (λ is wavelength). The natural frequency of the oscillator is ω0 ¼
ffiffiffiffiffiffiffiffiffiffi
c=m:

p
Similarly, it is possible to describe waves in the approximation of elastic contin-

uum [4]. Consider the vibrations in the elementary volume, taken within a crystal in

the form of a cubeΔxΔyΔz (Fig. 2.4). The mass of this cube is equal to the product of

its volume and density: m¼ρΔV¼ρΔxΔyΔz. According to the oscillator model, the

acceleration d2x/dt2 is determined by a second derivative of strain components: dx1
2/

dt2 (for simplicity, oscillations along only one direction are considered—along the

x-axis).
The elastic force Fx (component of force along the x-axis) can be calculated from

a model that compares stress across two faces of a cube: X1(x) and X1(x+Δx). Their
difference can be taken in a series, whereas in linear approximation, it is sufficient to

take into account only the first term:

X1 x +Δxð Þ�X1 xð Þ¼ ∂X

∂x
Δx:
c11

x1

X1

X2

X3
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FIG. 2.5

Elastic stiffness matrix in cubic crystal.

FIG. 2.4

Explanation of elastic wave dynamics in cubic crystal.
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The resulting force is equivalent to the difference in stresses; substituting this result

into the equation of the oscillator, we get

ρ
d2x

dt2
¼ ∂X1

∂x
+
∂X2

∂y
+
∂X3

∂z
:

Similarly, other forces (∂X2/∂y and ∂X3/∂z) can be also considered in the elementary

cube in the direction of displacement x1 due to changes in the stresses X2 and X3;

however, in Fig. 2.5, these components of force are not shown. Similar equations

can be derived for waves of deformations x2 and x3. Solutions of these equations

depend on the specific symmetry of crystal or texture, because they are determined

by a set of the matrix component cmn (Table 2.1A).

Fx ¼ ∂X

∂x
Δx

� �
ΔyΔz:

In a relatively simple case (centrosymmetric cubic crystal), the propagation of a

plane wave of deformations along the x-axis (i.e., along [100] direction) when

the direction of elastic displacement coincides with wave vector k

x¼ x0 exp i ωt�Kxð Þ½ �
yields the following dispersion relation:

ω2ρ¼ c11K
2:

In contrast to a similar case of a discrete atomic chain, when dispersion law ω(k) is
ω¼ 2

ffiffiffiffiffiffiffiffiffi
c=m

p
sin ka=2ð Þ, in the case of an elastic continuum, and when structure dis-

continuity is not taken into account, spatial dispersion is absent: the velocity of elas-

tic waves is independent of frequency [4].

The velocity of longitudinal waves along the [100] direction in a cubic crystal

depends on the density of the crystal and on one of the elastic stiffness components

(Fig. 2.5):

υLA 100½ � ¼ω=K¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c11=ρ:

p

In cubic crystals, equally simple expressions for velocity of transverse elastic waves

can be obtained, if the strain component x2 (or x3) is perpendicular to the direction of
wave propagation:

υTA 100½ � ¼ω=K¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c44=ρ:

p

The velocity of transverse waves in cubic crystals is the same for any orientation of

elastic displacement. However, if the wave vector is directed along [110] or [111]

axes, the solution of wave equations becomes more complicated. For crystals of low

symmetry, including piezoelectrics, the velocity of elastic waves is determined by

various combinations of the tensor cmn components.

Thus, in the homogeneous elastic medium, two types of volumetric waves may

exist: the longitudinal wave, in which particle displacement takes place in the direc-

tion of wave propagation, and the transverse wave, in which particles undergo



FIG. 2.6

Different types of oscillations in bulk piezoelectric elements (shading shows electrodes;

arrows show direction of deformations): (A) transverse oscillation in a piezoelectric plate

polarized in thickness; (B) shear oscillations in a piezoelectric plate polarized in thickness;

(C) piezoelectric disk polarized in thickness with radial deformations; and (D) disk

piezoelement polarized in thickness and having a thickness deformation.
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displacement in a plane, perpendicular to the direction of wave propagation. Longi-

tudinal and transverse waves are volumetric oscillations of the elastic medium.

Volumetric elastic waves are used in many electronic devices, in the mode of a

traveling wave as well as in the standing wave mode (in the resonance devices), in

which longitudinal and transverse waves are elastic medium oscillations [5]. For

example, in Fig. 2.6, elements with standing elastic waves are shown that are used

in resonant piezoelectronic devices; usually, piezoelectric elements are made of

polarized ferroelectric ceramics.

Another example of volumetric wave application is the piezoelectric transformer
with two pairs of electrodes: an exciter and a generator (Fig. 2.7). Using an inverse

piezoelectric effect, the exciter part of the plate creates a mechanical deformation

involving a resonant wave in the entire volume of the piezoelectric element. In

the generating section of the piezoelectric transformer, the output voltage appears
FIG. 2.7

Simple layout of a piezoelectric transformer [6].
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due to a direct piezoelectric effect; if it is an alternating signal, it is galvanically sep-

arated from the input voltage.

Electronics uses volumetric elastic waves that are usually excited piezoelectri-

cally; however, sometimes, when they function by magnetostriction, they are called

piezoelectronics. In Figs. 2.6 and 2.7, the piezoresonators and piezotransformers are

the simplest examples of such devices [7]. However, the most striking example of

piezoelectronics application is piezomotors.

The first ultrasonic piezoelectric motors were invented in the Igor Sikorsky Kiev

Polytechnic Institute by V.V. Lavrinenko [7]. Thereafter, various piezoengines were
FIG. 2.9

Scheme of piezoelectric motor with oscillator stator: 1—thin steel jacket-bandage; 2—ring

piezoelement, 3—rotor; and 4—pushers.

FIG. 2.8

Scheme of the first piezoceramic engine devised by V.V. Lavrinenko.
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developed: nonreversible and reversible, with a piezoelectric passive rotor and an

active stator, with a piezoelectric active rotor and passive stator, with electrical exci-

tation of oscillations of one and two types, etc.

The scheme of the first piezoelectric motor is shown in Fig. 2.8. The drive of a

piezoceramic motor is powered by alternating voltage at the resonant frequency of a

piezoelectric cell, which is located in the stator of the device. In the interface between

the stator and rotor (in case of direct contact), a strong tension arises. Piezoelectric

vibrations generate elliptical motion of the stator surface, and the rotor moves due to

the friction in the contact area.

Fig. 2.9 shows one of many options for a modern piezoelectric motor, which

includes a ring piezoelectric element, embedded in a steel jacket that has pushers

mounted inside the rotor. Such a piezoengine works as follows. When a piezoelectric

cell is connected to an external excitation source, acoustic radial resonance oscilla-

tions arise within it. Due to the coordination of parameters, these oscillations are

practically, without weakening, transmitted to the pusher, which then frictionally

interacts with the rotor to turn it.

Piezoelectric elements are composed of piezoceramic, but the jacket is made of

steel. Pushers are installed in the grooves of a jacket and secured with a compound

epoxy resin. Because such a compound is a sound conductor, the presence of grooves

can be neglected. The use of such components of oscillator stators only slightly

changes the quality of the piezoelement.

Another important example of the application of mechanics in electronics is

microelectromechanical systems (MEMS). Their technology combines both micro-

electronic and micromechanical components. MEMS devices are usually made of

silicon substrate, similar to that used in integrated one-chip manufacturing technol-

ogy. Typical dimensions of these micromechanical elements are in the range from 1

to 100 microns, whereas the MEMS chips have dimensions ranging from 20 microns

to 1mm.Miniature integral devices and systems that combine electrical and mechan-

ical components are located on one crystal or substrate. Such a microsystem usually

starts from the sensor (sensing element) in the input of a circuit, and, then, informa-

tion enters the amplifier and analog-digital converter; next, the microprocessor fol-
lows (in the data-processing path), and theMEMS terminates in an output device. All
of these stages are realized on one chip—through integral microtechnology.

Therefore microscopic mechanical devices include accelerometers, gyroscopes,

and angular velocity sensors. Microactuators are used in medical applications to con-

trol instruments and biological objects at the microscopic level. The widespread use

of MEMS in medicine is attributable to their application in the microactivation of

surgical instruments.

In high-frequency electronics, various resonance elements of MEMS are used—

in oscillators, filters, sensors, and so on. In addition to those fixed on one side of

consoles (cantilevers), bridges (fixed on both sides) and diaphragms (fixed through-
out the periphery) are applied (Fig. 2.10).

The most common element is the cantilever; an example of piezoelectric console

implementation is shown in Fig. 2.11. The lower electrode is first applied at the



FIG. 2.10

Schemes of elastic piezoelements fastening in silicon MEMS structures obtained by league

technology: (A) console (cantilever), (B) bridge, and (C) diaphragm; to simplify, electrodes on

piezoelectric elements and their metallic elements are not shown.

FIG. 2.11

Scheme of piezoconsole deposited on silicon: 1 and 3—electrodes, 2—piezoelectric layer.
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silicon surface through a buffer layer of silicon oxide; this is followed by a piezo-

electric layer, and, finally, the top electrode. By the method of anisotropic etching

of silicon, material under the console is removed.

The first high-frequency MEMS devices were constructed mainly on the basis of

thin films of ZnO as well as by using thin films of A1N (with a wurtzite structure).

These piezosemiconductors provide low acoustic losses in microwave filters at fre-

quencies of 2–10GHz. Such devices are based on volumetric acoustic waves that

propagate along the thickness of a film. The high acoustic quality and low dielectric

permeability of wurtzite films are very attractive properties for microwave devices.

At lower frequencies, it is advisable to use ceramic lead-zirconate titanate

(PZT) films.

Therefore microelectromechanics produces extremely small and sensitive

devices for detecting and measuring displacements, acceleration, pressure, weak

electrical signals, ions, and specific biological agents that have utility in medical

applications.

In addition to volumetric waves, SAW can be excited in an elastic medium. Elec-

tronics pertaining to these surface waves is called acoustoelectronics.



FIG. 2.12

Schematic representation of surface waves: (A) Rayleigh waves on a free rigid body;

(B) Rayleigh waves on the interface of solids and liquids; (C) Stoneley wave at the interface

between two solids; and (D) Love waves at the interface of the “solid half-space—solid layer.”
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Surface waves can easily propagate along the free surface of a solid or along the

border of a solid body with other media but have a rather fast damp away from the

boundary (Fig. 2.12). Two types of surface waves are used: with vertical polariza-
tion, when the vector of particle displacement is located in a plane that is perpendic-

ular to the side of a rigid body in contact with other media, and with horizontal
polarization, when the vector of particle displacement is parallel to the boundary

of a rigid body with other media, but remains perpendicular to the direction of wave

propagation.

Particular cases where surface waves are used are as follows:

1. The Rayleigh waves, extending along the boundary of the elastic half-space

(sound conductor) with vacuum or a sufficiently rarefied gas medium

(Fig. 2.12A). The phase velocity of Rayleigh waves equals υR � 0.9υT, where υT
is the phase velocity of the share mode. The velocity vector of these waves is

parallel to the surface, whereas oscillating particles can have both transverse

(perpendicular to surface) and longitudinal components of the displacement
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vector. The vibrations of particles are described by elliptical trajectory in a plane

perpendicular to the surface that passes through the direction of phase velocity.

The amplitudes of longitudinal and transverse vibrations are reduced

exponentially with increase in distance from a surface into the medium, thus

having different attenuation. This results in an effect where, during wave

propagation, the ellipse is deformed and, when far from surface polarization,

becomes linear. The penetration of a Rayleigh wave into the depth of sound

conductor approximately equals the length of the surface wave.

2. The damped waves of the Rayleigh type, existing between solid and liquid, are

shown in Fig. 2.12B. In a relaxed fluid, the elastic surface waves cannot exist.

However, it should be noted that, at an ultrasonic frequency range in an actual

liquid, surface waves may still exist that are defined not by elastic forces but by

surface tension (so-called capillary waves). If a liquid is bordered with a solid and

sound velocity in the liquid is less than the υsound in the solid (this is true for

almost all sound velocities in media), the damped wave of Rayleigh type may

spread on the interface of the solid and the liquid.

A damped wave, during its propagation, continuously emits energy in the

liquid, thereby forming nonuniform waves in it. The phase velocity of a damped

Rayleigh wave is almost equal to υsound, whereas its damping at one wavelength

is approximately 0.1 such that, on a progression of 10 wavelengths, the wave is

damped “e” times. In solids, the depth of stresses and displacements of such a

wave is similar to the distribution in a Rayleigh wave.

3. The nondamping waves (continuous) with vertical polarization extend along the

interface of a liquid and solid. The velocity of sound in a liquid is less than that in

a solid, and, therefore, a nondamping wave in a solid is extended together with

decaying. It spreads on the interface of the medium with a phase velocity that is

less than the velocity of longitudinal and transversal waves. A continuous wave,

being vertically polarized, has a completely different structure and velocity than a

Rayleigh wave. This wave, in liquids, consists of a slightly inhomogeneous wave

with an amplitude that slowly decreases with the distance from the boundary of

medium, and, in solids, of two strongly inhomogeneous waves (longitudinal and

transversal). Due to this aspect, the energy of the wave and particle motion is

localized mainly in a liquid, but not in a solid, body. In practice, this type of wave

is rarely used.

4. The Stoneley waves propagate along the plane boundary between two solid

media, for which the elastic moduli and density are not very different

(Fig. 2.12C). The Stoneley wave resembles two Rayleigh waves (one in each

environment). The phase velocity of a transverse Stoneley wave is less than the

velocity of a longitudinal wave in both the neighboring media. Vertical and

horizontal displacements of components in each media are reduced with distance

from border such that wave energy is concentrated in two near-boundary layers

with thickness similar to the wavelength.

5. The Love waves are surface waves with horizontal polarization that can extend in
the layered structure: “elastic layer on elastic solid half-space” (Fig. 2.12D).
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This is a purely transverse wave, whereas its phase velocity is found in the range

between the phase velocities of transverse waves in a layer and in a solid half-

space. Love waves propagate with dispersion; because of the small thickness of

the layer, the phase velocity approaches the sound velocity in the half-space. In

general, the movement of a wave may be such that wave energy is redistributed

between the layer and the solid half-space; therefore, phase velocity depends

upon the frequency and thickness of the layer.

In anisotropic crystals, the same type of surface acoustic waves may exist as in iso-

tropic solids: however, the motion of particles in elastic waves might be more com-

plicated. For example, on some planes of anisotropic crystals that have piezoelectric

properties, the Love wave as a Rayleigh wave may extend on the free surface; these

waves are called as “electrosonic.” Along with the usual Rayleigh waves in peculiar
orientations of crystals along the free boundary, a damped wavemay extend such that

it radiates energy into the crystal (pseudo-Rayleigh wave).

Finally, in a piezoelectric-semiconductor crystal, the surface wave can interact

with conduction electrons, resulting in the amplification of this wave. In an aniso-

tropic elastic structure, the properties of a Rayleigh wave depend on anisotropy

and the direction of wave propagation. These waves can propagate not only in a plane

but in the curved free surface of a solid as well. Thus their velocity is changed with

depth, and the spectrum of permissible frequencies may become discrete, as in the

case of a Rayleigh wave propagating on the surface of a sphere.

The principle of action of acoustoelectronic converters is based on elastic defor-

mations that exist in the piezoelectric crystal due to the piezoelectric effect. Elastic

deformation created by the comb electrode generates a traveling surface wave,

accompanied by an alternating electric field. By varying converter options, it is pos-

sible to manage device parameters (Fig. 2.13).

Ultrasonic and hypersonic surface waves are widely used in technologies for

comprehensive nondestructive surface layer testing, as well as for study of surface

properties (defectoscopy). If the surface of a solid sample is free, then the usual Ray-

leigh waves can be applied. In cases where the tested sample is in contact with liquid

or other solid samples or a solid layer, Rayleigh waves should be replaced by other

suitable types of surface acoustic waves. Hypersonic Rayleigh waves with frequen-

cies between 108 and 109Hz are used in acoustoelectronic transducers to create sig-

nals, in ultrasonic and hypersonic delay lines, in amplifiers of electromagnetic
FIG. 2.13

Schematic diagram of the SAW filter; 1—comb activator; 2—output comb; and 3—schematic

representation of surface waves [6].
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oscillations, and for creating information processing systems. Furthermore, they are

applied as sensor displays based on surface acoustic waves.
2.5 SUMMARY

1. Mechanical properties are conditioned by internal bonds among atoms, ions, and

molecules of a solid; basically, these properties are elasticity, strength, stiffness,
toughness, and so on. The most important mechanical properties of electronic

devices are elasticity (depends on the strength of atomic bonds in crystals) and

velocity of elastic waves in crystals (which, in addition to elasticity, have specific
density impacts).

2. An external mechanical impact on a solid is characterized by the mechanical

stress tensor Xij. This is a symmetric (Xij¼Xji) second-rank field tensor that, in its
physical nature, is quite different from symmetric second-rank material tensors

(e.g., the tensor of permittivity εmn¼εnm, which agrees with the internal

symmetry of crystal). The field-type tensor of stress describes the structure of

forces applied to a studied sample from outside.

3. In different cases of technical application of solids in electronics, five important

cases of mechanical stress tensors should be distinguished: linear-stressed state

(uniaxial stress), flatness-stressed state (biaxial stress), volumetric-stressed state

(three-dimensional stress), and the net shear stress. A separate important case is

that of hydrostatic pressure, wherein all components of the stress tensor are same:

X11¼X22¼X33¼�p, where p is pressure.

4. Depending on the symmetry of the mechanical load and of the crystal, there arises

elastic deformation (strain) that is also a symmetric second-rank tensor (xkl¼xlk).
It can be classified into one-, two-, and three-dimensional tensors. Two-

dimensional stress and strain (stretching/compression) are considered in

contemporary planar microelectronic technology.

5. From Hooke’s law, which asserts the linear proportionality of strain to stress, two

very important tensors for solids follow: elastic stiffness tensor cijkl (also known

as Young’s modulus) and, inverse to it, the elastic compliance tensor sijkl. Both of
them are material symmetric tensors of the fourth rank. Special parameters

important for applications are compressibility hsi and the bulk elastic modulus K
that can be determined by components of the elastic stiffness (or

compliance) tensor.

6. The propagation of one-dimensional, surface, and volumetric elastic waves in

solids, as well as the resonant properties of solid rods, beams, membranes, and so

on, are described by tensors of elastic stiffness. Through excitation in an

electrical or magnetic manner, elastic waves are widely used in modern

piezoelectronics, acoustoelectronics, acousto-optics, MEMS, and microwaves as

well as in many other microelectronic devices.
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Many phenomena and effects of electronic materials could be attributed to their ther-

mal properties—thermal motion determines important features in electrical, mag-

netic, and other properties. Beginning with the synthesis of crystals and

microelectronic as well as nanosized structures and, next, their alloying, annealing,

and quenching, there are many other technological operations that occur under spe-

cial thermal conditions. Thermal energy determines many properties of crystals. For

example, the generation and recombination of charge carriers as well as the setting of

their equilibrium concentration in semiconductors are due to thermal motion in the

lattice. In magnets and dielectrics, phase transitions of dielectric-metal as well as

transitions in ferromagnetic or ferroelectric states and observable phenomena such

as pyroelectricity, electrocaloric effect, magnetic cooling, thermostriction, and so

on are directly related to thermal properties. However, all listed phenomena will

be considered in subsequent sections of this book, whereas this chapter is devoted

only to three thermal phenomena in solids: specific heat, thermal expansion, and
thermal conductivity.

Thermal properties caused by the internal energy of movement of molecules,

atoms, or electrons are strongly dependent on the internal structure of material:

the more stable the bonds between atoms, the greater the energy that must be

expended for the displacement of atoms. In other words, more stable interatomic

bonds require greater energy for their formation. The stabilization of any physical

state in a given system occurs by its tendency to reach minimal energy.

A consequence of this law is that electrons occupy orbits with the lowest energies,

except in cases when they receive additional energy of excitation from external

sources. However, over time, these excited electrons tend to return to more stable

unoccupied orbits with lower energy; this happens because of thermal motion in

crystals and is described by thermodynamics.
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96 CHAPTER 3 Thermal properties of solids
It is worth revisiting these basic concepts of thermodynamics, necessary for

describing the thermal properties of solids.
3.1 BASIC THERMAL AND ENERGY RELATIONSHIPS
Potential energy is a part of the energy of a system that depends on the positions of

particles and on external force fields [1]. In solids, the source of potential energy is

Coulomb forces that cause attraction of opposite charges and repulsion of same-sign

charges. Kinetic energy (energy of motion) similarly plays an important role for the

description of properties of substances. For example, gas pressure is due to the

kinetic energy of atoms or molecules. In solids, atoms are not absolutely fixed in

a lattice, but continually oscillate as a result of thermal excitation [2]. Such move-

ment significantly affects the basic properties of solids, as discussed in the following

sections.

The state of a system is characterized by a thermodynamic function called the

enthalpy A (i.e., the heat content in a system). As the temperature increases from

T1 to T2, enthalpy changes:

A2 ¼A1 +

ðT2

T1

CP∂T,

where A1 is enthalpy at initial temperature T1 while A2 is enthalpy at the final tem-

perature T2; and CP is the specific heat under constant pressure P [1].

As a thermodynamic function, enthalpy can be defined in two ways. The first

method is based on the determination of the internal energy, U, and the work,
PV, performed by the material:

A¼U +PV,

where P is the pressure and V is the volume of material.

The second method is based on the Helmholtz conception about free energy F (or

Gibbs free energy G), and on the parameter TS, which is the energy conditioned by

internal disordering in matter:

A¼F +TS+PV¼G+TS,

where T is the absolute temperature and S is the entropy of the material. Thus entropy

is the measure of a system’s internal disorder (chaos). Typically, thermodynamic

quantities are given in well-known tables, together with values of entropy, enthalpy,

and free energy.

The function F¼U�TS (i.e., Helmholtz free energy) is the minimal energy of

the equilibrium state of a system [1]. When considering processes in solids, it is more

convenient to control the volume of a system (not a pressure), and therefore it is nec-

essary to use another thermodynamic function: Gibbs free energy G¼F+PV. Here,
the minimum value of G characterizes the equilibrium of the system at constant
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volume and constant temperature. In solids, at atmospheric pressure, the condition of

system equilibrium can be assessed using minimum F.
In Fig. 3.1, the enthalpy permanently increases with the temperature, but the con-

tribution of the entropy TS increases more rapidly; therefore Gibbs free energy

decreases with increase in temperature [1].Because a concept of free energy is

widely used in subsequent discussions in the context of properties and stability of

solids, it is necessary to draw a few conclusions from Fig. 3.1:

• At zero absolute temperature, free energy equals enthalpy: A¼G;
• Free energy used to characterize processes of structural change in matter

decreases with increasing temperature; and

• The rate of the free energy decrease with temperature is related to entropy.

Furthermore, because the entropy is always positive and obligatorily increases with a
rise in temperature, the slope of the free energy curve continuously increases with

temperature. Thus the value of free energy provides important information about

changes in the given phase; therefore the lower the free energy, the more stable

the given phase.

In connection with the thermodynamic description and applications of solids in

electronics (e.g., in case of active dielectrics or ferromagnetics), some basic concepts

need to be elucidated [1]:

Heat is the energy of thermal motion of particles that form a body; in a Gaussian

system, it is measured in calories (cal) and, in SI, in joules (J).

The absolute temperature is a thermodynamic quantity that characterizes the

state of a body at its thermodynamic equilibrium; absolute temperature is denoted

by T and measured in degrees of Kelvin (K). The average energy of particles in a

body is proportional to the absolute temperature.

The heat capacity, denoted as C and measured in (J/deg) or in [cal/(degmol)], is

the heat absorbed from external sources when the temperature increases. In active
FIG. 3.1

Temperature dependence of enthalpy and free Gibbs energy G.
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dielectrics and ordered magnetics, the heat capacity is dependent on the mechanical

and electrical boundary conditions of a crystal.

The coefficient of thermal conductivity, denoted as λ and measured in [W/

(degm)] or [cal/(degscm)], is a characteristic property of a heat-conductingmaterial;

numerically, it is equal to the amount of heat passing through a unit area per unit time

at a unit temperature gradient.

The coefficient of thermal expansion, denoted α and measured in unit [deg�1]¼
[K�1], represents the alterations in a solid body’s relative dimensions when the tem-

perature changes by 1K.

The next section presents some examples of the application of thermodynamics in

solid-state physics. The focus is on three thermal properties of solids: thermal expan-

sion, heat capacity, and thermal conductivity. These are properties that have the

greatest practical importance.
3.2 THERMAL EXPANSION OF SOLIDS
Changes in the dimensions and volume of a crystal with a temperature variation are a

result of the asymmetry in the interaction of its particles in a crystal lattice. Quanti-

tatively, the degree of a change in the volume is characterized by the volumetric coef-
ficient of thermal expansion, αV. According to general definition, this coefficient is

the relative change of volume V in a body on heating by 1° of temperature at constant

pressure P, and it can be written as:

αV ¼ 1=Vð Þ ∂V=∂Tð ÞP:
Very often, thermal expansion in crystals is anisotropic and, sometimes, it is negative

[2]. This means that when the temperature increases, a crystal can expand differently

in various crystallographic directions; moreover, in some directions, the crystal may

even be compressed with an increase in the temperature. Therefore, besides the vol-

umetric expansion, the linear expansion coefficient αl is widely used:

αl ¼ 1=lð Þ ∂l=∂Tð ÞP,
where l is the linear dimension of the tested sample. The coefficient of thermal

expansion is a second-rank tensor (i.e., matrix); thus the sum of three diagonal

elements is approximately equal to the volumetric expansion coefficient:

αV�α1+α2+α3.
In electronics and microelectronics, knowledge of the thermal expansion coeffi-

cient of materials is very important. For the reliability of microelectronic structures

wherein semiconductor, dielectric, and metallic layers are integrated into a single

monolithic structure, coordination between these components during thermal expan-

sion is apparent. Usually, complex structures are synthesized at rather high temper-

atures, but they are used at normal conditions. If the thermal expansion coefficients

are not matched, the structures obtained would be mechanically stressed and that

would affect their properties and even possibly lead to localized destruction.
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Nevertheless, there are states (even applications) when the difference in extension

allows the properties of these structures to be managed; for example, the temperature

of the phase transition in ferroics (crystals with magnetically or/and electrically

spontaneously ordered structures) is changed purposefully.

The temperature dependence of the thermal expansion coefficient is shown in

Fig. 3.2A, for the most important semiconductors—germanium and silicon (similar

dependences are observed in the majority of solids). Parameter α increases signifi-

cantly in the temperature range of 50–400K, but thereafter varies very little (if struc-
tural phase transitions are absent).

In solids, the coefficient of thermal expansion actually characterizes the internal

bonds of atoms, ions, or molecules, in particular, the energy of these bonds. This

energy is largely determined by fundamental parameters of a crystal, such as its melt-

ing point. In Fig. 3.2B, the expansion coefficient is compared with the bond strength

between ions. The inverse proportionality of this relationship corresponds to the

nature of thermal expansion. Furthermore, it is noteworthy that the smaller the coef-

ficient α is, the higher is the melting point of the crystal, Tm. There even exists an

empirical formula: αTm¼const [2]; the parameters α and Tm included in this formula

are two important thermal properties of crystals, and both can be expressed in terms

of the Debye temperature (θD) of a crystal—this parameter is discussed further in

connection with the dynamic properties of the crystal lattice.

Simple model explaining thermal expansion. The change in the volume or shape

of a solid body with temperature alteration is attributable to the different nature of

forces acting between its atoms. The interaction consists of attractive and repulsive

forces. When the distance between the interacting particles changes, these forces

vary in different ways.
FIG. 3.2

Thermal expansion in crystals: (A) typical temperature dependence; (B) correlation α with

strength of interionic bonding [2]. It is remarkable that, in silicon at cryogenic temperatures,

the α(T) dependence passes through a negative value of thermal expansion; this peculiarity

suggests that interatomic bonds in silicon have a rather complicated structure.
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Repulsive forces have a very short range, as their potential energy decreases

with the distance r between particles, designated as r�9. The electronic shells of

neighboring atoms or ions can only slightly penetrate each other. Conversely, the

forces of attraction are long range, as their energy changes with distance, designated

as r�1
…r�6, depending on the nature of attraction (i.e., on the type of bonds; ionic,

covalent, or molecular). Therefore the total energy versus distance U(r) is character-
ized by an asymmetric minimum (Fig. 3.3A).

To describe the main reason for thermal expansion in a solid body, it is sufficient

to consider the simplest diatomic model [3]. In some cases, this simple model is a

rather good approximation that is not only qualitative, but also quantitative. The

interaction of two atoms in equilibrium can be described by the balancing of the

forces of attraction and repulsion (when total energy is minimum; Fig. 3.3A).

Let us suppose that one atom is fixed, being located at the origin. The increase of

temperature induces movement that displaces a second atom from the ground equi-

librium position under condition of fluctuations. If the temperature is low, thermal

oscillations of the particle have a small amplitude x, and this motion can be modeled

by a simple linear relationship (quasielastic interaction): f¼�cx, where f is a spring-
type force that returns the particle from excited state to its ground equilibrium posi-

tion (when x¼0), while c is the coefficient of elasticity (this equation corresponds to
Hooke’s law).

Thus in U(r), the dependence potential well (which actually is asymmetric) may

be presented for simplicity by a symmetric curve. This means that thermal oscilla-

tions are harmonic (x¼x0 cosωt), and the potential energy is described by a parabolic
potential well:
6.0

a

4.5

3.0

1.5

(A) (B)

0.0

–1.5
0 150 300 450

2

1

T(K)

(10–6 K–1)
U(r)

r0

4

r

3
2

1 600 750

FIG. 3.3

Thermal expansion in solids: (A) dependence of potential energy on distance between atoms;

dashed curve shows U(r) parabolic approximation; points 1–4 show a thermal expansion

curve with a nonparabolic character of real U(r) curve; (B) thermal expansion temperature

dependence for zinc oxide crystals: 1—lateral coefficient α?¼α12; 2—longitudinal coefficient

α¼α33; the negative low-temperature component is due to the internal polarity of zinc oxide.
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U xð Þ¼
ð
cx � dx¼ 1

2
cx2:

Here, the dependence of energy has a shape, depicted in Fig. 3.3A by a dashed line,

and the average position of the oscillating atom does not depend on the amplitude of

its oscillations, r¼ r0 (in a crystal, r0¼a, where a is the lattice constant). The lower

part of the curve of any potential well (close to its minimum) can be approximated

with good accuracy by a parabola.

It is obvious that, in case of a symmetric U(r), any chaotic thermal oscillations of

atoms cannot change the average distance between them; therefore the size of the

crystal will be independent of temperature. This explains why the coefficient of ther-

mal expansion in different solids at very low temperature tends toward zero.
In reality, however, the energy of the interaction between atoms is characterized

by a pronounced asymmetric well (solid line in Fig. 3.3A), which is a result of two

different summation curves (one is due to attraction and the other corresponds to the

repulsion of atoms).With increasing amplitudes of thermal oscillations, the repulsive

forces between atoms increase to become much stronger than the force of attraction,

that is, the displacement of oscillating atoms to the left becomes much less than their

displacement to the right (Fig. 3.3A). Thus the actual force f that acts on an atom

becomes a nonlinear function of displacement x (Hooke’s law is not met).

Consider the oscillation of one atom relative to another for the given energy in a

classic approximation. Different energy levels are depicted in Fig. 3.3A by the hor-

izontal lines 2, 3, and 4. In the position of equilibrium (r¼ r0), the potential energy of
the atom is zero although its kinetic energy reaches the maximum. Moving away

from the equilibrium position, the atom acquires potential energy whose peak cor-

responds to the maximal shift of the atom from its equilibrium position and reaches

the level of potential energy, shown by corresponding horizontal line (Fig. 3.3).

With the increasing total energy of the atom (1–4 in Fig. 3.3A), the amplitude of

oscillations increases whereby the right shift of the atom will be greater than its left

shift. As a result, middle equilibrium position of the atom shifts to the right, and this
effect becomes stronger with a higher energy of oscillation of the atom. Therefore an

increase in energy with rise in temperature leads to a phenomenon where the intera-

tomic distance increases and the crystal enlarges.

In case of small oscillations of atoms around their equilibrium position, the poten-

tial energy can be expanded in a Taylor series in terms of atomic displacement with

respect to the equilibrium position. To analyze thermal expansion, it is sufficient to

limit this expansion by its first two terms:

U¼ 1

2
cx2�1

3
bx3:

Coefficient c is ratio of quasielastic bonding, whereas coefficient b is referred to as

the coefficient of anharmonicity. Accordingly, the force that acts between an oscil-

lating atom and a fixed atom is given by:
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f ¼�∂U

∂x
¼�cx+ bx2:

In this equation, a nonlinear term “+bx2” is added to the linear term “�cx.” This new
term takes into account the asymmetry pertaining to interatomic interaction forces,

and it is the anharmonicity coefficient b. The role of anharmonicity becomes more

significant, the greater the value of displacement x. With this term, the time-

dependent displacement of oscillating atom is no longer sinusoidal (i.e., not har-

monic); therefore this approximation is called anharmonic. This simple model can

explain the thermal expansion of solids [4].

The average potential energy of thermal fluctuations (½ cx2) at a given temper-

ature equals½ kBT, where kB is Boltzmann constant. The average shift of the atom in

this model can be shown to be xaver¼ (b/c2) kBT. Thus, in the diatomic model con-

sidered here, the thermal expansion coefficient α is defined as the ratio of the average
shift xaver to the equilibrium distance r0:

α¼ k

r0

b

c2
:

It follows that, in the absence of anharmonicity (when b¼0), the thermal expansion

coefficient α¼0. The asymmetry of the resultant interatomic interaction force in the

crystal lattice is considered further as the main cause of the interaction of phonons in

a lattice.

The anisotropy of thermal expansion. In cubic crystals, to which the majority of

metals and semiconductors belong (including germanium and silicon whose α(T)
dependence is shown in Fig. 3.2), thermal expansion is isotropic. Therefore the linear
coefficient of thermal expansion αl is independent of the direction in a crystal and

equals αl¼1/3 αV: this is true for metals and most semiconductors. However, many

dielectric crystals, especially those that are important in electronic applications (i.e.,

pyroelectrics, piezoelectrics, etc.) as well as many ferromagnetics, are anisotropic

crystals [2].

For instance, hexagonal zinc oxide (ZnO) belongs to the class of anisotropic crys-

tals (Fig. 3.3B). At a very low temperature, the expansion coefficient of ZnO is

reduced to zero. However, after temperatures rise, the internal polar bond emerges,

and components of expansion coefficients in this pyroelectric (and piezoelectric)

structure at low temperature initially become negative. Only with a further temper-

ature increase does the thermal expansion coefficient increase in accordance with the

usual cubic power law (α**?�αjj�T3) until it reaches saturation, at higher

temperatures.

As shown in Fig. 3.3B, the lateral and longitudinal components of thermal expan-

sion are different. Thus the anisotropy of crystal structure leads to the anisotropy of

many physical properties, including thermal expansion. Therefore the thermal

expansion coefficient is defined not as a scalar value, but as the second-rank tensor.
Indeed, during uniform heating, a crystal is subjected to deformation, which can be

described by the strain tensor xkl. This change of temperature is described by the sca-
lar value δT, and components of strain tensor are proportional to δT:
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xkl ¼ αkl δT,

where αkl denotes components of the thermal expansion coefficient. Therefore αkl is a
symmetrical tensor of the second rank because xkl is a symmetrical tensor of the sec-

ond rank. This equation would be simplified if the strain tensor xkl is reduced to the

principal axes of a crystal: x1, x2, and x3; moreover, these components can be easily

determined experimentally. The result is

x1 ¼ α1 δT, x2 ¼ α2 δT, x3 ¼ α3 δT,

where α1, α2, and α3 are the main thermal expansion coefficients that correspond to

the diagonal components of tensor xkl [5].
If all thermal expansion coefficients are positive, then a second-order surface can

portray thermal expansion by the quantities (1+α1δT), (1+α2δT), and (1+α3δT0).
Moreover, the volumetric coefficient of the thermal expansion of crystal will be

equal to the sum of all three linear coefficients αV¼α1+α2+α3. In some directions

of an anisotropic crystal, compression—not expansion—in linear dimensions can be

seen when heating and, correspondingly, negative coefficients of expansion for these

directions are observed. To obtain a full description of the thermal expansion tensor,

it is necessary to know the linear coefficients of thermal expansion along the three

principal directions of a crystal.

In crystals that belong to a cubic symmetry class, coefficient α is the same in any

direction, because the second-rank material tensor in this case degenerates into a sca-

lar: α1¼α2¼α3. The temperature dependence of α in Fig. 3.2 for semiconductors Ge

and Si characterizes the typical case of cubic crystals.

In crystals of hexagonal and trigonal systems, the expansion coefficient tensor is

determined in twomain directions: parallel and perpendicular to the axis of the sixth

(or third) order, whereby α11¼α22¼α? and α33¼αjj. In crystals of the orthorhombic
system, it is necessary to know the expansion coefficients in three mutually perpen-

dicular directions, parallel to the second-order axes: α11¼α1, α22¼α2, and α33¼α3.
The definition of αij tensor in crystals of lower symmetries (monoclinic and triclinic)
becomes more complicated by the fact that the position of principal axes is not

uniquely determined in a crystallographic coordinate system.

Components of thermal expansion coefficient usually might have different tem-

perature dependences: they may be either positive or negative. Their sign depends on

the anisotropy of forces that act between atoms in the crystal. The negative coeffi-

cient of thermal expansion is a result of long-range bonds in a crystal. It will be

shown that such bonds arise during polarization of atoms, and they are the result

of decrease in the frequency of acoustic modes in the phonon spectrum near the

boundary of the Brillouin zone. Corresponding to these frequencies, the components

of an elastic tensor have small positive values for longitudinal oscillations and neg-

ative values for lateral oscillations.

Furthermore, this situation is possible for layered and chain structures that are

characterized by such interaction between atoms wherein the interaction inside

the layer (or chain) is stronger than the interaction of atoms located in different layers
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(or chains). In this regard, the thermal expansion coefficient along the chain (or

layer) is always less than the coefficient of expansion in the perpendicular direction.

In general—with possibly different signs of the components of thermal expansion

tensor—the characteristic surface in Cartesian coordinates is not ellipsoid, nor is it

even a surface of the second order. Nevertheless, the knowledge of characteristic sur-

faces is important for applications of anisotropic crystals. For example, in calcite

crystals, the expansion coefficient in the direction of the principal axis of the crystal

is positive, but it is negative in directions perpendicular to it. This means that, in

some oblique directions, the expansion coefficient should be zero, and therefore,

in certain directions, the radius vectors of the indicatory surface should be zero (this

case is impossible for an ellipsoid).

Shubnikov [6] considered all possible forms of the indicatory surfaces of thermal

expansion coefficients in crystals under conditions when linear expansion coeffi-

cients α1, α2, and α3 differ both in magnitude and in sign (Fig. 3.4). Positive values

of α are shown on these figures by white surfaces whereas negative values of α are

shown by black surfaces. As noted earlier, in crystals of cubic symmetry, all three

major expansion coefficients are equal, and all three are usually positive. The cor-

responding surface in this case is obviously the sphere with a positive radius: this is a

“white-colored sphere,” but this simplified case is not shown in Fig. 3.4.

When α3 6¼ α1¼α2 with α3>0, the surface describing expansion coefficients is

similar to oval; it can be either flattened (at α3<α1, Fig. 3.4B) or elongated along

axis 3. These surfaces describe simple cases of thermal expansion of optically uni-
axial crystals that are often found in practice. In the calcite crystal, for example, com-

ponent α3 has a positive sign, while components α1¼α2 have negative signs. The

surface that corresponds to such a case is also shown in Fig. 3.4B. It is composed

of two egg-shaped positive (white) surfaces and a torus-like negative (black) surface.

Other characteristic surfaces of the thermal expansion tensor shown in Fig. 3.4

exhaust all possible combinations of main components of the αkl tensor.
3.3 CRYSTAL HEAT CAPACITY
The heat capacity of body is a physical quantity defined as a ratio of the amount of

heat dQ obtained by the body corresponding to an increase in its temperature dT:

C¼ dQ=dT:

The unit of heat capacity in SI is [J/K]. The concept of heat capacity is applicable to

substances that are in various states of aggregation (solid, liquid, or gas) as well as to

ensembles of particles and even quasiparticles (e.g., the heat capacity of electronic

gas inmetals or heat capacity of phonons in a crystal lattice). The value of heat capac-

ity depends on the nature of a substance.

Specific heat is the heat capacity per given unit of substance, which can be mea-

sured in kilograms, cubic meters, and moles. Depending on the quantification of unit

heat applied, the mass, volume, and molar value of specific heat are distinguished.



FIG. 3.4

Characteristic surfaces that exhibit anisotropy of physical quantities described by a second-

rank material tensor; (A) ellipsoid of permittivity of biaxial crystal symmetry ε; (B–D) figures
that describe the thermal expansion coefficient in crystals of different symmetry; black shows

the negative value of α.
According to A.V. Shubnikov, Selected Works on Crystallography, Nauka, Moscow, 1975, p. 551.
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Themass specific heat is the amount of heat necessary to increase the temperature of

a unit mass of material by one temperature unit; in SI, it is [Jkg�1 K�1]. The volu-
metric specific heat, CV, is the amount of heat that is necessary to be applied to a

unit volume of material to heat it by one temperature unit; in SI, it is measured in

[Jm�3 K�1], that is, joules per cubic meter and Kelvin. The molar specific heat,
Cμ, is the amount of heat that is necessary for 1mol of the substance to be heated

by 1°; in SI, it is [J/(molK)], while in the Gaussian system, this specific heat is deter-

mined in [cal/(g-molK)]. The vast majority of solids have specific heat close to

1kJ/(kgK); for example, water has a relatively high heat capacity: 4.2kJ/(kgK).
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In solids, both the crystal lattice and electrons contribute to the specific heat. For

reasons that are explained further on, the electronic specific heat in metals at normal

conditions is rather small; therefore the mechanisms of the lattice for specific heat are

mainly considered (Chapter 4 presents a discussion of the contribution of magnons to

specific heat).

The elastic vibrations of atoms in a crystal can arise both in the form of traveling

and standing waves. As a simple example of oscillations (phonons), one can consider

sound waves that can be excited, for example, via an applied piezoelectric element.

As with any waves, lattice vibrations are characterized by wavelength (λ) and fre-

quency (ω). It should be noted that arbitrary waves cannot exist in a crystal; only

those waves can exist that have a certain relationship between the frequency and

wavelength:ω¼ω(k), where k is the wave vector given by k¼2π/λ. The dependence,
ω(k), is the main characteristic of phonons, that is, atomic vibrations in a crystal. The

knowledge of this relationship allows the calculation of many thermal and electrical

properties of crystals (e.g., specific heat, thermal expansion coefficient, thermal con-

ductivity, dielectric constant, etc.). However, it should be noted that the concept of

phonons is only one of the possible models explaining the thermal properties of

solids.

For a detailed consideration of thermal conductivity (as well as the thermal

expansion study in crystals), it is necessary to take into account anharmonicity, that
is, the nonlinearity of lattice vibrations. However, a further simplified explanation of

crystal heat capacity that was proposed can be sufficiently limited by the linear (har-
monic) model of phonons [7].

Historically, several theories of lattice specific heat were developed:

The law of heat capacity constancy (Dulong-Petit law) corresponds to conven-

tional notions and, with some accuracy, are valid at room temperature and higher
temperatures.

Einstein’s quantum theory of heat capacity is the first successful attempt to use

laws of quantum mechanics to describe the special properties of specific heat in

solids at low temperatures.
Debye’s quantum theory of heat capacity is based on a model of constrained

atomic vibrations, and it shows a better association of theory to experimental data

than Einstein’s theory in the vicinity of low temperatures.

Born’s theory of lattice dynamics is the most advanced method to describe crystal

lattice dynamics, including the theory of heat capacity.

The law of specific heat constancy states that the molar heat capacity of differ-

ent solids is the same (at room temperature and at increased temperatures):

Csolid ¼ 3R

where R is the universal gas constant. An important factor is that the molar heat

capacity in solids at ambient temperature is more than twice as high in comparison

with the heat capacity of an ideal gas: Cgaz¼3/2 R (Fig. 3.5).

It should be noted that 1mol of any substance contains the same number of atoms

as determined by Avogadro number: NA¼6.02�1023mol�1. According to



FIG. 3.5

Dependence ofmolar heat capacity on temperature: 1—ideal gas and 2—molar heat capacity

of solids.
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conventional statistics (i.e., statistical physics based on conventional mechanics),

each degree of freedom of a gas particle makes the same contribution to its molar

heat capacity. This rule is the law of equipartition. Any particle of monatomic

gas has only three degrees of freedom; according to this, the molar heat capacity

of gas should be equal to 3/2 R, that is, approximately 13.5J/(kmolK); in other units,

this amounts to 3cal/(molK), which is in good agreement with experimental results.

This is because free atoms of gas exclusively have kinetic energy; each gas atom
has three degrees of freedom, and the contribution to energy of each degree is (kBT)/
2—that is, just (3/2)kBT in total. Because 1mol contains NA atoms, the molar heat

capacity of gas equals 3/2 R (Fig. 3.5).

Boltzmann constant defines the relationship between temperature and energy:

kB¼1.4�10�23 J/K¼8.6�10�5eV/K).

During its vibration, the atom, being constrained in a crystal lattice, possesses not
only kinetic energy, but also potential energy equal to the kinetic energy, on average;
that is, each atom in a lattice has twice as much energy in comparison with the same

atom in a gas: 3kBT. Exactly because of this fact, the law of heat capacity constancy

follows. Dulong-Petit law, in the dynamic formulation of a problem, is derived by the

assumption that the crystal lattice consists of atoms, and each atom is a harmonic
oscillator in three dimensions (due to lattice structure) whereby fluctuations in three
orthogonal directions are independent. This means that each atom can be associated

with a superposition of three oscillators with energy E that satisfies the following

formula: E¼kBT.
This formula follows from the theorem of energy equipartitioning among degrees

of freedom. Each oscillator has one degree of freedom, and therefore its average

kinetic energy is equal to kB/2 per temperature unit. Because oscillations are har-

monic, the average potential energy is equal to the average kinetic energy, and

the total energy is the sum of both. The number of oscillators in 1mol of substance

is 3NA, and their total energy per Kelvin equals the specific heat of the solid; from this

reasoning itself, the law of constant heat conductivity follows directly. Thus the
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classic (and simplest) idea as to thermal motion in a crystal lattice can be reduced to a

model of independent oscillators.
The oscillator model and elastic waves. The dynamic behavior of elastic dis-

placements of atoms (or ions) is described by a model of the harmonious oscillator

(Fig. 3.6). In this model, a particle with massm is elastically connected to a stationary

base. In case of forced initial displacement of the particle from its equilibrium posi-

tion on distance +x (or �x), the opposite force occurs because of the elastic connec-
tion that seeks to return the particle into an equilibrium position. This force is

proportional to displacement x and has the opposite direction: f¼�cx.
Parameter c is the coefficient of elasticity; here, it describes atomic bonding in a

crystal lattice. Upon elastic displacement, force f balances the force of inertia of

mobile particles, m(d2x/dt2):

m
d2x

dt2
¼�cx:

Therefore the energy of the corresponding oscillator is U¼ Ð
cxdx¼ 1

2
cx2. This

expression is described by the parabolic potential well. The solution of this equation

is harmonic oscillations: x¼x0 cosω0t, or x¼x0 sinω0t or a linear combination of

these two solutions. It is convenient to represent the general solution in the form:

x¼x0 exp(iω0t +φ0), where x0 is the amplitude, φ0 is the initial phase, and

ω0 ¼
ffiffiffi
c
m

p
is the natural oscillation frequency. If the oscillating particle has an elec-

trical charge q, then, in addition to elastic waves (mechanical), an electromagnetic

wave arises too.

The elastic wave of particle vibration in the crystal lattice is the phonon (this term
resembles photon). In phonons, the oscillatory motion of particles of a solid occurs.

When it comes to electromagnetic oscillation (photon), the usual classical concepts

are not suitable because, according to them, there exists something, which has no

mass. The electromagnetic wave (in its simplest form, a plane wave of a certain fre-

quency) is a peculiar form of the existence of matter—the electromagnetic field. An

elementary wave is a wave that is infinitely extended in space and time [6].

Returning to the law of molar specific heat constancy in crystals that does not

depend on the type of atoms (or ions) of the solid body and does not depend on tem-

perature, it should be noted that even this relatively simple model of equal and inde-

pendent oscillators is capable of explaining this feature.

However, a low-temperature investigation of specific heat demonstrates the fast

decline of the Csolid(T) characteristic (dotted line in Fig. 3.6). Moreover, when the
FIG. 3.6

Model oscillator and its wave.
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lattice approaches absolute zero, the specific heat vanishes: Csolid ! 0. All this tes-

tifies to the shortcomings of the simple model of the classic oscillator.

The temperature dependence of specific heat in solids at low temperatures is

explained in the quantum models of Einstein and Debye.

Einstein’s quantum theory of specific heat. The main assumption of this theory

is that the atom oscillator in a crystal lattice is the quantum object, not the conven-
tional one. However, as in the previous model, these oscillators are again considered

independent.
A quantum oscillator with frequency ν can absorb (or emit) energy only in

portions—by quanta: hν¼ћω. This is shown schematically in Fig. 3.7 (see left panel).

At a relatively high temperature (T3) when the thermal motion is rather intense, the

average thermal energy of the oscillator (kBT3) is much greater than the quantum of

oscillator energy (kBT3≫ћω); thus the fact that the oscillator is the quantum oscillator

is not significant and therefore the classic Dulong-Petit law is satisfactory.

In case of low temperatures, the average energy of thermal motion becomes

approximately the same as the energy of the quantum oscillator: kBT1�ћω. Never-
theless, the energy distribution between lattice vibrations is chaotic, but when the

crystal is cooled, the number of quantum oscillators (which do not accept or radiate

energy) increases; therefore specific heat should be reduced with a decrease in the

temperature.

This result was obtained by Einstein. His theory is based on the assumption that

atoms in a crystal lattice behave as harmonic oscillators that do not interact with each

other. The number of oscillators in 1mol of substance is equal to 3NA and their

energy is quantized. According to the model proposed by Einstein, close to the abso-

lute zero of temperature, specific heat tends to zero; however, at high temperatures,

the law of Dulong-Petit holds true.

The temperature dependence of Clattice in Einstein’s model is described by the

exponential law (Fig. 3.7, curve 1). However, subsequent experiments have shown

that this dependence is described by a cubic parabola:C�T 3. Thus it is necessary to
FIG. 3.7

Comparison of specific heat of the quantum model of independent oscillators (curve 1) and

model of coupled oscillators (curve 2).
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consider the interaction between adjacent atoms. Such calculations were made

by Debye.

Debye’s model of specific heat takes into account the contribution from the lat-
tice of interacting atoms to heat capacity. This model correctly predicts the low-

temperature specific heat proportionality to T 3, and considers that atom oscillators

in the crystal lattice are elastically connected to each other; therefore their vibrations
are interdependent.

To explain the influence of interaction of atoms on the frequencies of their oscil-

lations, two models are shown in Fig. 3.8A: the free and bound pendulum. In case of

the free pendulum, the eigen frequency of oscillations ω is dependent only on the

length of the pendulum—this model corresponds to the case of independent oscilla-

tors discussed earlier.

The constrained pendulums (Fig. 3.8A) can serve as a model to explain the sim-

plest two-atom bond. In case of two resiliently connected pendulums, the oscillation

process becomes more complicated, as each pendulum has the same eigen frequency

ω, but there is also an additional combinational frequency Ω. If there are three pen-

dulums, then such a system would have three characteristic frequencies. Obviously,

for n pendulums (which mimic the crystal lattice of n atoms), the number of char-

acteristic vibration frequencies will be n+1.
To illustrate Debye’s model, it is possible to consider the oscillations of a string

with length l that is attached at the ends (Fig. 3.8B). The main tone has a frequency 0

that corresponds to a wavelength λ¼2l of the elastic string. The overtones are 2ω0,

3ω0,…, and they are located on the same line ω(k) with wavelengths l, 2/3l,…. The

dependence of oscillation frequencies ω on the reverse wavelength (wave vector)

k¼2π/λ is shown in Fig. 3.8C.

In Debye’s model, the movement of the center of masses of an interconnected

lattice with N elements is considered. It is assumed that this complex movement
FIG. 3.8

Explanations related to the Debye model: (A) single and two connected pendulums; (B) string

oscillations (primary tone and first overtone); (C) ω(k) dependence of the oscillator frequency
of string on its length (dotted line); 1—Einstein’s mode ωE of free oscillators; 2—Debye’s

mode of bounded oscillators with maximal frequency ωD.
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(lattice vibrations) is equivalent to 3N harmonic oscillators. The coordinates of har-

monic oscillators are the normal coordinates, and their fluctuations are termed the

normal modes.
The internal energy and heat capacity of a solid consists of additive contributions

of energy from individual normal vibrations. To derive a formula that describes the

dependence of specific heat on temperature, it is necessary to know the frequency

spectrum of normal vibrations. This spectrum can be calculated theoretically

whereby, in case of the simplest lattice, this solution contains three acoustic modes,
with ω(k) dependence that corresponds to three possible independent orientations of
polarization vectors of waves (two transverse modes and one longitudinal mode).

The relationship ω(k) constitutes the dispersion law. In case of Einstein’s model,

the frequency ωE does not depend on the wave vector k (see line 1 in Fig. 3.8C). In

contrast, according to Debye’s model, this relationship exists and is characterized by

a sloping line—line 3. In Debye’s model, the dependence ω(k) is linear (similarly as

for string); however, there is one important restriction: this line ends at the abscissa
value π/a. This means the limiting of wavelength (λ¼2a) because there is no phys-

ical carrier for shorter wavelengths.

At low temperatures, the energy of a crystal increases with the temperature due to

two factors: firstly, due to an increase in the average energy kBT of normal vibrations

(i.e., proportional to T) and, secondly, due to the number of excited oscillations that
increases similarly as T3. Therefore, the total energy of a crystal increases with tem-

perature proportionally to the fourth power of temperature:

Elattice � T4

Accordingly, the heat capacity of the lattice that is determined as a derivative

(C�dElattice/dT) is proportional to the temperature in a cubic power:

C� T3

which is in good agreement with experiments.

At high temperatures, all normal lattice vibrations are already excited and there-

fore a further temperature increase does not result in an increase in the number of

phonons. Consequently, at relatively high temperatures, the growth of the energy

in solids can only take place due to the increase in the degree of excitation of normal

vibrations, which proportionally causes an increase of their average energy to tem-

perature (kBT); thus the energy increase in a solid must be proportional to T:

Elattice � T

whereas the heat capacity of the lattice (C�dElattice/dT) should not depend on

temperature:

C¼ const:

Thus at increased temperatures, the specific heat tends to a constant value 3R—
according to Dulong-Petit law—where the characteristic temperature θD exists,

the Debye temperature. Below θD, the quantum nature of lattice vibrations becomes
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decisive. Thus the θD approximately indicates a temperature limit below which the

quantum effects become non-negligible. On the basis of other fundamental constants

(Planck constant h and Boltzmann constant kB), Debye temperature can be expressed

in terms of Debye frequency:ωD¼2πνD. Indeed, by analogy with equation kBT¼hν,
it is possible to define a similar equation kB θD¼hνD, therefore

θD ¼ h=kBð ÞνD, or θD ¼ ℏ=kBð ÞωD:

In different crystals, the value of Debye frequency is located in the range of

νD¼1013–1014Hz. These frequencies of elastic vibrations correspond to the far-

infrared range of the electromagnetic spectrum. It is assumed that, at Debye temper-

ature, almost all oscillatory modes (types of oscillations) in the crystal are excited.

During a further increase of temperature, new oscillatory modes do not persist, but,

instead, the existing modes increase their amplitude, that is, the average energy

increases linearly with the increasing temperature.

In different crystals, values of Debye temperature are diverse, but typically

θD�200–400K. For most of the important crystals in electronics, these temperatures

are in silicon, θD¼650K; in germanium, θD¼380K; and in quartz, θD¼250K. In

alkali halide crystals, the θD varies from θD¼730K in the LiF crystal up to

θD¼100K in the RbJ crystal; the highest Debye temperature θD¼1860K is seen

in the diamond.

Debye’s theory is therefore in good agreement with experiments at low temper-

ature. Moreover, the Debye temperature characterizes not only specific heat, but also

some other thermal properties of a solid (e.g., thermal conductivity, thermal expan-

sion, melting points).

The dynamic theory of Born is considered in further detail in Chapter 4. This

theory gives a chance to calculate specific heat and other parameters of solids more

accurately than with Debye’s theory by using peculiarities of the atomic structure of

crystals. The solid body is treated as a lattice composed of elastically interconnected

point masses. Not only are the forces closest to a given atom taken into account but

also forces, acting between atoms located at larger distances [8]. Even in the case of

the simplest model, that is, a one-dimensional model (i.e., series of elastically joint

atoms), it may be shown that Debye’s result of linear dependence ω(k) should be

corrected: in Born’s dynamic theory, the dispersion of elastic waves is predicted

(in good agreement with the experimental results). However, in case of low temper-

atures, only low-energy phonons can be excited; thus Born’s ω(k) dispersion is neg-
ligible. Therefore the low-temperature dependence of the lattice’s specific heat in

Born’s theory is also cubic: C�T3.
3.4 THERMAL CONDUCTIVITY OF SOLIDS
Thermal conductivity is heat transfer by structural particles of a material (molecules,

atoms, and electrons) in course of their thermal movement. The transfer of heat is

caused by the tendency of the system to be closer to thermodynamic equilibrium,



1133.4 Thermal conductivity of solids
which is established by temperature equalization. The heat spreads from the hotter

part of a material to a cooler part. Heat exchange can occur in any substances in case

of nonuniform distribution of temperature; however, mechanisms of heat transfer

depend on the physical state of a matter.

The coefficient of thermal conductivity is a quantitative assessment of the ability

of a particular substance to conduct heat. In a steady state, the flow of thermal energy,

transferred by heat conduction, is proportional to the temperature gradient:

ΔQ¼�λ grad T:

This relation is known as Fourier’s heat conduction law, where ΔQ is the heat flux

vector whose magnitude is the amount of energy that passes in unit time through a

unit area, oriented perpendicular to the direction of heat transfer; T is temperature,

and λ is the coefficient of thermal conductivity (sometimes, referred simply as

thermoconductivity).
In a simplified model, the steady flow of heat from one side of the parallelepiped

to the opposite side is considered, and the formula of heat transfer can be written as:

Ptherm ¼�λSΔT
h

where Ptherm is the power of heat flux, S is the cross-section of the parallelepiped,ΔT
is the temperature difference between its sides, and h is the length of the parallele-

piped, that is, the distance between its sides.

As in the case of electrical charge transfer phenomena when, together with elec-

trical conductivity σ, the reciprocal value, resistivity ρ¼1/σ, is widely used, it is

sometimes possible to use a corresponding reciprocal parameter—the thermal resis-
tance, R¼1/λ—for heat transfer.

It should, furthermore, be noted that in anisotropic crystals, thermal conductivity

λij as well as thermal resistance Rij are symmetric material tensors of the second rank

and can be described by a second-order surface (usually in the form of an ellipsoid).

Thermal energy can be transferred both by electrons and by lattice elastic waves

(phonons). Various solids can have quite different thermal conductivities that can

vary 1000-fold.

In metals, thermal conductivity is usually large, and the electronic nature of heat

transfer dominates (>90%). At normal temperatures (300K), the largest thermal

conductivity among metals is observed in silver: λ¼430W/(m K). Thermal conduc-

tivities are somewhat lower for copper λ¼390W/(m K), gold λ¼320W/(m K), and

aluminum λ¼230W/(m K). In other metals and alloys, thermal conductivity is

<100W/(m K).

In semiconductors, heat transfer is predominantly obscured by phonon processes

(i.e., lattice thermal conductivity). Under normal conditions, the contribution of pho-

non mechanisms dominates electronic thermal conductivity (dominating in metals).

However, as a rule, the thermal conductivity of phonons in semiconductors is inferior

to the electronic thermal conductivity of metals. For example, at temperature 300K,

the thermal conductivity of silicon is λ¼150W/(m K), germanium λ¼70W/(m K),

http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD
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and gallium arsenide λ¼40W/(m K). Moreover, the phonon mechanism of thermal

conductivity in semiconductors and dielectrics greatly depends on the temperature:

correspondent data for the three most important crystals in microelectronics (silicon,

germanium, and quartz) are shown in Fig. 3.9.

In dielectrics, thermal conductivity has an exclusively phonon character; how-

ever, sometimes, thermal conductivity can be rather high: in beryllium oxide

(BeO) λ¼80W/(m K), in magnesium oxide (MgO) λ¼60W/(m K), in sapphire

(α-Al2O3) λ¼40W/(m K), and in polycorundum (Al2O3) λ¼30W/(m K). It is very

remarkable that a newly developed ceramic aluminum nitride (AlN) has the highest
thermal conductivity of all available technical dielectrics at λ¼180W/(m K). All

named dielectrics are used in electronic devices when it is necessary to ensure high

thermal conductivity of the dielectric substrate [4].

In the majority of dielectrics, the phonon thermal conductivity at normal temper-

ature is tens of times smaller than the electronic thermal conductivity of metal. For

example, sodium chloride crystal (NaCl) shows λ¼6W/(m K), crystalline quartz is

characterized by λ¼14W/(m K), while the thermal conductivity of quartz glass

(fused silica) is only λ¼1W/(m K).

However, the highest values among solids (the largest coefficient of thermal con-

ductivity at normal temperature) is not a metal, but a dielectric—the diamond: at a

temperature of 300K, it has λ>1000W/(m K). This feature is explained by peculiar-

ities of vibrations of the diamond lattice (very large Debye temperature). A detailed

examination of lattice thermal conductivity needs more careful investigations of

phonon processes, although the basic experimental facts are as follows:

1. Similar to the diamond (C), compounds of light elements AlN, BeO, or MgO are

characterized by high thermal conductivity because they have a relatively low
FIG. 3.9

Temperature dependence of thermal conductivity in crystals: 1—germanium, 2—silicon, and

3—quartz.
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atomic mass and increased elasticity modulus. These factors lead to high-velocity

elastic wave propagation that determines increased thermal conductivity by

phonon mechanism.

2. Glasses and quasiamorphous materials have low thermal conductivity as

compared with their crystalline modifications, because elastic waves propagate

more poorly in disordered structures than in structures of high regularity.

3. The increase in temperature results in the reduction of thermal conductivity in all

crystalline solids because it leads to an increase in the intensity of chaotic thermal

vibrations in the crystal lattice that scatters elastic waves.

Mechanisms of lattice thermal conductivity. The thermal energy of a solid body

mainly consists of elastic vibrations of its particles. For long waves (whose length

significantly exceeds the lattice constant), the propagation velocity equals the sound

velocity; therefore it has the order of magnitude of a few kilometers per second.1

For short elastic waves (heat waves), the velocity of propagation in crystal is sig-
nificantly reduced, although in absolute terms it would still be considerable if one

would assume the “ideal conditions” for propagation of thermal vibrations. How-

ever, the thermal resistance in most real dielectric crystals is large. Debye attributed

this discrepancy to the scattering of thermal waves. Much of the energy in the ther-

mal wave spectrum falls on waves whose length is comparable with the magnitude of

interatomic distances. The smaller the wavelength, the stronger the wave scattering

by static defects (inhomogeneous structure), which are caused by impurities, mosaic

structure, and mechanical deformations.

Ordinary (long) sound waves propagate in solids without noticeable scattering,

because their length is much greater than that of the atomic and microscopic struc-

tural defects (soundwaves reflect only from the surface of a body). Thus, for ordinary

acoustic wavelengths, solids are a good transparent medium, whereas waves that cor-
respond to a high-frequency range (in particular, the range of thermal fluctuations)

are intensely scattered by irregularities of structure of microscopic and atomic scales,

whose number in actual crystals increases with a decrease in the scale of defects.

Therefore crystals that are well transparent for long elastic waves prove to be a turbid
medium in case of short elastic waves, which have a strong diffuse-type scattering.

This reduces the effective velocity of short-wave propagation, just as particle colli-

sions reduce the rate of diffusion in gases, although the absolute velocity of the trans-

lational motion of particles can remain significant.

However, only this scattering of thermal waves on the static structural defects

(and their reflections from the crystal surface) cannot explain the large thermal resis-

tance in dielectrics. At normal and elevated temperatures, the main dissipation of
1Note. Usually, the velocity of sound υs in solids is measured with the sample placed between two pie-

zoelectric elements—one is an ultrasonic emitter and the other is a receiver of the transmitted signal. As

a rule, υsound ¼ 4–6 km/s and depends on crystal orientation. Sound velocity in quartz, for example, is

5 km/s; in silicon it is 9 km/s; and in germanium υs ¼ 5 km/s. In diamond, longitudinal sound wave

velocity reaches 18 km/s.
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heat occurs on the dynamic inhomogeneities of the crystal and is caused by thermal

movement. In other words, there is mutual scattering of thermal waves by thermal

vibrations—phonons.

The excited state of the crystal lattice is traditionally described by the existence of

the “ideal” phonon gas. Therefore the results obtained in the kinetic theory of gases

can be used for heat conductivity as:

λ¼ 1

3
Сυl¼ 1

3
Cυ2τ:

where C is the specific heat, ʋ is the average velocity of particles, l is the mean free

path (before collision with another particle), and τ is the free path time.

Phonons are often compared with gas. However, in contrast to gas, wherein the

number of molecules is constant in time (because molecules cannot pass through ves-

sel walls), phonons may both appear and disappear on the sample surface. Thus pho-

nons can be either reflected from surfaces of a sample or absorbed (or emitted) on its

faces, transferring its energy to the environment.

In harmonic approximation, the thermal chaotic motion of elastic waves means

that phonons propagate without interaction; therefore the principle of linear super-

position of fields is applicable. Elastic waves are associated with elastic shifts of par-

ticles that have to move independent of each other. Therefore, in harmonic

approximation, the thermal expansion of crystals cannot exist (α¼0) and thermal

resistance in an ideally infinite crystal should be absent (Rt¼0, i.e., λ ! ∞). The

heat flux in a crystal in the absence of the interaction of phonons is similar (in

the context of a gas) to the convective-type heat transfer that passes through a cyl-

inder open at both ends.

To take into account the possibility of power redistributionbetweendifferentwaves,

and the possibility of establishing thermal equilibrium in the crystal, it is necessary to

assume the anharmonicity, that is, the nonlinearity in thermal vibrations of atoms. Thus

theassumptionofdirectproportionalitybetweenparticledisplacementand the force that

tends to return the particle to equilibrium is unfair (Hooke’s law is not valid).

Thus, in case of phonon collisions, anharmonicity should obviously be taken into

account. Two mechanisms of phonon collisions are considered: normal processes

(N-processes) and flip-over processes (U-processes). The normal process of phonon
scattering means there are such collisions of phonons when the initial and final qua-

simomenta of phonons are equal. During the collision of two phonons, a new phonon

can be formed with preservation of total energy and total quasimomentum. Thus the

direction of heat transfer is preserved and therefore thermal resistance does

not occur.

Thermal resistance (incurring significant limitation of heat transfer) is due to

another scattering mechanism—a flip-over process—when the initial and final qua-

simomenta after a collision of phonons differ by the nonzero vector of the reciprocal

lattice. During such collisions, the energy is preserved, but the assumption of qua-

simomentum conservation becomes specific—due to the change in the direction

of phonon movement. These so-calledU-processes are the cause of the thermal resis-

tance of crystals.



1173.4 Thermal conductivity of solids
However, at low temperatures, the normal scattering process is particularly pro-

nounced; therefore the lower the temperature, the larger the lattice thermal conduc-

tivity. The effect of low temperatures with the assumption of quasimomentum

conservation is sometimes expressed by the assertion that, at sufficiently low tem-

peratures (when dominant scattering processes are normal processes), the lattice

thermal conductivity tends to infinity.

With a temperaturedecrease, thenumberof phonons that canparticipate in the flip-

over process decreases exponentially. Fig. 3.10 shows the typical experimental depen-

dence of thermal conductivity on temperature for pure dielectric crystals of different

sizes. Below temperatures of approximately 15K, thermal conductivity is limited by

elastic wave scattering on the surface of the crystal; therefore the larger the cross-

section of a sample, the higher is its thermal conductivity. However, at very low tem-

peratures λ(T), dependence is attributable solely to specific heat,which is proportional
toT3 and therefore thermal conductivity vanisheswith decrease in temperature.As the

temperature increases to more than approximately 15K, the effect of U-processes
becomes noticeable, and thermal conductivity, after peaking, begins to decrease.

The maximum λ(T) occurs when the average free path of phonon-phonon scat-

tering becomes comparable with the average free path of scattering on the surface.

On further temperature increase, thermal conductivity rapidly (exponentially)

decreases, because the probability of phonon-phonon scattering increases rapidly.

The higher the probability of scattering of individual phonons (which contribute

to the heat flux), the greater is the number of phonons, and therefore the relaxation

time decreases with increase in temperature.

Furthermore, because specific heat at increased temperatures is almost indepen-

dent of temperature (Dulong-Petit law), it is expected that thermal conductivity at a

higher temperature rangewill decreasewith a temperature increase. This fact has been
FIG. 3.10

Low-temperature lattice heat transfer of LiF pure crystals of different countermeasures, mm2:

1–8�6; 2–4�4; 3–2�2; and 4–1�1.
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confirmedbymanyexperiments: thermal conductivity above a temperature of approx-

imately 100K decreases with increasing temperature according to a power law:

λ� 1=Tx,

where 1<x<8. The uncertainty of the degree of this empirical law depends on the

competition between different processes of phonon scattering.

Thus the temperature dependence of thermal conductivity in the wide tempera-

ture range can be briefly described as follows. In case of very low temperatures, the

thermal conductivity is limited by temperature-independent scattering processes,

caused by the geometry of the sample and the purity of the crystal. Therefore, when

temperature increases, thermal conductivity increases in proportion to T3, in accor-

dance with specific heat dependence. This increase occurs until the temperature

reaches a limit at which flip-over processes (U-processes) become so intense that

the average free path of thermal waves becomes small. Here, thermal conductivity

reaches a maximum and then starts to fall off rapidly, exponentially, at first, due to

the increasing probability of flip-over processes with increasing temperature. Then,

this sharp (exponential) decrease of thermal conductivity is replaced by a slower

decrease due to the fact that, at increased temperatures, there are a very large number

of phonons that can participate by U-processes.
3.5 SUMMARY
1. The thermal properties of materials are attributable to the internal energy of

the lattice (formed by atoms, ions, and electrons), and these properties are

specific heat, thermal expansion, and thermal conductivity. Potential energy is
a part of the energy of the system or body that depends on the positions of

particles with respect to external force fields. In solids, the sources of

potential energy are Coulomb forces that cause attraction of opposite-sign

charges and repulsion of same-sign charges. Kinetic energy is the energy

of motion in solids that appears due to continuous oscillations of atoms

(or ions) caused by thermal excitations.

2. An important thermodynamic function is enthalpy (heat content), which
characterizes the energy state of a system or material. Enthalpy increases

with increasing temperature. Another thermodynamic function of great

importance is entropy, a measure of the internal disorder (chaos) in system.

Thermodynamic function, termed the Helmholtz free energy, is minimum in

the equilibrium state of a system that corresponds to a certain volume and

temperature.

3. The thermal expansion coefficient is a characteristic feature of the internal

connections of atoms, ions, or molecules and depends on the energy of

these bonds. This energy is largely determined by such fundamental

parameters of the crystal as its melting point. In cubic crystals (which include

most metals and many semiconductors), thermal expansion is an isotropic

parameter; however, in anisotropic crystals (e.g., pyroelectrics, piezoelectrics,

magnetics) thermal expansion has a pronounced anisotropic character.
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4. Heat capacity (and closely related to it specific heat) is the ability to store

thermal energy in a material when it is heated. Numerically, specific heat is the

energy that must be entered into a unit volume of material to heat it up by 1°.
Heat capacity depends on temperature; near zero Kelvin, it is extremely small

and then increases as T 3; however, in the range of normal and elevated

temperatures, specific heat varies only slightly with temperature change. Any

jump in specific heat is associated with crystal restructuring.

5. Several theories of specific heat in a lattice are considered. The first is the law

of heat capacity constancy (Dulong-Petit law), derived from classic ideas and,

with some accuracy, valid at normal and higher temperatures. Einstein’s

quantum theory of heat capacity was the first successful attempt to use

quantum laws to describe the low-temperature dependence of heat capacity.

Debye’s theory of heat capacity is based on the model of connected oscillators
and shows better agreement with low-temperature experiments than Einstein’s

theory. Born’s theory of lattice dynamics is the most perfect description of

crystal lattice dynamics that also includes the theory of heat capacity.

6. Heat capacity depends on the motion of atoms, but atoms in a crystal are

not isolated from each other. Therefore each atom cannot oscillate

independently, but moves together with adjacent atoms; therefore, when

excited, the elastic wave propagates in a crystal. In addition, each wave is

characterized by certain wave vector k and has a frequency ω. Thus this
wave can be represented by the oscillator that oscillates with frequency ω(k).
Such an oscillator model represents the elementary form of motion of atoms

in a crystal. Although the motion of each oscillator is elementary, it

involves many atoms of a solid. Ideally, each oscillator exists independently.

Therefore the energy of vibrational motions of atoms is a sum of energies

of individual oscillators.

7. If one relies on the positions of classic mechanics, the value of oscillator

energy could be anything: the greater the vibration amplitude, the higher the

energy U. However, in quantum mechanics, the energy of the oscillator can

assume only discrete values: U¼ћω (n+½), n¼0, 1, 2, 3, …. The quantum

properties of oscillators should be considered only for microscopic objects

because, when studying the movement of a macroscopic body, it is not

necessary to consider the discontinuity of energy levels as permissible

energy levels are located so close that their discreteness can be neglected.

8. In the gas of classic particles, the average energy of each particle equals

3/2kBT, where T is the temperature and kB is the Boltzmann constant. A solid

can be represented as a “vessel filled with oscillators” while energy of any

oscillator equals the sum of kinetic and potential energies (that, on average,

equals). The energy of each oscillator, according to laws of conventional

physics, equals kBT. This makes it possible to determine whether one can use

the formulas of conventional mechanics or would it be necessary to involve

quantum physics. The difference between the energy levels of oscillator ћω
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should be compared with thermal energy kBT. At normal temperatures,

kBT≫ћω; consequently, the applicability of conventional mechanics is

obvious, and it can be used in normal and high-temperature studies of solids.

9. The physical quantity ћωD is Debye’s energy. This equates to thermal

energy kBT at a certain temperature, called the Debye’s temperature, denoted
by θD. Thus ћωD¼kBθD; therefore θD ¼ћωD/kB. Important characteristics

for crystals include Debye’s frequency ωD¼2πνD and Debye temperature θD
that are interconnected by fundamental constants: Planck constant ћ and

Boltzmann constant kB.

10. In most solids, Debye temperature does not exceed “normal” temperature

(usually, θD<300K). Therefore almost all solids at normal conditions

(300K) do not exhibit quantum characteristics. However, there are some

exceptions, which are very interesting for applications (e.g., diamond,

aluminum nitride, beryllium oxide, magnesium oxide), when Debye’s

temperature is large (>1000K). Such crystals, being dielectrics, nevertheless

have considerable thermal conductivity under normal conditions and,

consequently, they are very important as substrates in electronics. At low

temperatures, the main contribution to the vibrational energy of a crystal is

produced by acoustic waves. The energy of the corresponding oscillators

is small; therefore mostly they are easily excited.

11. Thermal conductivity determines the ability to transfer thermal energy through

matter. Heat transfer is due to the thermal motion of structural particles of

matter (molecules, atoms, and electrons). Heat spreads from more heated parts

of the material to less heated parts. Heat transfer can occur in bodies with

nonuniform distribution of temperature, whereby mechanisms of heat transfer

are dependent on the physical state of a crystal. Thermal conductivity is

characterized by coefficient λ, which is numerically equal to the heat flow that

passes through a unit area at a temperature difference of 1K.
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4.1 DIFFERENT ELEMENTARY MOVEMENTS IN SOLIDS
A solid is characterized by strength, hardness, and rigidity that seemingly exclude the

possibility of any internal movement. However, there are many different types of

microscopic motions and displacements in solids.

Firstly, themovement of structural defects is possible—through the displacement

of interstitial atoms, dislocations, and vacancies (see Section 1.5). The energy of a

crystal is increased in the vicinity of defects so that defects can move (very slowly) in

order to find an energetically more favorable configuration.

Secondly, diffusion transfer is another type of motion of atoms or ions in solids.

This mechanism is the result of thermal fluctuations: the kinetic energy of some par-

ticles due to fluctuations can increase such that the particle can overcome a potential

barrier that separates one particle from another; this displacement disrupts the equi-

librium of the neighboring particle. In most crystals, the probability of such processes

at a temperature close to 300K is small, but it increases significantly when approach-

ing the melting point of the crystal. According to this, diffusion is a classic example

of the motion of atoms in solids [1].

Thirdly, electrons can move in solids, and their movement alone determines

many electrical and magnetic properties of a matter. It is obvious that cations and
anions show directional movement in a crystal in case of ionic conductivity. Com-

pared with the high velocity of electrons, the velocity of ions is very slow; thus in

investigations of electronic motion, ions or atoms can be considered as immobile
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particles (adiabatic approximation). The accuracy of this approximation is deter-

mined by the parameter (me/M)1/2—the ratio of electron mass me to the mass of

ion M [2].

However, elementary movements in solids are not limited by the listed mecha-

nisms. To explain the very diverse characteristics of solids, it should be imagined that

there are some other (“hidden”) dynamic changes that resemble the properties of

other aggregate states of matter—quasiparticles—which can behave as a gas (vibra-
tions of atoms in the lattice), as a quantum fluid (electrons in metal), and even as

electron-hole plasma (in semiconductors at certain conditions).

Formally, quantum (wave) mechanics describe microscopic objects only mathe-

matically and, certainly, any conventional model of quasiparticles is inadequate [3].

However, quantum mechanics allows retention of the idea of quasiparticles as some

mobile “clusters” within the crystal; moreover, they might be described by the over-

all picture of waves that appear as “wave clots” or “wave packets” (Fig. 4.1).

For example, the free movement of electrons in a crystal can be imagined as the

spreading of a wave packet (Fig. 4.1B). The actual electron might be located at any

point within this packet and the probability of finding the electron in any definite

point is close to zero. In Fig. 4.1, the wave amplitude describes only a probability

of finding a particle at some point; more precisely, this probability is proportional

to the square of the amplitude of a wave. This simple model only promotes the under-

standing that moving quasiparticle is accompanied by a wave.

The quasiparticle might be interpreted both as collective motions of some particles

in solids and as local vibrations of the atomic group in a crystal lattice. Although this
FIG. 4.1

Wave packet: one-dimensional (A) and two-dimensional (B) representation.
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oscillation involves many atoms, this movement nonetheless has an atomic scale,
because the average energy of each oscillation (phonons) is approximately kBT.

Another example of collective motion is the electronic excitation of atoms or

molecules that, for example, arises when the crystal lattice absorbs photons. This col-

lective excitation is not localized within a particular cell of the crystal, but moves

from cell to cell in the form of the exciton. The average energy of excitons has

the same order of magnitude as the energy of the excited state of individual atoms.

There are some phenomena in solids that involve several quasiparticles. For a

description of magnetic properties in ordered magnetics, magnons are used with

the assumption that the magnon is the quantum fluctuation of electronic spins [4].

The electrical charge transfer is described mostly by electrons (in dielectrics—by

the polarons), whereas heat transfer is attributed to phonons, electrons, andmagnons.

In accordance with classic laws, the average energy of thermal motion of particles

equals kBT and, therefore, the internal heat in a solid is E�NkBT,whereN is the num-

ber of particles. However, with decreasing temperature, this simple linear depen-

dence of energy on temperature E(T) is violated, because the internal energy of

solids tends to become zero much faster than would occur linearly (see

Section 2.7). This fact can be explained by the discrete (quantum) nature of the

energy spectrum of solids. Thus, with decreasing temperature, a part of the collective

excitations of atoms (or ions) freezes out. This process is initiated near Debye tem-

perature (usually, 200–300K); however, in some crystals, the nonlinearity in E(T)
dependence is observed at much higher temperatures. The greater the difference

between energy levels, the higher the temperature of freezing out of appropriate

motion. Therefore quantum motion in solids may occur at different temperatures.

With the exception of electrons, phonons, excitons, and magnons, the quanta of elec-

tromagnetic field—photons—can be excited and may spread in solid dielectrics and

semiconductors.

In summary, it can be concluded that:

• Materials consist of three kinds of elementary particles: electrons, protons, and
neutrons.Quasiparticles represent the convenient theoretical model of solids that

is used to explain the majority of crystals properties; it is obvious that

quasiparticles can exist only inside a solid.

• Movements in solids might be very complicated; thus some simple classic motion
in solids exists as transfer of structural defects, diffusion of atoms and ions, and

movement of electrons. However, only these cases are insufficient to describe the

electrical and thermal properties of solids, because more complicated collective
movements need to be considered. This is precisely the motivation for the concept

of quasiparticles and collective excitations. Thus the complicated motion of

actual particles in solid can be artificially described by the simple motion of

imagined quasiparticles, which behave more like noninteracting particles.

• Strictly stated, elementary excitations might be regarded as “quasiparticles” if

they are fermions, and as “collective excitation” if they are bosons. However, in
further discussions, both are united under the term “quasiparticle” without any
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precise distinction. For example, the free electron is a particle with definite value

of weight (rest mass), but in a crystal it behaves as if it has another “effective

mass” because it is affected by the environment; in both cases, the electron

always is the fermion. Another example is the phonon that characterizes

oscillatory motions of neighboring atoms in a crystal; it is the collective

excitation in a lattice because it has no “rest mass,” being the boson.

• Quasiparticles are a mathematical tool for simplifying the description of many

properties of solids. Instead of an inconceivable difficult account of “how a large

number of electrons and atoms moves in a specific coordinated way,” the

simplified concept of quasiparticles is used.

• In most solids, elementary excitations (quasiparticles) are treated as free

(independent) but, in reality, they are only very close to being understood as

independent. In many cases, it is necessary to take into account their interaction,

for example, when explaining the electrical resistivity by electron scattering on

phonons or the thermal resistivity by phonon-phonon scattering.

• Using the concept of “quasiparticles/collective excitations,” it is possible to deal

only with a handful of somewhat-independent elementary excitations, instead of

analyzing interactions of a very large amount of particles in solids (�1023cm�3).

Therefore, this is a very effective approach to simplify many-body problems in

quantum mechanics.

• The electron in solids is a quasiparticle because it is affected by forces and

interactions. The “quasiparticle-electron” has the same charge and same spin as

“elementary particle-electron,” and both are fermions. However, in a crystal, the

mass of the “quasiparticle-electron” can differ substantially from a normal

electron: it has an effective mass that might even be anisotropic.

• The hole is a quasiparticle consisting of a lack of electron in a crystal cell; the hole
has the opposite sign of charge to the electron, has an effective mass, and belongs

to the classification of fermions. This concept is commonly used in the context of

empty states in the valence band of a semiconductor.

• The exciton is a complex of an electron and a hole bound together.

• The polaron is a quasiparticle that describes an electron interacting with

surrounding ions by local polarization of the dielectric; polarons have increased

effective mass and belong to the class fermions [5].

• The phonon is a collective excitation associated with collective oscillation of

atoms (or ions) in a crystalline structure. It is a quantum of the elastic wave and

belongs to bosons, with a rest mass of zero.

• The magnon is a collective excitation associated with electronic spin structure in
the ordered magnetic lattice. It is the quantum of a spin wave; its rest mass is zero;

and it belongs to the classification of bosons.

• The photon inside a crystal is a quasiparticle because it is dependent on

interactions with material. In particular, a “photon-quasiparticle” has a modified

relation between energy and impulse (dispersion relation) that is described by the

index of refraction of the material.
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• The polariton is a special form of the photon in crystal, especially seen near its

resonance with the lattice vibrational mode. For example, an excited polariton is a

superposition of a photon on a photon.

• The plasmon is a collective excitation that is the quantum of plasma-type

oscillations (wherein electrons simultaneously oscillate with respect to the ionic

lattice).
4.2 QUASIPARTICLE STATISTICS
The fundamental law of statistical physics is the Gibbs distribution that determines

the probability of the microscopic state of a system that consists of a large number of

particles with specific values of position and momentum. If a large number of non-
interacting particles moves, the Maxwell-Boltzmann statistic is the determining

method of the physical system that describes its behavior according to laws of classic

mechanics.

In case of quantum system statistics, the energy distributions for fermions and

bosons have different peculiarities. In the event that particles, which are unlimited

in any state, constitute a special case of statistics, the Bose-Einstein distribution is

used and such particles are known as bosons. If particles are subjected to the Pauli

principle proclaiming that only one particle can exist in a certain state, this case cor-

responds to the Fermi-Dirac distribution and the particles are fermions. The macro-

scopic system that, at given temperature, is found in thermodynamic equilibrium has

such energy and other parameters that almost coincide with their mean values. At

high temperatures, when the probability of finding a particle in any state is much

smaller than one (because number of energy states is much bigger than the particles),

similar to the Fermi-Dirac distribution the Bose-Einstein distribution turns into the

classic Maxwell-Boltzmann distribution [6].

The Maxwell-Boltzmann distribution, which determines the probability nk of the
fact that the particle is found in a state with energy Ek at temperature T, is given by a
formula:

nk ¼ e μ�Ekð Þ=kBT ,

where μ is the chemical potential, T is the temperature, and kB is the Boltzmann con-

stant, showing the relationship of temperature to energy. The Boltzmann constant is

the ratio of the universal gas constant R to the Avogadro number NA: kB¼R/
NA¼1.38�10�23 J/K.

Electrochemical potential is free energy that falls to one particle in a state of ther-
modynamic equilibrium with the environment. In turn, free energy is a part of the

total energy through which the system interacts with the environment. Statistical

thermodynamics determines electrochemical potential as μ¼ (E�TS+PdV)/N,
where E is the total energy of the system, P is the pressure, V is the volume, S is

the entropy, and N is the number of particles in the system. The Boltzmann
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distribution is valid only in cases when nk≪1. In solids, this condition can be real-

ized at normal and higher temperatures.

In classic statistics, the particles of an ideal gas have only kinetic energy. The

number of particles, whose impulses are found in the interval of (p, p+dp), is deter-
mined by the formula:

dnp ¼ N

V 2πmkBTð Þ3=2
e�p2=2mkBTdpxdpydpz, (4.1)

where m is the particle’s mass, V is the volume, and N is the number of particles in a

system. When this formula is written in terms of velocities, it becomes the Maxwell
distribution:

dnV ¼N

V

m

2πkBT

� �3=2

e�mv2=2mkBTdvxdvydvz, (4.2)

Fig. 4.2A shows the distribution of particles by velocities according to Maxwell-

Boltzmann statistics; the dotted curve corresponds to a higher temperature.

When charged particles are the ideal gas located in the gradient of an external

field with potential U(r), free energy changes. In this case, the Boltzmann distribu-

tion is dependent on coordinate r and density n0 of the particles:

n rð Þ¼ n0e
�U rð Þ=kBT : (4.3)

Formulas similar to Eq. (4.3) are valid in semiconductors and dielectrics to determine

the distribution of charge carrier density (electrons or holes) in the electrical field. If

free energy has components of both kinetic and potential energy, the electrochemical
potential should be introduced in the Maxwell-Boltzmann formula as: μ�U(r).

Quantum statistics explores systems that consist of a large number of particles

that obey the laws of quantum mechanics. The main purpose of quantum statistics is
FIG. 4.2

Comparison of classic (A) and quantum (B) distribution of particle by velocities, A—

distribution of gas molecules according to Maxwell-Boltzmann statistics; B—quantum Fermi-

Dirac distribution for electronic gas in metal; the dashed line corresponds to low, and the solid

line to elevated, temperature.
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to find the distribution function of particles in a system by various parameters—

coordinates, momentums, energy, and so on—as well as to provide calculations

of the average values of parameters, characterizing the macroscopic state of the

whole system of particles. This system is degenerate if its properties are quite dif-

ferent from that of the classic system. The behavior of both Bose and Fermi gas of

quasiparticles differs from that of the classic gas because they are degenerate gases.

The degeneration of gas of quasiparticles is significant when the temperature is

rather low (phonons in crystals) as well as in the event of very high densities (elec-

trons in metals). The temperature of degeneracy is θD, below which quantum prop-

erties manifest themselves. In case of T≫ θD, the behavior of particles is described
by classic laws [7].

Quantum statistics is based on the principle of identity (i.e., the principle of indis-
tinguishability) of microparticles: for example, all electrons in metal do not differ

from each other. Besides, the Pauli principle should be applied for fermions: in each

quantum state, only one particle can exists. The function of full distribution N(E)dE
is introduced, reflecting the number of particles, which have energies in the interval

from E to E+dE. This function is served as a product of the number of states g(E)dE
and the distribution function f(E) attributable to the energy interval dE:

N Eð ÞdE¼ f Eð Þg Eð ÞdE: (4.4)

The distribution function f(E) determines the probability of filling states by particles,

attributable to the energy interval dE, that is, the average number of particles that are

in this state. Therefore, to find a full distribution function, the functions g(E)dE and

f(E) should be calculated. Depending on wave function symmetry, all elementary

particles are divided into two classes:

• particles with half-integral spin ) fermions;

• particles with an integral spin ) bosons.

Fermions and bosons show differing behavior toward microstates: in any cell (i.e., in

each quantum state), no more than one fermion with a definite set of quantum num-

bers can exist, whereas the number of bosons with the same parameters may be

arbitrary.

Fermi-Dirac statistics for ideal gas of fermions (Fermi gas) is described by a

function of energy distribution as:

f Eð Þ¼ exp E�μð Þ=kBT½ �+ 1f g�1: (4.5)

The electrochemical potential μ determines the change of internal energy in a system

when one particle is added, under the assumption that all other parameters (that affect

internal energy) are fixed. According to function (4.5), the probability that the par-

ticle is in state with energy E¼μ equals ½. As any probability must be positive, the

value of the electrochemical potential μ is always less than the energy E of the ground

state of quasiparticles.

In their main state, fermions occupy the lowest possible energy levels. The impo-

sition of the Pauli principle results in all of the lowest levels of the fermions being
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occupied at zero temperature (when ground state would be realized). Thus the high-
est occupied level is the Fermi level, and the distribution function has a stepped form
(Fig. 4.2B). When the temperature increases, the probability emerges that some fer-

mions of the system may have energy greater than the energy of the Fermi level.

Therefore the probability that the Fermi energy level is free is nonzero.

Bose-Einstein statistics describe the ideal gas of bosons (the Bose gas of quasi-
particles). The “quantum particle-boson” differs from particles of classic physics

because it cannot be distinguished (again, the principle of particle indistinguishabil-

ity is valid). In addition, the wave function of bosons is always symmetric as to par-

ticle permutations. The energy distribution of bosons follows from Gibbs canonical

distribution (but with a variable number of particles), presuming that the number of

identical bosons in a given quantum state can be arbitrary:

N Eð Þh i¼ f Eð Þ¼ exp E�μð Þ=kBT½ ��1f g�1: (4.6)

This function is Bose-Einstein distribution, which determines the probability of the

quantum-mechanical many-boson system that exists in a single quantum state. The

application of Bose-Einstein statistics makes it possible to explain the specific heat

temperature dependence of solids at low temperatures (see Section 2.7, Debye’s tem-

perature). A consequence of quantum Bose-Einstein statistics at low temperatures is

the ability to exist in a system as a special phase of matter consisting of bosons—the

Bose condensate.
The value of the electrochemical potential μ can be found in a condition when the

sum
PhN(E)i is the total number of particles in a system:

X
N Eð Þh i¼N:

If expression exp[(E�μ)/kBT] ≫ 1, both the Bose-Einstein and the Fermi-Dirac dis-

tributions turn into the classic Maxwell-Boltzmann distribution:

N Eð Þh i¼A exp �E=kBTð Þ, (4.7)

where A¼exp(μ/kBT). Thus, at high temperatures, the “quantum gas” of quasiparti-

cles behaves as a classic gas.

From bosons statistics, it follows that bosons tend to collectivization—to gather

(to condense) in one state. This property of bosons is the basis of quantum light gen-

erators (lasers), and it is the cause of such physical phenomena as superconductivity

and superfluidity (in quantum liquids). Moreover, Bose-Einstein statistics enable an

explanation of electromagnetic radiation when it is found at thermal equilibriumwith

a body. Precisely, the application of this statistic explains the radiation of a black-

body. Besides this, the quanta of light—photons—are examples of Bose particles.
4.3 PHOTONS
When developing the theory of external photoelectric effect, Einstein showed that

light is not only emitted and absorbed by the quanta, but also is a stream of peculiar

particles (photons) that extend with a discrete portion of energy hν, where ν is the
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light frequency. Based on the idea of the quantum nature of light, Einstein explained

not only photoelectric effect but also many other phenomena that cannot be

explained in terms of the previous electromagnetic theory of light.

The duality in the nature of light was established much before the wave proper-

ties of electrons were discovered. The first idea of a relatively corpuscular (discrete)
structure of light was proposed because it was consistent with experimental facts.

However, discussion among scientists continued for a long time between supporters

of the corpuscular theory of light and proponents of the wave theory of light. Finally,
using wave theory, a rectilinear propagation of light and laws of refraction and reflec-

tion were explained. After the development of electromagnetism theory, doubts

about the wave nature of light disappeared [3].

However, the only possible explanation of the law of “black-body” radiation
(and explanation of the photoelectric effect) can be explained on the basis of corpus-

cular properties of light: it can be considered as photons—unusual particles with no
rest mass. It can be shown that Coulomb’s law (a relatively slow decrease of elec-

trical interaction with distance) owes to the zero rest mass of a photon.

It is known that the electrostatic (Coulomb) interaction of charged particles

causes a very large force (as compared, e.g., to gravitational interaction). Consider

the interaction between charged particles q1 and q2. If the second particle would be
removed to “infinity,” the first particle will create an electrical field, which

has potential φ that is proportional to q1/r. If one would bring the removed particle

q2 to distance r, then a force will act proportionally to q1q2/r
2 and be directed

from q1 (if electrical charges have the same sign), or to q2 (if charges have the oppo-
site sign). In the theory of electricity, the concept of potential is introduced.

The existence of an electrical field (gradient of potential) indicates that the point

where the electrical charge is located has a peculiarity. It was precisely to explain

the fundamental interactions of electrical charges that the concept of the electrical
field was introduced, in order to avoid the idea of “long-range interaction”

(i.e., immediate power effect on a distance), which is contrary to the relativistic

theory.

In classic physics, charged particles interact by a scheme:

particle! electromagnetic field! particle:

The corresponding quantum scheme is as follows:

particle! photon! particle:

Therefore a charged particle, during its movement, creates a photon, which can be

absorbed by another particle, and this determines strength of particle interaction

[4]. Thus it should be taken into account that a photon, having an electromagnetic

nature, is electrically and magnetically a neutral particle.
Furthermore, it is interesting to note that Coulomb’s law (when the force of inter-

action of charges is inversely proportional to the square of the distance between

charged particles) is a consequence of the fact that the mass of a photon is zero

(mγ¼0). Precisely because the rest mass of the photon is zero, it has light velocity

in vacuum.
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The photon, being an electromagnetic wave, also demonstrates duality, similarly

as an electron demonstrates the particle-wave dualism. The corpuscular character-
istic of any object is its impulse,whereas the characteristic property of the wave is the
wave vector. They are related by the de Broglie ratio,

p¼ℏk, (4.8)

which can be written inversely as: ℏk¼p. The corpuscular properties of electromag-

netic waves become apparent, for example, when a wave with frequency ω cannot

have energy less than ℏω (in contrast, according to classic concepts, wave energy is

proportional to the square of its amplitude and can be arbitrarily small).

The spin of a photon is an integer value that equates to unity because photons

(unlike electron) belong to the class of Bose particles (bosons). It should be noted

that the photon can be found only in one of two spin states: +1 and �1. These

two states of the photon means the right and the left circular polarization of a wave,

respectively; this is important for understanding many electro-optical, acousto-

optical, and magneto-optical effects.

Thus the peculiarities of the photon are zero mass, and speed c equals the speed of
light. The greater the energy of a photon, the greater its momentum p, that is, the
smaller the length of the electromagnetic wave λ, inasmuch as the impulse is

p¼ℏk¼2πℏ/λ. The dispersion law of photon, that is, the relationship between its

energy and impulse, is expressed by the simple formula

E¼ cp:

In Section 2 and Fig. 2.17, this dispersion law is shown in another form—as the lin-
ear dependence of angular frequency ω¼E/ℏ on the wave number k¼p/ℏ. This lin-
ear dependence of E(p) is quite different from the E(p) dependence for particles that
have a determined rest mass (m 6¼ 0) and quadratic dispersion law: E¼p2/2m. How-
ever, from the relativistic formula for energy E2¼c2p2+m2c4, one can see that, in

case of a very large value of impulse (i.e., when p ≫ mc) any quasiparticle can show
linear dependence “energy—impulse”: E � cp.

Furthermore, it should be noted that technologies using ultrahigh frequencies and

waveguides can convert electromagnetic waves (in this case, microwaves) into

“slower waves.” Thus the “microwave photon” really obeys the general law of dis-

persion: ℏ2ω2¼E+c2p2, where E is the energy of the “rest photon” that is inversely

proportional to the square of the waveguide with radius R (in circular waveguide).

This allows the introduction of the concept of the “heavyweight photon” m*¼βℏ2/
R2c2 that provides additional proof of the corpuscular properties of photons.

When photons penetrate into transparent media (dielectric), their velocity υ is

reduced in proportion to the refractive index n: υ5c/n (this is equivalent to a

corresponding reduction of the light wavelength in a crystal). At optical frequen-

cies (�1015Hz), movement in dielectric photons excites valence electrons in the

lattice. Below the optical range (the far-infrared frequency range, ν<1013Hz),

photons excite optical phonons and can move in a mixed photon-phonon state

(polariton).
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Therefore the photon is an elementary particle, usually designated by the symbol

γ; its rest mass is 0, its spin is even (�1); it has no charge, and it obeys the Bose-

Einstein statistic. The photon is a quantum of light (as well as all other forms of

electromagnetic radiation). Because the photon has zero rest mass, it allows long-

distance interactions. The photon exhibits wave-particle duality, demonstrating

properties as a wave and as a particle.
4.4 PHONONS
The local microscopic vibrations in the crystal lattice—phonons—are likened by

analogy with photons. Unlike electrons and atomic nuclei, phonons are not real par-

ticles but only quasiparticles (“like particles”)—convenient objects used to describe

many electrical, magnetic, thermal, optical, and mechanical properties of a crystal.

The crystal itself, in this case, can be considered a medium for the dissemination,

interaction, and transformation of the “gas of quasiparticles.”

Phonons have already been mentioned earlier in connection with Debye’s theory

of heat capacity. Further on, the highly simplified lattice-dynamics Born’s theory is

considered, which constitutes the foundation of crystal physics [8]. This theory, as set

out in Section 3.3 when describing Debye’s and Einstein’s theories, also explains the

temperature dependence of specific heat at low temperatures by cubic law (C�T3).
However, in addition, this theory makes it possible to link lattice vibrations (pho-

nons) not only with the thermal properties of crystals, but also with electrical and
magnetic properties—electrical conductivity, electrical polarization, energy losses,

and electrical breakdown—which are important for electronics as well as to explain

the magnetic properties of ferromagnetic crystals, phase transitions in crystals, and

so on. Therefore, some aspects of Born’s dynamics theory are discussed across dif-

ferent chapters of this book.

Further, in simplified form, only the basic ideas of Born’s theory, which

describe lattice vibrations (phonons), are presented. In Fig. 4.3, not a single oscil-

lator is considered, as was done in Chapter 3 with Fig. 3.6; however, the model of

the one-dimensional monoatomic crystal is depicted in the form of a linear chain of

elastically coupled atoms that are in equilibrium under forces of attraction and

repulsion. It is believed that potential relief, describing the position of each atom,

is a parabolic well; therefore oscillations of atoms can be described by a harmonic
oscillator model.

Firstly, it is assumed that the mass of atoms in a one-dimensional chain is the

same and they are not charged (this corresponds to a homeopolar or molecular crys-

tal). For simplicity, it is assumed that elastic displacements (oscillations) are possible

only along the longitudinal axis of a chain, and the interaction is taken into account

only between the nearest neighboring atoms.

In contrast to the previously discussed oscillator with “fixed bearing” (Fig. 3.6),

in the model shown in Fig. 4.3A, the displacement of each atom influences displace-

ments of two neighboring atoms; therefore the wave of displacements should spread



FIG. 4.3

Elastic waves in a one-dimensional atomic crystal: (A) chain of elastically coupled atoms;

(B) longitudinal elastic wave; (C) wave’s dispersion in first Brillouin zone; (D) transversal

acoustic wave; (E) longitudinal acoustic waves; and (F) dispersion law (“branches” of

acoustic waves).
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through the entire one-dimensional chain as an elastic wave (Fig. 4.3B). This peri-
odic process (in space and in time) can be described by the equation

x¼ x0 exp i ωt�kxð Þ½ �, (4.9)

where ω¼2π/T is the circular frequency that characterizes wave periodicity in time,
whereas k¼2π/λ is the wave vector modulus, characterizing the spatial periodicity
of a wave.

The phase velocity of such a wave process x¼x0 cos(ωt�kx) is determined by

the ratio υph¼λ/T¼ω/k, whereas the group velocity that describes the propagating

of energy is determined by the ratio υgr¼dω/dk. The feature of elastic wave prop-

agation in a discrete chain of atoms is the impossibility of propagation of such a



1334.4 Phonons
wave, which has a length less than 2a: no physical barrier exists between atoms. The

correspondent dispersion relation that describes the connection between frequencyω
and wave number k (in other words, the relationship of elastic oscillation energy

E¼ћω to quasi-impulse p¼ћk) is given by the expression:

ω¼�2

ffiffiffiffi
c

m

r
sin

ka

2
: (4.10)

This dependence is shown in Fig. 4.3C in the range of the wave vector in interval

�π/a � k �+π/a. The positive value of k corresponds to waves propagating in

the positive x-direction, whereas negative k corresponds to waves moving in the neg-

ative x-direction. The restriction of a wave vector space by an interval (�π/a…+π/a)
is due to the discreteness of the oscillating system (in which no waves with length less

than 2a are possible). The indicated range of the wave vector values is the first
Brillouin zone.

If the displacements of atoms are perpendicular to the direction of wave propa-

gation, that is, x ? k (Fig. 4.3D), the transverse wave will spread. These waves have
the same dispersion law as longitudinal waves, but their frequency is lower. The

maximal frequencies of longitudinal and transverse waves are located on the bound-
ary of the Brillouin zone: ωL ¼ 2

ffiffiffiffi
cL
m

p
, ωT ¼ 2

ffiffiffiffi
cT
m

p
, where cL and cT are the stretching

and bending elasticity, respectively. In most crystals, these frequencies are located in

the range of 1012–1014Hz. The cutoff frequency of elastic oscillations of atoms in a

crystal is the Debye frequency.
In case of small-wave vectors, that is, in the long-wave approximation, when

k ! 0 and λ ! ∞ (near the center of the Brillouin zone) sin(ka/2)! ka/2, the phase
velocity of waves is almost equal to their group velocity; consequently, spatial dis-
persion is practically absent:

υph ¼ω=k¼ a
ffiffiffiffiffiffiffiffi
c=m

p
¼ dω=dk¼ υgr:

In the event of large values of wave vectors k (short-wave approximation, near the

boundary of the Brillouin zone), these velocities vary considerably. This means that

spatial dispersion takes place on the boundary of zone υgr ! 0.

It is important in crystal physics and some applications that the elastic displace-

ments of atoms determine the propagation of sound waves; therefore υgr corresponds
to sound (or ultrasound) wave velocity. Those crystal oscillation modes that are char-

acterized by the dispersion law (4.10) are acoustic modes. Acoustic waves in Fig. 4.3
are denoted as: LA—longitudinal acoustic wave and TA—transverse acoustic wave.

The quantization of elastic waves is associated with concept of quasiparticles—

longitudinal and transverse phonons. Thus wave packets of elastic oscillations in

the crystal lattice are phonons by analogy with photons—the quanta of

electromagnetic waves.

Curves LA and TA (in Fig. 4.3F) correspond to branches of phonon modes in the

first Brillouin zone, and they show the relationship between the frequency ω and

wavelength λ ¼ 2π/k in a crystal. Monochromatic acoustic waves can be excited

in crystals experimentally, for instance, by a piezoelectric vibrator. However, in a
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crystal at any nonzero temperature, many chaotic acoustic waves exist (with wide

distribution of their frequencies and wave vectors); these phonons represent the ther-
mal reservoir of the crystal lattice [9].

As mentioned earlier, the maximal frequency of acoustic phonons is located on

the boundary of the Brillouin zone; according to Born’s model, this frequency ωB is

less than ωD—the maximal frequency in Debye’s model (Fig. 4.4A). In addition, for

both models as a phase, the group velocities are characterized by dispersion
(Fig. 4.4B). Thus group velocity is zero at the boundary of the Brillouin zone,

whereas phase velocity is minimal.

Acoustic vibrations of atomic lattices are “electrically inactive” (but only in cen-

trosymmetric crystals), because elastic displacements in this case occur with an elec-

trically neutral (uncharged) center of mass of the unit cell. Accordingly, at acoustic

oscillations, any electrical polarization does not arise (if the crystal is nonpolar).

The electrically active components are not acoustic but are optical phonons. In
the simplest model of monoatomic crystal (considered in connection with Figs. 4.3

and 4.4), the elementary cell consists of only one atom; therefore optical phonons are

absent: the simplest one-atomic (or one-molecule) crystal holds only acoustic (lon-
gitudinal and transverse) phonons.

However, in more complicated structures of crystals (when the unit cell contains

two or more atoms), the displacement of particleswithin a unit cell occurs. Due to the
very high elastic forces when there are such “counter” displacements, the frequency

of these movements lies in the optical range (more precisely—in the far infrared part
of the optical range) [9]. Coordinated in many neighboring elementary cells, these

“internal” oscillations are optical phonons.
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FIG. 4.4

Phonon characteristics in a one-dimensional chain of atoms in Born’s model:

(A) branches ω(k) for waves propagating in positive (k>0) and negative (k<0)

directions, in comparison with the dotted line that shows ω(k) for Debye’s model; and

(B) dependence of phase and group velocities on wave number.
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Fig. 4.5 shows a one-dimensional model of the simplest ionic crystal—a linear

chain of cations and anions with the unit cell lattice parameter a. In this model, as in a

model shown before (see Fig. 4.3), the acoustic vibrations LA and TA exist.

However, together with these another type of phonons appears, namely, the opti-

cal phonons. In case of longitudinal optical waves (LO), the displacement of ions is

parallel to the direction of wave propagation, that is, x jj k (Fig. 4.5B). If displace-
ments of ions are perpendicular to the direction of wave propagation, that is, x ? k,
the waves are transverse (TO; Fig. 4.5C). These waves have a similar dispersion law

as for longitudinal waves, but their frequencies are lower (Fig. 4.5D; because the

bending elasticity is less than the stretching-compression elasticity). In this model,

the acoustic oscillations LA and TA also exist, but are not shown in Fig. 4.5.

Unlike acoustic frequencies, in case of optical oscillation modes (LO and TO) the
spatial dispersion is the obvious characteristic in the whole Brillouin zone

(Fig. 4.5D). In this case, ionic oscillations are determined by the elastic force acting

between neighboring ions, and therefore their frequency is not strongly dependent on
the wavelength. The frequency of optical oscillations always corresponds to the far-
FIG. 4.5

Elastic waves in the one-dimensional ionic crystal: (A) chain of elastically bound ions;

(B) longitudinal optical wave; (C) transverse optical wave; (D) dispersion law (“branches”) of

optical and acoustic waves; and (E) frequency dispersion of dielectric permittivity.
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infrared optical range (1012–1014Hz). When the wave vector is reduced (k ! 0 that

means λ! ∞), frequencies of the optical branches LO and TO do not decrease (as in

the case of acoustic phonons); moreover, these frequencies even increase up to the

limits of ωLO and ωTO.

In the range of the far-infrared spectrum, the dispersion of the crystal dielectric

permittivity should be seen: at first, ε(ω) increases and then, at frequency ωTO, per-

mittivity falls sharply to negative values (Fig. 4.5E) that correspond to the model of

the oscillator:

ε ωð Þ¼ εоpt +
εir

1� ω=ωТОð Þ2 : (4.11)

The resonant frequency of this oscillator is ωTO (the frequency of transverse optical

phonons), whereas the longitudinal optical frequency ωLO corresponds to ε(ωLO)¼0

(Fig. 4.5E).

To describe optical-range vibrations by oscillator, besides the ion inertia force

m(d2x/dt2) and the elastic returning force cx, it is necessary to consider the electrical
force of ionic interaction qF, where q is the charge and F is the microscopic Lorentz

field:

m d2x=dt2
� �¼�cx+ qF:

In the polarized environment, the molecular Lorentz field differs from the average

macroscopic field E: F¼E+P/(3ε0). In case of transverse optical oscillations, the

vector of elastic displacement is perpendicular to the direction of wave propagation

(x ? k); therefore, on average, the macroscopic field E¼0, because adjacent

“combs” of polarization waves are different in their polarity (Fig. 4.6A). Conse-

quently, in Eq. (4.11), written for the transverse mode, it is necessary to make a sub-

stitution: F¼ 1
3ε0

P. Polarization, as usual, can be expressed in terms of induced

dipoles that have a density N and dipole moment p¼qx, so P¼Nqx. As a result,

the oscillator’s equation takes the form

m
d2x

dt2
+ c�Nq2

3ε0

� �
x¼ 0,

where the intrinsic frequency of the oscillator that corresponds to the frequency of

transverse optical phonons is

ω2
TO ¼ 1

m
c�Nq2

3ε0

� �
: (4.12)

Thus the Lorentz field F reduces the elastic constraint and accordingly decreases the
oscillator frequency ω0¼ (c/m)1/2 to the frequency of transverse optical phonons,

that is, promotes “softening” of vibrations (reducing frequency ω0 of oscillator fre-

quency: ωTО<ω0 [5]. This event is associated with the polarization of the “short-

circuited” crystal, when D¼P (because D¼ε0E+P and E¼0).

In case of longitudinal oscillations, the local Lorentz field is significantly differ-
ent (Fig. 4.6B) because the electrical field E is directed opposite to polarization P:
ε0E¼�P. In the macroscopic theory of polarization, this case corresponds to the
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Lattice elastic waves and dispersion in a one-dimensional model of ionic crystal.
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“open-circuited” crystal with induction D¼ε0E+P¼0. Taking into account the

Lorentz field in Eq. (4.11), it is possible to obtain for longitudinal waves:

F¼E +
P

3ε0
¼� P

ε0
+

P

3ε0
¼� 2P

3ε0
:

The corresponding equation of the oscillator, taking into consideration P¼Nqx,
acquires the following form:

m
d2x

dt2
+ c+

2P

3ε0

� �
x¼ 0:

The intrinsic frequency of the oscillator, which corresponds to the longitudinal vibra-

tions, is

ω2
LO ¼ 1

m
c+

2Nq2

3ε0

� �
: (4.13)

Therefore the frequency of the oscillator that characterizes longitudinal optical

vibrations in the polarized medium is higher than the frequency of the isolated oscil-
lator (ω0¼ (c/m)1/2). These results, obtained in Eqs. (4.12), (4.13), explain the loca-

tion of phonon branches: LO lies over TO, as well as the location of two characteristic
frequencies ωLO and ωTO (Fig. 4.6C).

The dielectric permittivity of ionic crystals depends on a difference in the fre-

quencies of longitudinal and transverse optical oscillationsωLO andωTO in the center
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of the Brillouin zone. The equation that describes far-infrared polarization of ionic

crystals maintains the frequency of transverse optical phonons in its long-wave limit:

ε ωð Þ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ

1� ω

ωTO

� �2
,

with the corresponding dielectric contribution of ionic polarization being

ε 0ð Þ� ε ∞ð Þ¼ Nq2

ε0mω2
TO

¼ Nq2

c�Nq2

3ε0

: (4.14)

This equation implies that the stronger the ionic polarization influences the dielectric

properties of crystals, the higher ionic charge q and the less elastic the coupling coef-
ficient of ions, c [5].

Eq. (4.14) allows quantitative calculation of the infrared contribution to permit-

tivity. Indeed, the concentration of ions N can be found according to the density of a

crystal:m is the reduced mass of oscillating ions, q is the ionic charge, and ωTO is the

frequency of “residual” rays (determined experimentally by infrared wave reflec-

tions from the surface of the studied crystal). The coefficient c that describes the elas-
tic coupling of ions can be calculated from macroscopic elastic properties.

For example, experimental data on phonon dispersion in a simple two-ion crystal

NaI are shown in Fig. 4.7A. These data are compared with dispersion in the diatomic

crystal diamond (Fig. 4.7B). It is noteworthy that, in the ionic crystal of sodium

iodide in the center of the Brillouin zone (q¼0), frequencies of longitudinal and

transverse optical modes are different, ωLO>ωTO, whereas, in case of a diatomic

crystal, they are the same: ωLO¼ωTO.

Comparison of heat capacity in the theories of Einstein and Debye shows that the

Debye approximation better describes temperature dependence of specific heatC(T),
FIG. 4.7

Dependence of phonon frequency on wave vector in direction [100] for the two-ionic crystal

NaI (A) and diatomic crystal diamond (B); q¼ka/π, the normalized wave vector.
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especially at low temperatures (see Chapter 3). This can be explained by taking into

account that the atomic spectrum of atomic oscillations in crystals consists of optical

and acoustic branches. It is obvious that Einstein’s theory describes exactly the opti-
cal branches of crystal oscillations, wherein frequency dependence on the tempera-

ture is observed only in a narrow interval of wave vectors (in contrast to acoustic

oscillations) [7]. In addition, in case of low temperatures, mainly acoustic phonons
are excited as in the spectrum satisfactorily described in Debye’s theory.

It should be noted that, even at low temperatures, there are enough phonons in

crystals: for example, at a temperature close to one-tenth of Debye’s temperatures

(20–50K), 1cm3 of the crystal contains approximately 1020 phonons (recall that

1cm3 accommodates �1023 atoms). As the temperature increases, the concentration

of phonons increases hundreds of times with a simultaneous increase of their average

energy.

Elastic waves in crystals are more diverse and complex, as compared to those in

other environments. In gas (e.g., in air) or in liquid, only fluctuations of density (or
pressure) are possible, that is, only longitudinal sound waves can spread. However,

in solids, in addition to waves of density fluctuations, shear (transverse) waves can
move. In case of density waves, atoms oscillate along thewave vector k (longitudinal
waves), whereas in case of shear waves, atoms can also oscillate in a plane, perpen-

dicular to the wave vector k (transverse waves). Note that, in low-symmetry crystals,

two transverse waves are different.

In general, in a crystal, 3ξ types of oscillation modes can propagate, where ξ is the
number of atoms (or ions) in the unit cell of the crystal [9]. For example, in the NaCl

crystal, a unit cell contains two ions (ξ¼2); therefore the 3�2¼6 modes of elastic

waves can propagate, whereas in metallic sodium, where unit cell has only one atom

Na (ξ¼1), only three modes exist. Of the 3ξ types of waves, three are acoustic waves.
A distinctive feature of these waves is that, in case of small-wave vectors (i.e., large

wavelengths), acoustic waves have a small frequency. At very small values of wave

vector k (when it goes to zero), the frequency of acoustic oscillation tends to zero.

The other (3ξ�3) types of waves are optical waves (they were first detected by opti-
cal methods of investigation). As mentioned earlier, the optical wave frequencies

ωLO and ωTO are maximal when the wave vector k is zero.
Each of the 3ξ dependences of the ωj(k) type (j enumerates indexes: j¼1, 2, …,

3ξ) is a periodic function of the arguments. This periodicity is a manifestation of the

general properties of a crystal and reflects periodicity in the arrangement of atoms in

real space; this, furthermore, leads to a periodic arrangement of cells in the “inverse”

k-space (the dimension of k is [m�1]). In summary, all considerations of crystal lat-

tice vibrations can be limited by only one unit cell in the first Brillouin’s zone.

Quantization of elastic waves corresponds to the concept of quasiparticles, which

are longitudinal and transverse collective displacements of lattice atoms. Knowledge

of the phonon spectra is necessary to analyze and calculate many physical properties of

solids—optical, thermal, electrical, and so on. In experiments, the dispersion curves of

longitudinal and transverse waves usually are determined in directions of highest sym-

metry. This information can be used to calculate the numerical density of states. A very

important step to interpret the spectra of oscillations is the analysis of critical points.
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An example of the density of states calculations of a spectrum is shown in Fig. 4.8

for aluminum [10]. The sharp maximum in the total dependence of states density

D(ω) corresponds to the maximal frequency of certain types of phonons. In crystals

with complex many-atom lattices, the peculiarities in spectrum may also be associ-

ated with optical branches of vibrations.

When phonons are compared with real particles, it should be noted that the num-

ber of particles at their collisions remains unchanged, but the number of phonons at

collisions is not saved. However, the main difference between phonon collisions and

real particle collisions is that, during collision of phonons, the impulse is not
preserved.

Because the behavior of phonons determines the thermal properties of solids, in

investigations of heat capacity and heat conductivity it is possible to obtain informa-

tion about the main properties of phonons. The study of acoustic phonons at a low

value of pulse is a relatively simple procedure, as they are ordinary sound waves.

Experimental data concerning velocity and attenuation of sound in crystals make

it possible to obtain the characteristics of long-wave acoustic phonons. To study

long-wave optical phonons, investigation of resonant absorption of light by crystals

is used (where, upon falling on the crystal, a photon is converted into a phonon). As

the light velocity is very large, optical phonons are born with very small impulses.

Therefore, by optical research, experimental data can be obtained only for phonons

near the center of the Brillouin zone.

Nevertheless, a method of inelastic scattering of neutrons in crystals exists that

gives the most detailed spectrum of phonon branches. Flying through a crystal, a neu-

tron excites oscillations of atoms. Thus it might be said that the neutron generates

phonons. The larger the path of the neutron in a crystal, the greater the probability

of phonon generation. By an inelastic neutron scattering study, it is possible to

directly derive the law of phonon dispersion in the entire Brillouin zone.
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4.5 MAGNONS
Besides charge and mass, some elementary particles (electrons, protons, or neutrons)

are characterized by a spin that determines their magnetic properties (word spin
means “spindle” or “rotation”). Thus the particles cannot be imagined as “fixed

balls.” If classic concepts are applied, some particles may be represented as

“rotating balls.” However, the rate of this rotation cannot be changed, because what
is interpreted simplistically as a “rotation” is really an intrinsic property of the par-
ticle itself. An electron or proton cannot change the value of its spins nor the value of

their mass or their charge.

The classic idea of “spin” is an extreme simplification, and this concept contra-

dicts the theory of relativity. In fact, spin is not a consequence of spatial rotation, but

rather is a specific property of an elementary particle that determines, in particular,

its behavior in the “collective” of surrounding particles. In one kind of particles, spin

can only be integer-valued, whereas in others it can exactly be the half-integer value.

Zero spin refers to integer spin.

The magnitude of the spin is denoted by the letter s; a particle with spin s has an
angular impulse: [s(s+1)]1/2ℏ. The electron has a spin equal to ½. Because the elec-

tron has an electrical charge e, it is the source of the electrical field. In connection

with its “rotation” (which, in classic physics, may conventionally be considered the

circular current), the electron is also the source of a magnetic field. Thus the particle
with spin ½ and electrical charge e has a magnetic moment:

μB ¼ eℏ=2mc:

This value, which is called Bohr’s magneton for electron, is equal to approximately

10�20erg/Gs.

When discussing the magnetic properties of solids, it should be noted that the

magnetic moment of the electron is an unusual vector, because it can be oriented

in space only in two ways: lengthwise along the external magnetic field or against

it. Accordingly, the angular momentum of a particle can always be orientated by

a g¼2s+1 manner; inasmuch as the electron’s spin is s¼½, only two of these man-

ners are possible. Spins characterize not only elementary particles, but quasiparticles

as well. Photons and phonons are characterized by the integer spin (they are bosons);
bosons also include the magnons.

The magnon (spin wave) is a quasiparticle, introduced theoretically to describe

the system of collective excitations of interacting spins in the ordered magnetic crys-
tals (ferromagnetics, antiferromagnetics, and ferrimagnetics). As with thermal

motion, the magnetic field can influence the magnetic moments of electrons. How-

ever, in ferromagnetics, the localized single inverted spin cannot exist—this is pre-

vented by exchange interaction. Thus elementary excitations in ferromagnetics (as in

other magnetically ordered substances) are the inverted spins distributed in a certain
area of a crystal [4].
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These magnetic violations have the nature of waves that are characterized by a

certain wave vector k and frequency ω. Such violations are called spin waves (mag-

nons). They exist in ferromagnetics at any temperature that is lower than the Curie

temperature (and, in antiferromagnetics, belowNeel temperature); thus the closer the

temperature is to phase transition, the greater the intensity of magnons.

A single magnon corresponds to the wave of precessing of neighboring spins. An

idealized picture of spins excitation in a one-dimensional crystal is shown in Fig. 4.9.

The model of an upturned spin among other oriented spins (Fig. 4.9B) is less likely

because such a situation requires significant energy cost. There would be much smal-

ler energy needs if all spins are predominantly directed in parallel (Fig. 4.11C).

Therefore, this is a more realistic model according to which the ends of the spin vec-

tor precesses on the surface of the cone, whereas each subsequent spin is shifted in

phase as with the previous spin (the angle between them remains constant).

This wave is formed due to a strong exchange interaction between atoms; as a

result, the deviation in the magnetic moment of atoms from their equilibrium position

is not localized, but is distributed along a chain. A spin wave may occur, mainly, in

magnetically ordered solids—ferromagnetics, antiferromagnetics, and ferrimag-

netics. Thus, in crystals with multiple submagnetic lattices (i.e., in antiferromag-

netics), there can exist several types of magnons with different energy spectra [9].

Fig. 4.10 shows a more detailed model of a magnon—a spin wave whose struc-

ture resembles the wave of an acoustic phonon (shown in Fig. 4.3). A series of atoms

is shown, and the distance between them is the crystal lattice parameter. In magnetic

field H, all spins precess with frequency ω0 (homogeneous precession). In real sys-

tems, small oscillations of the magnetic moments of atoms are seen in the form of

waves with inhomogeneous precession.

It should be noted that magnons, being waves of electronic spin precession, differ
significantly from phonons, which are the elastic displacements of atoms. The dif-
ference is seen in the comparison of dispersion law for magnons and phonons: in the

dependence of energy E¼ℏω on impulse p¼ℏk (or, equivalently, in the dependence
of frequency ω¼2π/T on wave vector k¼2π/λ). For example, the dispersion law for

spin waves in a one-dimensional model of magnons is expressed as follows:ω¼8JS/
ℏ sin2(ka/2), where J is an exchange integral; S is the spin moment; and a is the
FIG. 4.9

Different ideas about spin waves in a one-dimensional lattice with parameter a: (A) classical

scheme of the ground state of a simple ferromagnetic—all spins are parallel and directed in

one direction; (B) the simplest idea of an excited magnetic state, an inverted spin; and

(C) spin wave in ferromagnetics.



FIG. 4.10

A spin wave in a linear series of spins: (A) series of spins shown from side; (B) series of spins

shown from above (a wave is shown as a line that runs through the end of spin vectors).

FIG. 4.11

The law of dispersion for spin waves in a one-dimensional ferromagnetic: (A) theoretical

calculation; and (B) magnon spectrum measured in alloy Co0.92Fe0.08.
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crystal lattices parameter. Graphically, this dispersion of magnons is shown in

Fig. 4.11A. As shown earlier, for long-wave acoustic phonons (k ! 0), their fre-

quency is proportional to the wave number: ω�k. However, for long-wave magnons
(k ! 0), the law of dispersion is parabolic: ω�k2. This frequency dependence of

magnons is observed in experiments by using neutron scattering in magnetic envi-

ronments (Fig. 4.11B).

Thus, magnons characterize the movement of elementary magnetic moments in

the magnetic. Similarly as phonons, magnons are excited by the thermal motion of

atoms or ions. In addition, long-wave magnons can be excited by electromagnetic

fields of ultrahigh frequency. Magnons behave like weakly interacting quasiparti-

cles; they are characterized by integer spin (equal unity) and therefore obey Bose-

Einstein statistics. Calculations show that, at high temperatures, the concentration

of magnons in a ferromagnetic crystal can be significant. Their density in
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ferromagnetics nfer proportionally increases with the temperature and depends on

their remoteness from the Curie point: nfer � (T/TC)
3/2. In antiferromagnetics, this

dependence is different: nanti � (T/TN)
3, where TN is Neel point.

At very low temperatures (near absolute zero), a ferromagnetic reaches its lowest

energy state wherein all atomic spins are oriented in one direction. Therefore when

the temperature is lowered, magnons become frozen; thus near absolute zero mag-

nons should be practically absent (this effect of Bose-Einstein condensation is con-

firmed experimentally). The growth of the quantity of magnons is caused by a

temperature increase and thus magnons reduce the magnetic ordering in a crystal.

In antiferromagnetic the number of magnons is proportional to T3 that reminds

Debye law for temperature dependence of phonon concentration (T4). However, in
the ferromagnetic concentration of magnons increases proportional to T3/2. The point
is that increase of magnons quantity decreases spontaneous magnetization of ferro-

magnetic, in which connection change of magnetization is proportional to T3/2

(Bloch law). Correspondingly, dispersion law for magnons in the antiferromagnetics

differs from magnon dispersion law in the ferromagnetics, Fig. 4.12. In antiferro-

magnetics, the variance of magnons ω(k) is similar to the dispersion of phonons

(see Fig. 4.3C).

Therefore it is possible to describe the properties of ferromagnetics below Curie

point (as well as of antiferromagnetics, below the Neel point), assuming that spin

waves exist that can be represented by the nearly degenerate gas of magnons. The

electrochemical potential of this “gas” is zero, and therefore the number of magnons

is not saved. The Bose distribution function for magnon energy permits the calcula-

tion of the temperature dependence of magnetic thermodynamic properties (i.e.,

magnetization, heat capacity, magnetic susceptibility). The more accurate the result-

ing expressions, the closer the gas of magnons is to the ideal Bose gas. Deviations

from theory are the result of interactions of magnons with each other as well as their

interactions with other quasiparticles (phonons or electrons). As the temperature
FIG. 4.12

Spectrum of spin waves in antiferromagnetic RbMnF3, obtained by inelastic neutron

scattering.



FIG. 4.13

Temperature dependence of different contributions to the heat capacity of nickel: 1—total

heat capacity; 2—lattice (phonons) heat capacity; and 3—electronic heat capacity.
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increases, the number of quasiparticles grows, and therefore their interaction

becomes more significant than that of the “ideal gas of magnons.”

Representation of magnons allows the description of many properties of

magnetics—not only their thermodynamic (equilibrium) properties, but also their

kinetic and resonance properties. For example, magnons play a significant part in

the heat capacity of magnetics, together with phonons and electrons (Fig. 4.13).

It is appropriate to note that the concept of “spin waves” is broader than that of

“magnons.” Spin waves can exist in nonmagnetic metals as well; they represent spin-

density oscillations of conductive electrons due to energy exchange and interactions
between them. The existence of spin waves in nonmagnetic metals is found in elec-

tronic paramagnetic resonance.
4.6 ELECTRONS IN ATOMS AND IN CRYSTALS
The consideration of electronic states in crystals originated from the electronic spec-

tra of atoms. Atoms can be characterized by two complementary models: a spatial

model and an energy model. The spatial model of an atom reflects its volumetric

three-dimensional structure, and, within this structure, the location of electrons in

the atom is described by the probability density. Electrons that are distributed near

the nucleus form an electronic cloud. In the simplest case, this cloud is spherical (in a

hydrogen atom in the nonexcited state); however, in most cases, the electronic cloud

has a complex configuration.



146 CHAPTER 4 Quasiparticles in solids
A conventional image of the external shape of an electronic cloud is known for its

different quantum states. Schr€odinger’s equation provides an opportunity to under-

take a rigorous mathematical description of electronic clouds: their geometric fea-

tures in atoms and ions. However, sometimes, their visual representation is

impossible because it might be quite difficult to find the probability of electron dis-

tribution in a cloud. Therefore the model of Bohr—a simplified model—is often used

to describe the configuration of an atom. This model allows the atom to be repre-

sented as a central positively charged nucleus with electrons moving in their orbits

around it.

The number of electrons determines the position of the atom inMendeleev’s peri-

odic table, and it is exactly equal to the number of protons in the nucleus of atom.

From experiments and theory, it is known that the radius of an atom equals a � 10�8 -

cm. Therefore the radius of the nucleus is estimated at a size of approximately

10�13cm, and is roughly the same as the size of an electron; thus the size of atoms

is 100,000 times greater than the size of their nucleus. Therefore, on the face of it, the

volume of an atom looks “empty”; however, in solid-state physics, the atom is usu-

ally represented by a solid ball, and this is a “good working” model. The fact here is

that this “ball” is “filled” by a very strong electromagnetic field [3].

Next, to simplify further consideration, the simplest atom is discussed, namely,

the hydrogen atom consisting of one proton and one electron. In this atom, the pos-

itively charged nucleus holds a negatively charged electron by the Coulomb force of

attraction:

FCoul ¼ e2=a,

where e is the electron’s charge (the proton has the same charge). To ensure the sta-

bility of the atom, the force of attraction must be balanced by the force of repulsion.

This force is the centrifugal force:

Fcentr ¼mυ2=a,

where m is mass of electron and υ is its velocity. The equality of FCoul and Fcentr

makes it possible to determine the velocity of an electron’s movement in its circular

orbit:

υ¼ e2=ma
� �1=2

:

Both the charge e and the mass m of an electron are fundamental constants. By
substituting the values of these constants in a given formula, it is possible to find

the velocity of the electron’s rotation in its orbit: υ¼108cm/s. In these calculations,

the relativistic effects are negligible because υ/c � 1/300. However, if the atom has a

size close to that of its nucleus (10�13 cm), the velocity of the electron’s rotation

would be close to the velocity of light (obviously, this is impossible).

The total energy of the electron in the field of the nucleus (sum of its kinetic and

potential energy) is:

E¼�e2=2a:
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The “minus sign” means that for zero energy electrons that have been sent an

“infinite” distance away from the nucleus should be considered (with decreasing dis-

tance, the energy decreases).

According to a simple model, the electron moves in an atom with a velocity

υ � 108 cm/s in a circle; therefore the vector of velocity constantly changes its direc-
tion. It is reasonable to believe that Δυ � υ, which means that the uncertainty of

velocityΔυ is equal to the velocity. From the indeterminacy principle (i.e., the uncer-

tainty relation), it follows that Δx 	Δp 
 ½ℏ. Taking into account that the impulse is

p¼mυ, the uncertainty in an electron’s coordinates isΔx 
 ℏ/2mυ. From the mass of

electron m � 10�27g, its velocity is �108cm/s and, using the Plank constant ℏ, it is
possible to find the uncertainty of the electron’s location Δx 
 10�8cm that exactly

corresponds to the size of the atom.
This means that the sphere of radius a represents the volume containing the elec-

tron; however, to clarify its position in this volume is impossible. The quantum inde-

terminacy principle (the Heisenberg principle) allows the estimation of the size of an

atom, namely, atomic radius is determined by the uncertainty of the orbital position

of electrons: a � Δx � ℏ/mυ. Using this expression for the orbital velocity of the

electron: υ¼ (e2/ma)1/2, it is possible to get:

a¼ a0 ¼ℏ2=me2:

Thus the atomic radius a0 can be expressed through fundamental parameters: the
Planck constant ℏ, the mass of electron m, and the charge of the electron e. This
radius approximately equals 0.5�10�8cm and it is the Bohr radius; it coincides with
the radius of the hydrogen atom in its ground state.

According to quantum mechanics, not all states are allowed but only states with

certain energy are permitted; thus there is one state (ground state) in which electron

does not radiate energy. In addition, besides the ground state with Bohr radius a0,
there are a number of excited states; the emerging transitions between them result

in the emission (or absorption) of light quanta.

Inasmuch as the electronic waves in an atom propagate in three dimensions, it is

possible to depict them graphically through intersections (Fig. 4.14). A section shows

two types of permitted waves (a and b) in three quantum systems: an electron in a

hydrogen atom (1), a one-dimensional particle in limited space (2), and a quantum

oscillator (3) [3].
It is a fact that all electronic waves in an atom have “tails” that extend to large

distances (infinitely); Fig. 4.14(1) shows that the electron has a slight chance to

extend to a large distance, but it is most likely to have its location near the nucleus.

Thus the energy levels of an electron that correspond to its possible natural waves in a

hydrogen atom (Fig. 4.14 shows only two of them) can be placed in a series that con-

verges as shown in Fig. 4.15B.
Unlike energy levels in the quantum oscillator, in which the distance from each

other is always hν, the distance between an electron’s energy levels in an atom
decreases with the increase in energy [3]. Therefore by acquiring adequate energy,



FIG. 4.14

Waveform probabilities for two permitted states of electrons in atoms (1); for a particle that

moves in a straight line (2), and for a harmonic oscillator (3).
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FIG. 4.15

The energy spectrum of the quantum oscillator and the hydrogen atom: (A) permitted energy

levels of the quantum oscillator; (B) permitted energy levels of the electron in the hydrogen

atom; and (C) correspondence to levels of permitted states (number of strokes).
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an electron can finally leave the atom; next, its energy changes continuously, as is
shown at the top of Fig. 4.15B by a continuous energy spectrum. Exactly the state

at which an electron is found very far from its nucleus is selected as the “zero point”

of energy.

When the approach of each electron falls under the influence of the electromag-

netic field of adjacent electrons (without outside electromagnetic field), electrons

interact with each other as if they are two small interacting magnets. The Pauli prin-

ciple proclaims: if two electrons are in one of the stationary states (e.g., on a single

orbit), they cannot have spins oriented in one direction, but necessarily must orient

their spins in the opposite direction.
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In the helium atom, both electrons at normal conditions are authorized by a state

with the lowest energy. Because both of them are in the same state, their spins,

according to the Pauli principle, are opposed and form a complete s-shell
(Fig. 4.16A).

The lithium atom has three electrons; two of them choose a complete s-shell,
while third electron would also acquire a condition with minimal energy. However,

this case is prohibited by the Pauli principle, because the main (s-) state is already

fully occupied by two electrons with opposite spin directions. Therefore, the third

electron in the lithium atom reluctantly takes one of four following states, character-

ized by higher energy than the s-state (Fig. 4.16B).
Lithium starts a new row of elements inMendeleev’s periodic table. The state that

takes the third electron is one of four possible levels in the electronic p-shell, follow-
ing the s-shell (Fig. 4.16B). Each item in this series can be filled by electrons, and

there might be eight electrons in the p-state district. They are all completely filled in

the neon atom (Fig. 4.16C): electrons occupy all four levels that are in the p-shell,
and each of them contains two electrons with spins in opposite directions [3].

The condition of electrons in atoms of a given element determines its physical

and chemical properties. For example, the chemically neutral inert gas argon has

18 electrons, but adding only one electron to a shell (and one proton to the nucleus)

transforms the inert argon atom into a chemically very active potassium atom.

Electrons in crystals. The energy model of a crystal is considered at the elemen-

tary level and in close connection with the previously explained concepts of the

energy spectrum of the atom (see Figs. 4.15 and 4.16). Without knowledge of the

main features of the energy spectrum of electrons in a crystal, it is impossible to

understand the principles of operation of microelectronic devices (most of which

are based on semiconductors).

The spectrum of electronic energy of a crystal is directly related to the energy

spectrum of atoms entering the crystal structure. Specific examples of energy band

formation as well as the creation of overlapping areas are considered further with a

relatively simple example—metallic sodium. The energy diagram of the sodium
FIG. 4.16

Electrons and their spins in atoms: (A) wave function for two electrons with opposite spins in

helium; (B) basic (E1 and E2) levels in lithium atom (dotted line shows the next higher allowed

states); and (C) five levels in the atom of neon, occupied by electrons.
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atom with 11 orbital electrons (balancing the same number of positive charges in the

nucleus) is shown in Fig. 4.17. The first two electrons occupy the lowest level of

energy 1s in the K-shell. Next, the third and fourth electrons occupy the lowest

energy level 2s (shell LI), the fifth electron is located in the lowest remaining level

(shell LII), and so on. From Fig. 4.17, one may conclude that, on the third level, six

electrons are set. However, there are three levels that differ only by a little energy

(this is peculiar in atoms with a low atomic number); therefore, they cannot be

depicted with boundaries.

The correspondent energy levels for all 11 electrons are shown as characteristic of

the neutral atom of sodium. With the addition of each subsequent electron, the form

of the potential energy curve Ep changes (Fig. 4.17), while location of energy levels

becomes different. Each outer electron can approach the atom with lower velocity

because it is subject to not only attraction from the nucleus, but also repulsion from

other, deeper electron shells.

At the highest occupied levelMI (Fig. 4.17), the nonexcited sodium atom has only

one valence electron (in the state 3s), and it is this electron which determines most of

the chemical, electrical, and optical properties of sodium. The remaining 10 electrons

are located so deep in the well of potential energy that they cannot participate in

chemical, electrical, or thermal processes.

In case of solid-state formation from individual atoms, the energy description in

the first approximation is necessary for constructing potential energy curves for a

series of atoms, located at a distance equal to the crystal lattice constant

(Fig. 4.18). Because atoms in the crystal lattice are located close to each other,

the potential curve between them cannot rise to the level E¼0, as it happens in

an atom located outside the crystal (Fig. 4.17). The maxims of potential energy

between atoms cannot reach even the energy of a single valence electron of the atom.

Therefore, nothing prevents valence electrons (which originally belonged to the
FIG. 4.17

Electron configuration in the sodium atom: the valence electron is located on level 3s in theM1

shell; K, L, and M—designations of electron shells, Ep—potential energy.



FIG. 4.18

One-dimensional energy model of a crystal: a is the interatomic distance; L is the overall size

of the crystal; A is the potential barrier that limits electron transition from one atom to its

neighbor; and B is the potential well.
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atom) from leaving their atom and starting to move freely through a crystal under the

influence of heat or other impacts.

As shown in the simplified diagram in Fig. 4.18, valence electrons belong to the

whole crystal and have the same energy. At first glance, this contradicts the Pauli

principle. However, experiments show that the emission spectra of metal are not dis-

crete (as it is seen for atomic spectra), but they are continuous.

Thus discrete energy levels of atoms become split, and they form the band (or

zone) consisting of the same number of separated levels as there are atoms in the

crystal. It is expected that the crystal is characterized by as many energy bands as

the energy levels that have isolated an atom of substance (see Fig. 4.17). In this

example, in 1cm3 of sodium crystal, the number of electronic levels in any band

equals 3�1022; therefore all valence electrons occupy different levels, but in the

same area 3s.
As can be seen from Fig. 4.19, the valence band holds N with narrowly located

energy levels; in accordance with Pauli principle, this band can accommodate 2N
electrons. Therefore, levels in the valence band are only half filled, because the sep-
arated sodium atom has only one valence electron. In addition, specifically for

sodium, the width of the highly placed bands corresponds to the number of 3s
and 3p levels that overlap each other. Therefore some electrons move out from

the 3s zone to lower levels of the 3p zone such that both zones are filled together

until the entire stock of electrons is exhausted (other energy bands, located above

areas that overlap, are not shown in Fig. 4.19 in order to simplify the figure). Thus

the valence band of sodium crystal is not fully occupied by electrons. The top energy

level, which in metals is occupied by electrons at temperatures T¼0, is the Fermi
level, EF [9].

The valence electrons of metal are not located near their individual atoms, but

move freely around a crystal similar to gas molecules in a certain vessel. This system

of electrons in metals is the electronic gas (or quantum electronic liquid). The Fermi



FIG. 4.19

Electronic energy spectra of system of N atoms of sodium (Na) depending on the distance

between them; CB, conduction band; VB, valence band; EF, Fermi level.

152 CHAPTER 4 Quasiparticles in solids
level in metal plays the same role for “electronic liquids” as the level of fluid in com-

municating vessels. If two crystals with different Fermi levels touch each other, elec-

trons will “flow” from one crystal to another until their Fermi levels are aligned.

A clearer definition of the Fermi level position is presented in thermodynamics.

If an electrical field is applied to a metal, electrons can easily change their energy

states, going from one level to another (located very close). Electrons, in addition to

their random thermal motion, move in opposite directions to the electrical field that

causes an electrical current. The monovalent metal sodium is the simplest case of the

location of electronic levels in the energy spectrum ofmetals. Sodium demonstrates a

purely electronic conductivity that is verified experimentally by Hall’s effect study

and by the definition of a sign of thermoelectromotive effect.

The electronic spectrum of copper is not as simple as that in sodium (however, it

is not as complicated as the spectra of some rare earth metals). However, as already in

the case of copper, the contribution to the conductivity is made not only by free elec-

trons, but also by electronic vacancies—holes. The energy diagram of a copper crys-

tal is shown in Fig. 4.20, where not only a band diagram with overlapping energy

levels, but also the formation of energy bands in case of individual atoms coming

into contact is shown.

The energy levels of Cu in Fig. 4.20B appear discrete and narrow. However, as

atoms converge, the interaction between electrons of outer shells begins and overall

energy levels become split, thereby creating the band. With subsequent convergence

of atoms, the splitting amplifies, and energy levels become deeper. When the intera-

tomic distance of copper becomes equal to the lattice constant a0, the bands 3d, 4s,
and 4p become so extended that they overlap with each other, as shown in
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Fig. 4.20A. Deeper energy bands (only the 3p level is shown) expand considerably

less. In case of the entirely separated copper atom, its energy levels are completely

filled up to the 3d level; on the 4s level (that can accommodate two electrons), only

one valence electron of each atom is located. In the copper crystal, the three top areas

are united and completed.

In the described cases, the valence band is found to be partially filled with elec-

trons (Na), or to have some overlapping energy bands with the formation of a broader

band of levels that remain partially unfilled (Cu). In metals that can be characterized

by the discussed energy diagrams, the electrons are free; therefore these materials are

good conductors of electrical current.

Thus the interaction of atoms in a solid significantly changes the electronic

energy spectrum. Highly located discrete energy levels of isolated atoms are changed

into wide energy bands (zones) when atoms are interconnected in a crystal. The

dependence of potential energy on coordinatesU(x,y,z) radically changes: it becomes

periodic. The neighboring atoms of a crystal change each other’s potential such that it

turns into a periodical set of potential barriers and potential wells (Fig. 4.18). Fur-

thermore, the interaction between atoms causes changes in the initial position of dis-

crete quantum states and splits them into separate closely located energy bands. The

permitted band, in which valence electrons are located, is the valence band. In the

sodium crystal, this band is formed as a result of 3s-level splitting.
Consequently, during crystal lattice formation, all peculiar electronic levels for a

given type of atoms (as filled by electrons, or therefore unfilled) are displaced as a

result of the neighboring atoms’ influence on each other. Due to the convergence of

atoms, the electronic energy levels of individual atoms become separated into the

bands of energy levels of electrons.
FIG. 4.20

Energy bands of copper overlapping (A) and splitting of energy levels in case of copper atoms

coming into contact (B); a0—lattice constant (bands are arbitrary shading, lower levels are

not shown).
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4.7 ELECTRONS IN METALS, DIELECTRICS,
AND SEMICONDUCTORS
The foregoing analysis of electron behavior in simple monatomic crystals opens a

possibility to draw a preliminary conclusion as to the cardinal types of solids.
The fact is that features of the energy electronic spectrum cause a large difference

in the electrical, optical, thermal, and mechanical properties of materials.

Metals and dielectrics, due to the fundamental distinction in the nature of their

atomic connections, differ significantly from each other in thermal and mechanical

properties* as in their electrical and optical properties.

*Note. However, it should be noted that, very seldom, it is possible to encounter

crystals wherein the energy barrier between dielectric and metallic states is not large,

and these materials can exist in both states. Moreover, some solid materials undergo

phase transition of the “dielectric-metal” type. At these transitions, the conductivity

jumps by thousands and millions of times, and this property is used in electronic

devices [5].

Initially, it is better to compare electrical properties: conduction and polariza-

tion. The temperature dependences of conductivity σ in dielectrics and metals are

shown in the Introduction (Fig. I.8). These dependencies are opposite: while in

dielectrics, σ increases with temperature according to the exponential law (because

thermal motion in a crystal generates new charge carriers), in metals, owing to the

charge carriers scattering on the thermal vibrations of the crystal lattice, conductivity

decreases approximately as 1/T.
Therefore when metal is cooled to a low temperature, its conductivity greatly

increases, tending to infinity (superconductors really have σ¼∞). In dielectrics,

on the contrary, σ value is close to zero at very low temperatures, because free charge

carriers are not generated in dielectrics if the intensity of thermal motion is small

(and there is no radiation exposure). Similarly as in dielectrics, the conductivity

of semiconductors at low temperatures tends to be zero.

Electrical polarization (which is the most important phenomenon for dielectrics)

does not occur in metals due to the high concentration of free electrons, which form

an almost free “electronic gas” around positively charged ions. The electronic gas in

metals gives rise to an almost complete screening of the electrical field. Only at very

high frequencies, much higher than the frequency of visible light (i.e.,>1016Hz), the

electronic gas in metals demonstrates its sluggishness: it has no time to interact with

the extremely fast change of the electromagnetic field, and σ ) 0. Thereby, it is pos-

sible to notice the polarization of deep electronic shells, which are located closer to

ion nuclei. Such polarization, occurring at frequencies higher than the optical range,

determines the specific permittivity in metals.

Comparing optical properties of metals and dielectrics, it should be noted that

free electrons in metals cause almost a complete reflection of electromagnetic waves

from the surface of metals, which explains their metallic shine. In contrast, electro-

magnetic waves of optical frequency can easily penetrate into dielectric substances,

and the majority of them are optically transparent (the color and opacity of some
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dielectrics are due to the presence of impurities that absorb or scatter light by their

inhomogeneous structure).

A significant discrepancy between dielectrics and semiconductors can be seen in
the frequency dependence of absorption of electromagnetic waves in these materials.

Dielectrics are transparent in their optical wavelength range: their fundamental

absorption is observed solely in the ultraviolet wavelength region. Only at a very

high frequency (1016Hz) does the energy of photons exceed the bandgap in the elec-

tronic spectrum of a dielectric, whereby both photoconductivity and light absorption

appear. In semiconductors, the absorption and reflection of electromagnetic wave

start at approximately 1014 Hz (in the near-infrared region); however, semiconduc-

tors, unlike dielectrics, have good transparency in the far-infraredwavelength range.
The thermal properties of dielectrics and metals differ mainly in the value of

their thermal conductivity. The very high thermal conductivity of metals is due to

the participation of free electrons in heat transfer, whereas in solid dielectrics, heat

passes mainly through crystal lattice vibrations (phonons). The magnitude of the

thermal expansion and heat capacity of metals and dielectrics are not very different:

due to quantum effects, the specific heat of electronic gas in metals is very small as

compared with the specific heat conditioned by lattice vibrations.

With regard to mechanical properties, crystalline dielectrics are more fragile,

while metals are usually pliant. This is also due to the impact of free electrons on

the properties of metals, which crystallize in simple, densely packed lattices, where

the overwhelming strength of interaction is the metallic bond (other types of electri-

cal bonds between atoms in metals are shielded by free electrons). In contrast, dielec-

trics have complicated polyatomic structures with different physical natures of

interaction in their structural elements.

Several investigations of dielectrics and metals have shown that the main differ-

ences in their properties are conditioned by the presence of free electrons in metals

and the complicated atomic bonding in dielectrics. A more rigorous deduction of the

difference between the properties of metals and dielectrics is explained on the basis

of the energy-band theory.

The energy-band structure of electrons in crystalline dielectrics and metals is

qualitatively different. As atoms approach each other and form a crystal, many levels

of electronic energy appear. Due to the interaction of electrons, the splitting of

energy levels takes place, forming zones (bands; Figs. 4.19 and 4.20). This cleavage

occurs mainly in those energy levels that correspond to the outer (valence) electrons

as they have much stronger interactions with each other than electrons of the deep

shells of an atom. The type of electronic spectra of crystals depends on the peculiar-

ities of atomic wave functions and on the degree of overlap of those functions when

atoms approach each other during crystal formation.

In the theory of electronic energy spectra, the one-electron approximation is typ-
ically used: it is assumed that each electron moves in a force field of ions and elec-

trons, while individual (pair) interactions are not taken into account even between the

nearest neighboring electrons. The interactions are taken into account as a so-cold

middle field. In this case, the solution of Schr€odinger’s Equation in the periodic



156 CHAPTER 4 Quasiparticles in solids
potential of the crystal lattice is the Bloch function, and the eigenvalue spectrum of

electrons forms the energy bands (Figs. 4.19 and 4.20).

The number of levels in each band is determined by the number of atoms in the

lattice, thereby forming quasicontinuous energy bands. According to the Pauli prin-

ciple, only two electrons (with opposite spin values) can coexist in each level of a

zone; at T¼0K, electrons occupy states with minimal energy in each energy band.

The electronic energy spectrum of crystals, that is, electron energy distribution in

permitted bands, is usually described in the quasimomentum space, that is, in the

reciprocal lattice. The dispersion law W(p) for free electrons is the dependence of

electron energyW from their momentum p¼ћk,where k is the wave number. In case

of free electrons, the function W(p) is a simple parabolic function:

W¼ ħ2k2

2m
¼ p2

2m
,

wherem is the mass of the electron. Accounting for the periodic potential of the crys-

tal lattice (Bloch method) complicates this relationship, resulting in breaches of par-

abolic dependence W(p) in the area of the forbidden energy band (Fig. 4.21). The

function W(p) is continuous only in definite intervals of momentum space, namely,

in the Brillouin zones (the first zone corresponds to π/a � k � π/a). During transition
from one to another Brillouin zone, this function is terminated.

The one-electron band theory with Bloch wave functions perfectly agrees with

and is justified in crystals with s- and p-electrons that have a big orbital space with
significant overlap. In crystals with d- and f-orbitals, this band theory might be

applied with caution.
FIG. 4.21

Splitting of energy levels of electrons of isolated atoms, energy band formation due to atom

convergence: CB, conduction band; EG, energy gap; VB, valence band; a, lattice constant;W,

electrons energy; r, distance between atoms.



FIG. 4.22

Electronic levels in spectra (filled levels are shaded): (A) “true” metal with odd number of

electrons in unit cell; (B) dielectric or semiconductor with gap ΔW between the valence band

and the conduction band; (C) metal with even number of electrons in the unit cell; and

(D) semimetal.

1574.7 Electrons in metals, dielectrics, and semiconductors
The energy-band structure of the electronic spectrum allows the construction of

models of different variants of electronic spectra of crystals. There are three main

cases:

1. Energy bands of the electronic spectrum do not overlap (Fig. 4.22A and B).

a. Crystals with an odd number of electrons per unit cell of crystal have an

upper energy band filled to exactly half (Fig. 4.22A). These crystals are

metals; in each energy level, two electrons can be placed (according to the

exclusions principle). Thus the energy band has 2N vacancies, half of which

is occupied by electrons: electrons occupy the lowest energy levels. In the

ground state (when T¼0K), the boundary of filling that separates in the

impulse space that is the filled part from the unfilled part of the valence band

is the Fermi level F (in the three-dimensional model, F corresponds to the

Fermi surface). If T>0K, the boundary of the Fermi surface becomes

smeared as a result of thermal perturbations (phonons), and part of the

electrons goes on to levels above F (therefore some levels below F are

released). Because the distance between the levels in band is extremely small

(�10�23eV), even a very small external electric field can increase the

energy of electrons and cause electrical conduction in metals (limited only

by electrons scattering due to lattice vibrations). With decreasing

temperature, the conductivity of metals increases: if temperature T ! 0,

then conductivity σ ! ∞.

b. Crystals with an even number of electrons per unit cell are dielectrics or

semiconductors (Fig. 4.22B). In the ground state (at T¼0K), their energy

bands are completely filled or empty. Therefore the electrical field cannot

change the energy of electrons in the filled bands (because all levels are

filled), while in the empty bands there are no charge carriers. Consequently,
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if the temperature is critically reduced (T! 0 Κ) in dielectrics or

semiconductors, conductivity is absent (σ ! 0). The upper filled band

(valence) and the nearest empty band (conduction band) are separated by the

energy gap ΔW (forbidden band; Fig. 4.22B).
In crystals with energy gaps, the Fermi surface in the electronic spectrum
is absent; however, in the middle of a gap (when there are no impurities and

local levels), there exists the Fermi level F0 (Fig. 4.22B). To excite electrical

conductivity in these crystals by thermal vibrations or by other factors, it is

required that the valence band is partially released from electrons (holes
mechanism of electrical conductivity) or that the conduction band is

partially filled by electrons (electronic conductivity mechanism).
2. Bands of electronic spectrum overlap (Fig. 4.22C and D).

Such crystals, similar with even or odd numbers of electrons per lattice site,

are referred to as metals. Significant overlap of two bands (Fig. 4.22C) results in a

situation that is not very different from the case shown in Fig. 4.22A. In the event

of a small overlap of bands, the crystals belong to the class semimetals
(Fig. 4.22D). The Fermi surface for semimetals has discontinuities, and their

conductivity by several orders of magnitude is lower than the conductivity of

metals. For example, in the semimetal bismuth, the number of filled states in a

conduction band is 104 times smaller than in conventional metals, and,

consequently, bismuth shows much lower conductivity. Other examples of

semimetals are antimony and graphite.

3. Bands of energy spectrum are in a contact without overlapping.

Crystals of this rare class are gapless semiconductors. The Fermi surface of

such semiconductors is a line or a point in the impulse space (whereas, in

semiconductors, such a surface does not exist and, in semimetals, this surface has

discontinuities). In the semimetal under the influence of an electrical field,

electrons move within their area, but the lower density of states reduces their

mobility. In the gapless semiconductor, electrons relatively easily (as compared

with conventional semiconductor) come into the conduction band, but the

dynamic properties of charge carriers in these materials are significantly

modified.

Therefore crystals that, in the ground state, have no partially filled bands belong to

the class of dielectrics or semiconductors. Metals and semimetals, in contrast, are

characterized by an electron spectrum with partially filled bands.

A comparison of the electronic spectra of metals, semimetals, semiconductors,

and dielectrics is shown in (Fig. 4.23), which demonstrates the energy spectra of

electrons in these materials. In metals, there is no energy gap between the valence

and conduction bands; therefore electrons can easily change their energy, moving

from level to level; thus they are free. Electrons in metal are not localized—they

belong to the entire crystal and do not form spatially directed bonds between ions.
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In all other crystals, most of the electrons are, to some extent, localized. In semi-

metals, however, excitation energy is almost zero; therefore, even at temperature

T ! 0K, mobile electrons exist and can provide essential conductivity. However,

some electrons in semimetals are localized between atoms and form spatially

directed linkages.

Valence electrons in semiconductors (which are mainly covalent crystals) form

the directed orbitals to link atoms, and their excitation energy (energy gap ΔW) usu-

ally exceeds the thermal energy (ΔW>kBT). However, in semiconductors, this

energy gap is smaller than the energy of visible light (ΔW<3eV).

Valence electrons in dielectrics (which are predominantly ionic andmolecular crys-

tals) are localizedmuch stronger than in semiconductors. Thus they are localized not at

the bonds between atoms (as in the case of semiconductors) but near individual mole-

cules or anions. The binding energy of electrons in dielectrics far exceeds not only their

thermal energy (ΔW≫ kBT), but also the energy of the visible light quantum:ΔW>ћν.
Therefore the probability of electron excitation in dielectrics by thermal motion and

even by light is very small. Moreover, the small curvature of the band frontiers in the

vicinity of their extremes in dielectrics (Fig. 4.23A) gives rise to increased effective

masses of charge carriers, which result in the low mobility of electrons.
FIG. 4.23

Comparison of energy bands: (A) dielectric, (B) semiconductor, (C) semimetal, and

(D) metal. CB, conduction band; VB, valence band; EG, energy gap.
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Dielectrics and semiconductors are qualitatively similar: they both have an

energy gap in the spectrum of their electronic states. However, in semiconductors,

this band gap is much smaller. Therefore the conductivity in semiconductors takes

a wide interval, separating the value of conductivity of metals and dielectrics. For

example, pure lead at temperature 300K has a conductivity σ¼5�106S/m whereas

in pure germanium conductivity is σ¼2.5S/m. That is, the conductivity of semicon-

ductors is approximately a million times lower than the conductivity of metals, but

the conductivity of semiconductors is greater than in insulators.

In semiconductors, the σ(T) dependence can acquire a “metallic character” only

in exceptional cases and in a narrow temperature range; in general, the temperature

dependence of conductivity in semiconductors and dielectrics is similar. The width

of the energy gap of germanium is 0.72eV, in silicon it is 1.12eV, while in the dia-

mond (a dielectric of the same crystal structure as silicon and germanium), the energy

gap is approximately 5eV. If the band gapΔW � 3eV, the crystal can be regarded as

a semiconductor, while with larger values of ΔW, it is a dielectric.

The qualitative difference in the band gap and conductivity results in significant

differences between the optical, magnetic, and electrical properties of dielectrics and

semiconductors. In the visible optical range, dielectrics are light transparent and only

a few reflect light, while semiconductors have an almost metallic reflection but a dull

sheen. The reason for this lies in the fact that the narrow energy gap of semiconduc-

tors allows light quanta with energy of approximately 2.5eV to excite free electrons,

which results in light reflection. In dielectrics, such reflection is possible only in the

eye-invisible ultraviolet part of the spectrum.

The covalent crystals of semiconductors (e.g., silicon), however, in contrast to

ionic dielectrics, have good transparency in the infrared region of the spectrum,

as the energy of photons of this frequency (1012–1014Hz) is insufficient to excite free
electrons. Therefore in the far-infrared electronic devices, silicon and germanium

can be used as a transparent material for optical elements (lenses). Consequently,

typical silicon and germanium semiconductors in the far-infrared range play the role

of “perfect dielectrics.” However, glasses and ionic crystals, commonly used in vis-

ible optics, cannot be used in the far-infrared range because they strongly absorb and

intensively reflect these electromagnetic waves. Thus in the far-infrared range, the

own oscillation frequencies of the ionic crystal lattice are located, and this causes

absorption of these waves.

Thus it would not only roughly divide materials into dielectrics and semiconduc-

tors, but rather would distinguish the semiconducting and dielectric properties of
crystals that have an energy gap in the spectrum of electronic states.
4.8 SUMMARY
1. A crystal is the aggregate of regularly spaced and strongly interacting

particles. However, any oscillations and other excitations of these particles

can extend through the crystal in the form of weakly interacting waves with
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wave vectors kj and frequencies ωj(kj). Each wave can be associated with an

oscillator that has a certain frequency.

2. To explain the main characteristics of solids, one should imagine that they

contain some “hidden” states that resemble the properties of different

aggregate states of a matter, namely, the gas of quasiparticles (atomic

oscillations), the quantum fluid (electrons in metal), and even the electron-hole

plasma (in semiconductors).

3. The quasiparticle is the collective movement (disturbance) of many closely

located particles of solids, such as local vibrations of neighboring atoms in the

crystal lattice. Although many atoms are involved in each excitation, this

movement, nevertheless, has an atomic scale, as the mean energy of each

excitation (phonon) is approximately kBT.
4. The energy distribution in quantum systems is expressed as a function of

energy, the degree of degeneration, and the number of particles in system.

For particles, whose number in any state is unlimited, a special case of

quantum statistics—the Bose-Einstein distribution—is valid (such particles

are bosons). If particles are subject to the Pauli principle (i.e., in a certain state,
only one particle can exist), the Fermi-Dirac distribution is applicable, and

particles are fermions.
5. The photon is a typical example of bosons—that is, an electromagnetic

wave that can extend both in vacuum and in dielectrics. The photon, as well as

the electron, shows dualism, sometimes revealing the properties of the

particles. The corpuscular property of the phonon is its impulse, whereas its
wave property is a wave vector. Both of them are related by the de Broglie

ratio: p¼ℏk, and this ratio can be read inversely as: ℏk¼p. The spin of the

photon is integer-valued: the photon can have only two states of spin: +1

and �1. The two spin states of a photon means a right and left circular

polarization of the electromagnetic wave, respectively; this fact is important

for an understanding of some electro-optical and magneto-optical effects in

solids.

6. The phonon is a quantum-mechanical description of elementary oscillation

movement in the crystal lattice, wherein some adjoining atoms oscillate

with a single frequency. The comparison “wave ! quantum oscillator !
phonon” is arranged in such a way that the energy of the excited state of

each quantum oscillator En is an integer quantity of ћωj(k): En¼nћωj(n+½),

where n¼0, 1, 2, 3, … (here, n is the number of a certain type of phonons

with impulse p¼ћk and energy E¼ћωj). The average number of phonons with

impulse p and energy E is determined by the Bose distribution and is

proportional to [exp(ћω/kBT)�1]�1. Thus the ensemble of interconnected

harmonic oscillators that describe atomic oscillation in crystals can be

expressed by a set of so-called normal (not interconnected) oscillators, whose

number equals the number of degrees of freedom of a system.

7. A model of phonons, in many cases, allows consideration of any solid as a

“vessel” containing in it the “gas of phonons.” Similar to conventional gas

particles, phonons can move from “wall to wall,” facing each other. The gas of
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phonons is the main heat reservoir of a solid; however, it differs from the

conventional gas: the number of phonons in a crystal is not a constant (whereas,

in normal gas, the number of molecules in the vessel is invariable). The

greater the number of phonons, the more intense the thermal motion of

atoms—the higher is the temperature. At high temperatures, the energy of

phonons increases in proportion to temperature T; however, at low
temperatures (closer to absolute zero), their number tends to zero in

proportion T4—the fourth degree of temperature.

8. There are acoustical phonons and optical phonons. It is obvious that phonons
cannot leave the crystal because they are only the motion of the atoms of a

crystal. At low temperatures, when the quantum description of crystal

properties is necessary, the number of thermally excited optical phonons is

very small because the heat energy is inadequate for their formation.

Therefore the acoustic phonons determine the heat capacity and thermal

conductivity of a crystal.

9. Phonons differ from photons, firstly, by a relatively low velocity: their
velocity corresponds to the rate of sound, being in four orders of magnitude

less than light velocity. Secondly, phonons differ from photons by their

distinction among the types of waves. Namely, the elastic wave (phonon)

has one of three types of polarizations (L+2T), whereas light wave
(photons) has one of two types of polarizations (2T).

10. In the space of impulses at low temperatures (T < θD), thermally excited

phonons occupy only a small area near the center of the Brillouin zone. As

temperature increases, the number of phonons increases as well; as the

temperature becomes higher, the space of impulses gets more uniformly

filled with phonons. In the range of low temperatures, the main

contribution to the oscillation energy of a crystal is given by long acoustic
waves. The energy of the corresponding oscillators is small; therefore they

are easily excited. On the contrary, short acoustic waves and optical waves

at low temperatures are practically not excited: there is not enough heat

for their stimulation in the temperature range T<θD.
11. The magnon or spin wave is quasiparticle that can be ascribed to the

properties of such crystals that have an orderly arrangement of spins:

ferromagnetics, antiferromagnetics, and ferrimagnetics. Magnons are

generated by thermal motion that excites elementary magnetic

excitations in a crystal, when the spins of some electrons do not

coincide with their magnetized ground state. This magnetic excitement

can move in a crystal lattice from one place to another due to exchange

interaction, and it is characterized by quasi-impulse and by energy. The

properties of magnons can be described in Bose statistics. In crystals

that have many atoms in a unit cell, there are several magnon branches
(by analogy with relevant branches of phonons).

12. Magnons interact with each other and with other quasiparticles. The

existence of magnons is confirmed by experiments using neutron scattering,

as well as from electrons and light scattering in magnetic states, during
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which spin waves are excited. The model of magnons is used in solid-state

physics to explain not only magnetic properties, but also to explain some

thermal and high-frequency properties of magnetics. For example, the

increased heat capacity (Cv) in ferromagnetic crystals below Curie

temperature (including Cv maximum in Curie point) is due to the fact

that (in addition to phonon contribution to heat capacity) a similar

contribution is made by magnons.

13. Free electrons in space can have any energy: they have a continuous
energy spectrum. However, electrons in an isolated atom, according to

quantum mechanics, have discrete values of energy. According to the

Bohr postulate, in an isolated atom, the energy of the electron can take

only strictly discrete values (respectively, one can assume, that the

electron occupies one of some possible orbitals). In several atoms

combined by chemical bonds (i.e., in molecule), electronic orbitals

split in an amount proportional to the number of atoms, forming the

so-called molecular orbital. A similar discrete electronic spectrum is

characteristic of nanoparticles, inclusive of dozens of atoms.

14. In a macroscopic crystal—a solid body with tightly bound atoms—the

number of possible electronic orbitals becomes very large such that the

electronic energy spectrum consists of a large number of levels, joined in

the permitted energy bands that are separated by the forbidden energy

bands. Because the difference in energies of electrons for adjacent orbitals

is very small, the energy levels are split up almost continuously and

make discrete sets (energy bands). One of them is the valence band: at
temperatures close to zero in dielectrics and semiconductors, electrons

occupy all their energy states. In metals, the highest allowed band is the

conduction band, wherein levels of conduction electrons are located.

15. At the heart of band theory, there are some approximations: firstly, it is

believed that a solid is a perfectly periodic crystal; secondly, it is assumed

that the equilibrium position of crystal lattice is fixed (nuclei during fast

motion of electrons are practically immobile—this is an adiabatic
approximation); finally, the many-electrons system is reduced to a

one-electron task (impact on a given electron from all other electrons is

accounted by an averaged periodic field).

16. The band theory is the foundation of the modern theory of solids. It allows

an understanding of the physical nature and explains important properties

of conductors, semiconductors, and insulators. The value of band gap Eg

(energy gap between valence and conduction bands) is a key value in band

theory; it predetermines the electrical and optical properties of dielectrics

and semiconductors.

17. In various crystals, as well as in different forms of same crystal, energy

bands are different. With the relative position of these bands, all substances

are divided into three groups:
• the conductors—in which the conduction band and valence band

overlap, forming a zone that is called the conduction band; thus electrons
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can move freely occupying higher levels in this band when received

even at low energy (in case of a potential difference applying to

conductors, electrons are free to move from a point of lesser potential

to a point with higher potential, creating an electrical current);

• the dielectrics—in which electronic energy bands do not overlap, and

the distance between them is more than �3eV; to transfer an electron

from the valence band into the conduction band, a considerable energy

is required; therefore dielectric-insulators practically cannot conduct

electricity;

• the semiconductors—their bands do not overlap, but the distance

between them is smaller than �3eV; to transfer an electron from the

valence band into the conduction band, much less energy (than in

dielectric) is required; therefore in chemically pure semiconductors,

only weak electrical current can pass.
18. In a more general approach of solid-state theory, it turns out that the

prediction of various physical effects by band theory methods is much

wider from the initial approximations. For example, small fluctuations of

atoms around their equilibrium positions (which can be described as

phonons) can create perturbations in the electronic energy spectrum.

However, a bunch of many-electron physical phenomena, such as

ferromagnetism, superconductivity, and others, where the role of excitons

offer benefits, cannot be consistently reviewed as part of band theory.
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The most important property of metals is their large electrical conductivity. How-

ever, it should be noted that in addition to metals good conductors of electrical cur-

rent might be also other solids, liquids, and even ionized gas (plasma). Among

nonmetal solid conductors, there are some modifications of carbon and metal-oxides

(the latter are usually used at very high temperatures). However, metals and their

alloys, of course, are most important conductive materials that are applied in elec-

trical engineering, electronics, and instrumentation. Due to high conductivity, metals

are used in chips (as joining), in wires and cables, windings of transformers, micro-

wave waveguides, generator tubes, etc.

In some cases, it is necessary to employ the very low resistive metals—

hyperconductors and superconductors. On the other hand, metals with high resis-
tance are also widely applied: in resistors and electrical heating elements. Some-

times, liquid conductors are also of technical interest: they are various

electrolytes and molten metals. However, for most metals, rather high melting point

is peculiar; only mercury and some special alloys (e.g., indium-gallium alloy) can be

applied as liquid conductors at conventional temperatures.

The mechanism of current flowing in metals—as in both solid and liquid

phases—is due to the movement of electrons; therefore, they are called as conductors

with electronic conductivity.
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166 CHAPTER 5 Metals
5.1 DEFINING FEATURES OF METALS
The term “metal” originated from the Greek word “metallon,” which means “mine.”

Distinctive properties of metals are high electrical conductivity, ability to reflect

light (shine), mechanical plasticity and flexibility, as well as large thermal

conductivity.

Most chemical elements (simple substances) are metals, and many alloys of these

elements and their compounds are also metals. Sometimes, other substances can be

referred to as metals, having one or other of metallic properties, and they are called

“synthetic metals” (intercalated), “organic metals,” and others. Of 119 elements of

Mendeleev’s periodic table, 92 are metals. The boundary between metals and non-

metals in this periodic table has a diagonal from B to At. Some elements, such as

germanium (Ge) and antimony (Sb), are difficult to be qualified; however, Ge is con-

sidered as a semiconductor, while Sb is a semimetal. It is interesting to note that tin

can exist in metallic modification (β-Sn), so in a semiconducting phase (α-Sn).
However, in Ge, Si, P, and some other “nonmetals” another modifications can be

obtained under increased pressure that exhibit properties of metals. Moreover, at

super high pressure all substances must acquire properties of metals [1]. To find

out whether any material is metal or nonmetal, not only physical properties but also

chemical properties should be taken into account. Sometimes, for elements that lie on

the border between metals and nonmetals the term semimetal is used.
Earlier, mostly specific shine, plasticity, and malleability were considered as

characteristic features of metals. However, metallic shine might be seen in some non-

metals and semiconductors a well. Plasticity also cannot be a reliable defining feature

of metals, as many brittle metals are known. Therefore the negative temperature
coefficient of electrical conductivity should be considered as the main feature of

metals (i.e., electrical conductivity decrease with temperature rise) [2].

Metals are characterized by a special type of bonding—metal type connection
(see Section 1.1), in which crystalline lattice is formed by the positive ions, while

valence electrons are delocalized throughout a lattice space. Therefore metals can

be presented as the lattice of positive ions crowded by “gas of electrons” that com-

pensates forces of mutual repulsion of positive ions.

According to structure of electron shells, metals can be divided into four groups:

s-metals (all s-elements, except H and He); p-metals (elements of third group, except

B) and Sn, Pb, Sb, Bi, Ro; d-metals (transition elements); and f-metals (also transition

elements but of lanthanide group) [3]. Metals of the first two groups are sometimes

called as “simple metals.” In these groups, some narrower subgroups can be

highlighted. Among s-metals, there are alkaline metals and alkaline earth elements;

among d-metals, we find platinum subgroup of metals. The group of rare earth ele-
ments includes f-metals, Sc-subgroup, and lanthanides.

Most metals are crystallized in one of three structural types, namely, cubic, hex-

agonal dense packing, and space-centered cubic lattice. In case of dense packing,

each ion of metal at equal distances has 12 nearest neighbors. In the space-centered
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cubic lattice, each ion has eight equidistant neighbors, while another six neighbors

are located at slightly more distance (15%). Therefore the coordination number of

this structure is considered equal to 14 (8+6). Interatomic distances in metal struc-

ture are characterized by the “metallic ionic radius.”

After melting, metals, basically, retain their electrical, thermal, and optical prop-

erties (this indicates the importance of short-range order in arrangement of atoms).

Near melting temperature in liquid metals approximately the same short-range order-

ing is preserved as in crystalline metals. However, with increasing temperature, this

short-range ordering is disrupted until complete disorder.

Physical properties of metals vary widely. For example, melting temperature can
be found between�39°C (Hg) and +3380°C (W), while metal densitymight be from

0.53g/cm3 (Li) to 22.5g/cm3 (Os). Specific electrical resistance ρ of metals at nor-

mal temperature has a magnitude between 1.6μOmsm (Ag) and 140μOmsm (Mn).

However, temperature coefficient of resistance does not vary much: from

4�10�3K�1 (Hg) to 9�10�3K�1 (Be).

As for the special effects, in metals thermoionic emission can be observed, that is,
the ability to emit ions at high temperature. Electronic emission also occurs under the

influence of electromagnetic radiation in visible and ultraviolet regions of spectrum

(photoelectronic emission). Under the influence of external electric fields of high

intensity, autoelectronic emission is possible. During metal surface bombardment

by electrons, the secondary electron emission occurs, while ionic bombardment

results in the ion-electron emission. Finally, when metal surface interacts with

plasma, the explosive electron emission can be observed. Thermal-EMF (electromo-

tive force) is caused in metals under temperature influence.

Optical range radiation is almost entirely reflected from metal surface such that

metals are opaque and have a peculiar metallic luster. Being reflected from metal

surface, the plane-polarized light becomes elliptically polarized. Some metals, such

as gold (Au) in a form of very thin foil, can be light translucent.

To use metals as constructive materials, a combination of mechanical properties

(plasticity and viscosity) with considerable strength, hardness, and elasticity is essen-

tial. These properties depend not only on the chemical composition and purity of a

metal, but also on the perfection of its crystal lattice (presence of defects), as well as

on other features of structure, obtained during previous thermal and mechanical

processing [4].

In practice, most mechanical properties of metals are determined by the presence

of defects, firstly by dislocations (see Section 1.2); therefore movement of disloca-

tions in crystal lattice is the main mechanism of plastic deformation of metal. Inter-

action of dislocations with other defects increases metal resistance to plastic

deformation. In the process of deformation, the number of dislocations increases,

and correspondingly, resistance of metal to deformation increases (strain hardening).

However, stressed state and slander after deformation can be eliminated by metal

annealing. Increased tension in the places of dislocations—“thickening”—causes

nucleation of cracks that promotes destruction. The most important characteristic
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of mechanical properties of metals is the modulus of elasticity (Young’s modulus),

that is, mechanical tension, which corresponds to a unit of mechanical deformation.
5.2 ELECTRICAL CONDUCTIVITY OF METALS
Regarding electrical field, the main property of any matter is electrical charge trans-

fer, that is, the conductivity—the ability of material to conduct electrical current

under the influence of constant voltage (not changing in time). If the substance is

placed in an electrical field E [V/m], free charged particles—the carriers—under

the force F¼qE get acceleration, where q is charge of particle; in metals, this is

charge of electron: q¼e. The acceleration of charges is directed toward the vector

E for carriers with positive charge +q (i.e., for electronic holes or positive ions), or in
the opposite direction for charge carriers with negative charge�q. Directed in space
motion of electrical charges is electrical current.

With regard to electronic conductivity (q¼e), when only one sign of free charge
carriers exists, the current density j, that is, electrical charge that flows per unit time

through unit area (oriented perpendicular to vector E) equals to:

j¼ neυ, (5.1)

where n [m�3] is the number of charge carriers per unit volume of substance (carrier

concentration); υ [m/s] is the drift velocity, that is, average velocity of ordered move-
ment of charge carriers that arises under electrical field influence. This velocity usu-
ally is proportional to the field strength E:

υ¼ uE, (5.2)

where u is the proportionality factor called the mobility of charge carriers, measured

in [m2/(V s)].

With expression (5.2), Eq. (5.1) can be represented as

j¼ σE¼E=ρ, (5.3)

where σ [S/m] is specific electrical conductivity, ρ¼1/σ [Оhm m]¼ [Ω m] is elec-

trical resistivity ([S]¼Siemens is SI unit of conductivity). Eq. (5.3) is Ohm’s law.
Specific conductivity σ or resistivity ρ defines current density in material at a given

electrical field; at that, the phenomenon of electrical conductivity is the electrical
charge transfer.

Parameter ρ or σ also determines the scattering process (losses) of electrical

power in a matter. According to Joule-Lenz law, the density of thermal energy p,
[W/m3], that is, electrical energy that is converted into a heat per unit time and in

unit volume, is

p¼E2=ρ¼ σE2: (5.4)

From formulas (5.3) and (5.4) it is possible to pass into the formulas for material

conductance G, resistance R, and power P dissipated in a sample of any size and
shape:
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P¼U2G¼U2=R: (5.5)

In commonly used practice, to measure resistivity ρ some outboard units are custom-

ary. While unit of specific resistance in SI is [Ω m], for metals another unit

[Ω mm2/m] often is applied, because the cross-section of conducting wire usually

is measured in square millimeters (mm2) and the whole length of a wire l is measured

in meters [m]:

1Ωm¼ 106μΩm¼ 106Ωmm2=m:

This unit is very convenient because in commonly used conductors comfortable

numeric values are kept. At temperatures near 300K, the range of ρ for metals is from

0.016 μΩ m (silver) up to 10 μΩ m (resistive alloys); this means that ρ in metals

covers three orders of magnitude.

The temperature dependence of conductivity. Electrical conductivity of metals

varies significantly with temperature (Fig. 5.1). Temperature dependence of conduc-

tivity can be described by σ(T) � T�1, but at very low temperatures this dependence

is another. The point is that in case of deep cooling dependence σ(T) reaches satu-
ration, the level of which depends on the concentration of “static” defects. When

cooling metals that have ferromagnetic impurities, at a certain interval of tempera-

ture σ(T) dependence can even show a decrease (Kondo effect).
In electrical engineering and electronic equipment, in addition to high conductiv-

ity, high thermal conductivity λe, [W/(Km)] (Fig. 5.1), of metals is very important.

Thermal conductivity of metals is conditioned mainly by the presence of high-

mobility electrons, and, therefore, λe is proportional to conductivity. The identity

of λe/σ ratio for different metals is the Wiedemann-Franz law: the ratio λe/σT is
FIG. 5.1

Temperature dependence of conductivity σ and thermal conductivity λe in copper.
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weakly dependent on temperature (because λe is practically independent on temper-

ature). This ratio has the same value for many metals and represents the Lorenz num-
ber: L¼ (λe/σT). For most metals at temperature 300 K, this parameter equals

L�2.4�10�8 W Ω K�2.

Frequency dependence of conductivity. Due to large electrical conductivity of

metals, they almost entirely reflect electromagnetic waves: their reflection coeffi-

cient is R¼ [(n�1)/(n+1)]2�1, where refractive index is n ¼ (εμ)1/2. Up to the opti-
cal range of electromagnetic waves, conductivity of metals practically does not

change with frequency, because electrons have very low inertia (due to small

mass) [5].

Since in the range of optical frequencies magnetic permeability μ¼1, very large

optical reflection of metals (R � 1) means that effective dielectric permittivity

εef � n2 is large (and negative). However, in the ultraviolet range of spectrum inertia

of “electrons ensemble” (which is associated with ionic lattice) shows plasma res-
onance at frequency ωpl. Frequency of this resonance (located approximately at

1016Hz) is inversely proportional to relaxation time of electrons in plasma:

ωpl¼1/τrel. As a result, in the range of ultraviolet light, conductivity of metals

decreases with increasing frequency (Fig. 5.2), and metal gradually becomes trans-

parent for harsh electromagnetic waves (x-rays).
Charge transfer description.Valence electrons in ionic lattice of metals are prac-

tically free, because ions form energetically favorable lattice for electron movement.

Concentration of free electrons in metals is large (the number of atoms per unit vol-

ume is approximately equal to 1023cm�3). Electrons can be treated as particles that

weakly interact with each other; virtually they have no volume and move randomly

through a crystal. The assumption that electrons practically do not interact with each

other, seemingly, contradicts Coulomb repulsion between them. However, the Cou-

lomb attraction of electrons to positively charged ions of crystal lattice should be

also taken into account. As quantum mechanical analysis shows, these joint actions

in the strongly periodical structure of crystal make a reasonable assumption about

“practically free electrons” (although this supposition has approximate nature).
FIG. 5.2

Frequency dependence of conductivity σ and plasma contribution to effective permittivity εpl
in the vicinity of plasma resonance in metals (in ultraviolet part of spectrum).
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Electronic gas exists in the thermodynamic equilibrium with crystal lattice that is

established through the collisions of moving electrons and ions in lattice. Electrons in

metal are always found in a movement, and they move even at lowest temperatures

(near absolute zero) [6]. This quantum motion of electrons is chaotic, and different

electrons move with different velocities. Most electrons in metals move with Fermi
velocity υF�106m/s. This value can be defined from Fermi energy, taking into

account kinetic energy of electron: (meυF
2)/2¼ΕF.

In the ideal metal with infinite conductivity, an electrical field cannot exist. To a
real metal only very small electrical field can be applied (otherwise, huge electrical

current would appear and melt the metal). Under the influence of external electrical

field, a current flows in metal, that is, the chaotic movement of electrons becomes

partially directed: on disordered motion of electrons, their drift is superimposed. To

calculate corresponding current, one needs to take into account the average velocity
υav of electron drift (at that, velocity of randommotion of electrons is independent on

electrical field).

As current density j is the amount of electricity passing per second through unit

area of a conductor, then, according to this definition: j¼�neeυav. If current density
is large enough, for example, j¼1A/cm2, calculations show that average drift veloc-

ity of electrons is only υdv � 10�3 cm/s. Thus directional movement of electrons in

metals is very slow as compared not only with velocity of their chaotic movement but

even in the macroscopic scale. The smallness of drift velocity is because only a very

weak electrical field can be applied to the metal.

Charge carrier mobility. There exists a direct proportionality between difference
of potential applied to metal and caused by its current:

j¼ σE: (5.6)

Using expression (5.6) for current density, it is possible to establish that average drift

velocity of electrons in a conductor is proportional to the force acting on them:

υdv ¼ σ=eneð ÞE¼ uE: (5.7)

Parameter u¼σ/ene, that is, drift velocity caused by influence of unit of field, is the

mobility. Its unit can be clarified from the formula u¼υ/E; as a result, in SI the

dimension of mobility is [u]¼ [m2/(sV)]. It can be seen that such unit of mobility

is difficult to relate with the physical meaning of this phenomenon [7]. If one con-

tinues to find physical sense of mobility unit using the SI system, it can be written as

[u]¼T�1, that is, return value of “Tesla” that is unit of magnetic induction in SI,

because Vs¼Wb (Weber) and Wb/m2¼T. Another possibility to find mobility unit

in SI is also inconvenient for easy interpretation: [u]¼As2 kg�1.

On the contrary, in the Gauss system of units (CGSE), the unit of mobility is esti-

mated as [s/g] (second/gram), that is much more simple, hence making the content

more understandable. In fact, mobility characterizes the increase of velocity (m/s)

under force influence of υ¼u � f. The force is f¼ma and in SI has unit [N]¼Newton;

therefore in the Gauss system force is 1N¼103 g �102 sm/s2; then mobility has a sim-

ple unit: u¼υ/f, therefore [u]¼ [s/g].



172 CHAPTER 5 Metals
In fact, mobility indirectly characterizes the opposition of a medium through

which electrons drift under influence of electrical field. If any braking force is absent,

then the electron under electrical field will move with constant acceleration (such as
in vacuum), but not with constant velocity as they move in crystals. Mobility char-

acterizes how charge carriers, being forced by electrical field to the directed ordered

motion, can overcome their thermal chaotic motion that is characterized by contin-

uous collisions with phonons and defects. Therefore mobility is the degree of free-
dom of electron’s directed motion in a media [7] (while almost nothing prevents the

electrons in their chaotic quantum Fermi motion).

Analogy of a current, flowing in a conductor, with a liquid flowing through the

pipe indicates that electrons in a conductor move with some similarity of “friction.”

Thus there are some reasons that violate field-induced directionalmovement of elec-

trons inside a metal. Analyzing these reasons and taking into consideration that

mobility should be expressed through specific conductivity, it is possible to obtain

σ¼ neeu: (5.8)

The necessity to express metal conductivity σ by means of two other parameters ne
and u is because each of them can be found in independent experiments.

Indeed, the concentration of free electrons ne never changes with temperature: it

is a peculiar property of the given metal. Conversely, another parameter, themobility
u, can vary with the change of temperature 100 times, even 1000 times. In addition,

by cleaning a metal from impurities it is possible to increase electron mobility many

fold. For this reason, it is important that two characteristics—number of electrons per

unit volume ne and their mobility u—allow independent measurement.

Hall’s effect.One of the most suitable methods to find concentration of electrons

ne is Hall’s effect, that is, potential differences across plate-shaped conductor with

flowing current, which arises when a conductor (semiconductor) is placed in the

transverse magnetic field (Fig. 5.3).

The cause of Hall’s effect is Lorentz force that acts on electrons under combined

influence of electrical and magnetic fields:
FIG. 5.3

Experimental scheme for investigating Hall effect.
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FLor ¼ e E + υ�B½ �ð Þ, (5.9)

Amoving electron forcedly shifts in direction, perpendicular to both vectorsE andB.

At the condition when the circuit is opened, the charge redistribution leads to inhib-

itory force: electrical field directed of y-axis (axes are marked in Fig. 5.3).

After transformations it is possible to obtain the next expression for y-component

of electrical field:

Ey ¼ 1=neecð Þj �H: (5.10)

As charge of electron e and light speed c are known, while current j and magnetic

field H are measured directly, expression (5.10) determines the number of electrons

per unit volume of a conductor. These measurements show that in metals—good

conductors—the density of electrons is close to the value ne�1023cm�3. The great-

est density of electrons is seen in beryllium (ne�2.5�1023cm�3) and in aluminum

(0.8�1023cm�3), and the smallest density is observed in cesium (0.09�1023cm�3)

and rubidium (0.1�1023cm�3). Also, the metal that has the highest electrical con-

ductivity at temperature 300K is silver; however, its density of electrons is

ne¼0.6�1023cm�3. Therefore the conductivity depends not only on the concentra-

tion of charge carriers.

The conformity between density of electrons and density of ions validates the

foregoing assumption: from each metallic atom one or more electrons come off

and then can move freely through a crystal. This is another proof of relative

“freedom” of electrons in metals, especially given data on electronic density are con-

sistent not only with electrical, but also with other properties (e.g., with electron heat

capacity).

If the number of electrons per unit volume is found, it is possible to calculate the

mobility of electrons in a metal using formula (5.8). In copper, for instance, this

mobility at room temperature equals u¼2�1013 s/g (electrons in copper are most

mobile among other metals under normal conditions). Near absolute zero of temper-

ature, electron mobility becomes greater thousands of times [7].

The effect of magnetoresistance is the change of electrical resistance in the mag-

netic field. In general, in case of magnetic field impact the change of electrical cur-

rent is observed. Therefore, any substance, to some extent, exhibits the effect of

magnetoresistance, not only metals. Also, in the semiconductors, the relative change

of resistance in magnetic field might be greater than in metals [2].

Magnetoresistance of a substance depends on the orientation of the studied sam-

ple relative to the magnetic field. Magnetic field does not change the projection of

electron’s velocity on the direction of magnetic field, but because of Lorentz force

the magnetic field distorts the trajectory of a moving electron in a plane perpendic-

ular to this field. This effect explains the reasons for the transverse magnetic field

acting on the resistivity being stronger than the longitudinal magnetic field.

The effect of magnetoresistance can be explained while examining the trajectory

of charged particles in the magnetic field. Consider passing along a sample current jx
along x-axis (Fig. 5.3). Electronic gas is degenerated; therefore average velocity of
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electrons is Fermi velocity (near Fermi level), which significantly exceeds the veloc-

ity of directional movement (drift velocity). Charge carrier, between its collisions,

without magnetic field influence moves in a straight line. However, in the external

magnetic field H (applied perpendicular to electrical field) free path of electron will

have another length: lx� l cos φ (where l is average free path). Therefore, during the
time between two collisions along electrical field direction, the electron overcomes

the path smaller than l. This results in drift velocity decrease, hence, in the decrease

of conductivity, that is, resistance increases. Therefore magnetoresistance is the rel-
ative difference between resistance measured at the presence of magnetic field and

resistance, measured without the magnetic field. Based on this effect some electronic

devices are elaborated and used as magnetic field sensors. However, except for
metals, there are other much more sensitive materials: semiconductors and, espe-

cially, ferromagnetic and nanomagnetic materials.

Response time and free path of electrons.With the knowledgemobility, it is pos-

sible to estimate two very important characteristics of electrons in a metal. As

already indicated, during mobility analysis, it seems more convenient to express

the unit of mobility in CGSE system: [s/g], because from this follows that average

free time τ¼meu has the dimension of seconds. The important parameter τ [s] can be
defined in many ways, but in solid-state physics the most often used term is response
time (or time constant); it should be noted that an analogous term free run time is used
in molecular-kinetic theory of gases, while in the theory of scattering the term relax-
ation time is more familiar [8].

Analysis of particle movement “with a friction” shows that as soon as the acting

force is an electrical field the electrons start to move with acceleration, and their

velocity increases; however, at the same time, frictional force also increases propor-

tional to velocity. During time τ¼meu, the inhibitory force completely compensates

the external accelerating strength, and particle moves with constant drift velocity.

Thus response time describes the interval at which steady state of motion is installed

(i.e., movement with constant drift velocity).

Response time for electrons moving in metal is very small: τ�10�14 s. During

electrical field switching, it looks impossible to notice the start of free movement

of electron: as soon as metal is placed in the electrical field, Ohm’s law in a circuit

begins to operate immediately. However, despite extreme smallness of response

time, dynamics of electron “free” movement can still be estimated by τ indirect mea-

surement. In this case, one needs to explore behavior of metals at very high frequency

fields, as already shown in Fig. 5.2. By studying the variance of σ(ω), that is, fre-
quency dependence of conductivity, it is experimentally possible to evaluate τ for
different metals.

Thus, from a microscopic point of view, electron movement “with a friction” can

be represented as the “flight” under force influence that accelerates the electron up to

its collision, wherein the electron returns energy, gained by electrical force, to a lat-

tice. At that, parameter τ is the average time between two collisions, while the prod-

uct of this time on Fermi velocity υF gives the average free path δ that is the distance
between electron collision: τυF¼δ.
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To explain the nature of a conductor’s resistance, why an electron in a crystal has

finite average free path and what is its numerical value have to be elucidated. In the

ideal crystal (without defects), in which each ion is fixed in its place, the electron

moves quite freely ignoring surrounding ions. In an ideal case (when T!0 K and

no defects) the electron, being accelerated by applied field, would increase its energy

until facing the border of a sample. However, a real crystal exists in conditions of

lattice thermal fluctuations; moreover, static defects of a structure also prevent free

movement of an electron. From the expression for conductivity (σ¼neeu) and using
response time (τ¼meu), we get:

σ¼ neeτ=me: (5.11)

If both numerator and denominator in this formula are multiplied by υF, the expres-
sion for conductivity will take another form:

σ¼ neeδ=meυF: (5.12)

The skin effect.At very high frequencies (108–1011Hz) electromagnetic field can

penetrate in a conductor only to a small depth, which becomes less when the fre-

quency is higher and conductivity and magnetic permeability are greater. The result

is the uneven distribution of current density in the cross section of a conductor—this

is the surface effect (or skin effect) [5].

The depth of penetration (skin) δskin is such a distance inside a conductor, at

which the amplitude of electromagnetic wave reduces in “e” times. Using Maxwell

equations, the following expression for the depth of penetration can be obtained:

δskin ¼ 2=ωσμμ0ð Þ1=2, (5.13)

where ω is circular frequency, σ is conductivity, and μ is relative permeability of

conductor. Relative permeability in most good conducting metals is close to unity

(μ�1). However, in ferromagnetic materials where μ�103 the penetration depth

is much lower than in nonmagnetic metals. The minimal penetration depth

(δskin!0) is observed in superconductors, in which σ!∞.

In radio engineering, especially in ultrahigh frequency (UHF) range, for skin

effect description the concept of surface resistance Rs (measured in ohms per square)

is used:

Rs ¼ 1=σδskin: (5.14)

In microwave transmission lines, wave oscillations extend by both electrical and

magnetic fields. Wave oscillations cannot pass through metallic walls of transmis-

sion lines, and, therefore, are distributed in the dielectric between waveguide walls.

If these walls were made of ideal conductors (with σ¼∞), then microwave signals

will not penetrate in walls of the guiding conductor (closely related to this case are

superconducting materials that sometimes are used in microwave devices, and they

essentially decrease wave attenuation).

In normal cases, waveguide walls are not perfect conductors; thus the microwave

field can penetrate the waveguide walls. The depth of penetration, as shown in
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formula (5.13), depends on microwave frequency and conductivity of the metal from

which the transmission line (waveguide) is made. For example, in copper at a fre-

quency of 10GHz the penetration depth is only 0.5 microns. This implies that just

a surface of conductors significantly affects quality of microwave transmission line.

Imperfect surface leads to losses—attenuation of signal, propagating through the

microwave waveguide. To adequately transfer signals, the microwave power trans-

mission line should have a wall thickness that equals approximately 10 layers of skin

thickness (at a frequency of 10GHz it is less than 10 microns).

Thus the main cause of microwave energy losses is the skin effect, which is not so

large in high-conductive metals. Skin effect is absent in case of superconductivity.

Hyperconductivity (cryoconductivity) in metals. High conductivity is a favorable

factor to reduce attenuation of waves in waveguides and microwave resonators. Cur-

rently these devices have expanded their use up to millimeter waves that need to

increase the quality factor of resonant microwave structures. In case of low temper-

atures (see Fig. 5.1), conductivity of metals increases significantly. Moreover, some

metals at low temperatures become superconductors. The electrical resistance of

superconductors below their critical temperature Tc (phase transition temperature)

at low frequency becomes close to zero (ρ�0).

Superconductivity is used in cryogenic electronics. However, in metals supercon-
ductivity is possible only by using helium temperature (T�4K), but liquid helium is

very expensive in practical use. Nevertheless, in electrical engineering and electron-

ics hyperconductivity might be successfully applied at another cryogenic tempera-

ture (77K, liquid nitrogen that is much cheaper than helium). In some metals, at

temperature 77K, it is possible to obtain very small resistance (thousands of times

lower than at normal temperatures).

Metals with favorable characteristics in the range of cryogenic temperatures are

the hyperconductors (or cryoconductors). The phenomenon of hyperconductivity is

not similar to superconductivity. Application of cryoconductivity in metallic micro-

wave resonators and other microwave devices significantly increases their operating

parameters. It is necessary to mention that there are many metals with small resis-

tance at nitrogen temperature. However, a significant advantage at liquid nitrogen

temperature is beryllium: exactly it has the smallest possible ρ value. In contrast

to superconductivity, hyperconductivity is not destroyed by magnetic field. At that,

hyperconductive metals must be well cleaned to have perfect structure [5].
5.3 THERMAL PROPERTIES OF METALS
According to classic electronic theory of metals, a solid conductor may be repre-

sented as a system, consisting of ionic lattice that contains inside “gas” of collectiv-

ized (free) electrons. Assuming the metal as a crystal, in which positive ions form

stable lattice with mobile electrons between them can explain many basic properties

of metals: ductility, malleability, high thermal conductivity, and large electrical con-

ductivity. Similar to a solid state, in a liquid state of metal a large number of free
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electrons exist: ne¼ (0.5–25)�10�22 cm�3; they are the charge carriers providing

electrical current passage through a metal. At normal temperature, electron mobility

in metals is u¼ (2–7)�10�5 m2/(Vs).

Thermal conductivity of metals.Heat transmission through a metal occurs by the

same free electrons that determine electrical conductivity. Thermal conductivity of

metals is high due to a large number of electrons per unit volume of metal. At the

same time, the coefficient of thermal conductivity by electrons λe in metals exceeds

thermal conductivity λph in dielectrics, where heat transferred mainly has phonon

nature.

Obviously, if other things being equal, the higher the specific electrical conduc-

tivity σ in a metal the greater the metal thermal conductivity λe. As temperature

increases, the mobility of electrons in metal and, therefore, its electrical conductivity

σ reduces; at that, ratio λe/σ has to grow. Mathematically, this law is expressed by the

Wiedemann-Franz-Lorenz expression:

λe=σ¼ LT, (5.15)

where T is absolute temperature and L is Lorenz number that equals:

L¼ π2=3
� �

kB=eð Þ2: (5.16)

Substituting Boltzmann constant kB¼1.38�1023 J/K and charge of electron

e¼�1.6�10�19C in Eq. (5.16), it is possible to obtain Lorentz number

L¼2.45�10�8 W Ω K�2.

In most metals, Wiedemann-Franz-Lorenz law is well evidenced at temperatures

close to normal temperature or at slightly elevated temperatures. For example, for

copper at temperature T¼293K, by substituting conductivity σ¼57�106S/m

and λe¼390W/(mK) in formula (5.16), it is possible to obtain Lorenz parameter

L¼2.54�10�8W Ω K�2 that is very close to theoretical value. At normal temper-

ature, in aluminum L¼2.1�10�8, in lead L¼2.5�10�8, and in iron 2.9�10�8

W Ω K�2. However, at low temperatures Lorentz number might be changed; for

example, while cooling it passes through minimum (in copper), but approaching

absolute zero Lorentz factor again becomes close to theoretical value of L.
Thermal capacity of metals. Despite large and almost independent of tempera-

ture electronic conductivity, in metals the electronic contribution to specific heat

Celec at normal conditions (T�300K) is small (Fig. 5.4). This feature of metals

should be considered while elucidating those electronic devices that have to work

at increased power [6].

Heat capacity of metal, predominantly, is formed by thermal fluctuations in crys-

tal lattice (phonons) and at low temperature Clattice�T3. At that, electronic contribu-
tion to heat capacity of metal increases in direct proportion to absolute temperature:

Celec¼ξT. That is why electronic heat capacity in metals becomes significant at very

low (cryogenic) temperatures (T≪ θD), because lattice (phonons) contribution to

specific heat tends to zero much faster in comparison with electronic contribution

Celec. Sometimes, below temperature T�10K electronic Celec can exceed lattice

(phonon) contribution Clattice.
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Temperature dependence of phonons and electron contribution to specific heat inmetals (θ is
Debye temperature).
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Similarly, at very high temperature, when T≫ θD and metal still remains solid

(not molten), electronic contribution to heat capacity can be compared with lattice

contribution.

Thermoelectromotive properties (thermal EMF). When two different metals (or

semiconductors) are in contact, the difference in contact potentials occurs between

them, caused by the difference in electronic work function and by distinction in free

electron concentration in relevant metals (or semiconductors).

If temperature of two distant contacts (junctions) of different metals (entering

into a closed circuit) is equal, the distinction in potentials in these metals is zero,

and no current in circuit can be seen. However, if one junction of metals A and

B has temperature T1 while another junction has temperature T2 (T1 6¼ T2), thermo-

electromotive potential occurs:

U¼ kB=eð Þ T1�T2ð Þ ln nA=nBð Þ,
where nA and nB are concentrations of free electrons in metals A and B, respectively,

kB is Boltzmann constant, and e is charge of electron. This formula, referring to phe-

nomena of thermocouple, can be also written alsoU¼α(T1�T2), where α is constant
factor for given pair of conductors—the thermoelectric coefficient. Thus thermal

EMF must be proportional to temperature difference between junctions (Fig. 5.5).

Thermocouples, composed of two different metals or alloys, are widely used for

measuring temperatures. As a thermocouple wire, the metal with large and stable

coefficient of thermal EMF should be applied [1]. On the contrary, in high-quality

measurement systems and in reference resistors contacting metals and alloys that

have the lowest thermal EMF should be used to avoid any interference from

unwanted thermocouples in measuring.



FIG. 5.5

Thermal EMF dependencies on temperature difference between two junctions of

thermocouples: 1—platinum-rhodium-platinum; 2—chromel-alumel; 3—copper-copel, and

4—chromel-copel.

1795.3 Thermal properties of metals
The linear thermal expansion coefficient is defined as

TCl ¼ l�1dl=dT,

where l is arbitrary linear dimension of the studied sample. The knowledge of this

coefficient is necessary to coordinate joining parts of devices, when in their design

various combinations of materials are used (metals, dielectrics, semiconductors).

Ignoring the coordination of thermal expansion may result in stresses or even in

cracking, for example, in case of vacuum-tight connections of metals with glasses,

and in the event of temperature change, this connection might be broken [4].

Using TCl, it is possible to calculate the temperature coefficient of electrical resis-

tance of a wire:

TCR ¼ TCρ�TCl: (5.17)

In pure metals usually TCρ<TCl, that is, it can be approximately considered that

TCR�TCρ. However, in case of alloys with low TCρ formula (5.17) has

practical value.

The value of TCl of metals increases with temperature rise, especially when

approaching melting point of a metal. Therefore, the fusible metals typically have

relatively high TCl, while in the refractory metals their TCl has relatively small value.

Tensosensitivity of metals is used for strain measurements. Electrical resistance

in metals changes significantly in case of metal deformation. This phenomenon is

applied in strain-sensing elements. Tensiometric (strain-gage) alloys are applied

in various devices used for strain measurements under mechanical influence (usu-

ally, the stretching is studied).
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The principle of operation of these sensors is based on the change in resistance

during metallic element stretching. At that, strain-sensitivity factor is determent by

expression Ctens¼ (ΔR/R):(Δl/l), where ΔR/R is change of resistance due to defor-

mationΔl of element with length l. In most casesCtens¼1.6…2.2, with the exception

of nickel that has this ratioCtens¼10 (this feature of nickel is due to peculiar structure

of its Fermi surface).

Basic material for strain measurement sensors that operates at relatively low tem-

peratures is constantan (Cu-Ni-Mg alloy). In the high-temperature range, sensors

with Fe-Cr-Ni alloys are usually used [5].

The mechanical properties of metals are characterized by limiting strength dur-

ing stretching, by relative elongation at break, by brittleness, hardness, and other

parameters. Mechanical properties of metallic conductors are strongly dependent

on the mechanical and thermal processing of a metal, as well as on the presence

of impurities in a metal, and so on. The annealing leads to significant decrease in

strength but increases elongation.
5.4 ELECTRONIC PROPERTIES OF METALS AND FERMI
SURFACE
Classic electronic theory of metals (Paul Drude’s theory). High electrical and ther-

mal conductivity of metals as well as typical metallic luster indicate that electrons in

a metal can be treated as free. Analysis of Ohm’s law leads to the same conclusion:

when even a very small voltage is applied to metal it is always seen that current is
proportional to voltage, and proportionality factor (1/R) is the same as it is for

increased values of voltage and current. If electrons in a metal are linked to specific

nodes in a crystal lattice, then the threshold electrical field will exist, from which

“normal” Ohm’s law will begin to operate. In other words, conductivity of metal

would be less in a smaller electrical field than at a larger electrical field. The fact

that such phenomenon is not observed testifies the model of free electrons [1].

A study was conducted to determine the ratio of charge to mass for charge carriers

in metals. In these experiments, the coil with a metal wire (copper, aluminum, or

silver) is exposed to a rapid rotation and then abruptly pulled up. Under these con-

ditions, free charge carriers would have to move by their inertia. Indeed, at the

moment of sudden stop of coil the electrical current is registered; corresponding cal-

culation gives the value of ratio e/me close to ratio of charge to mass for free electrons

(1.76�1011). Therefore this experiment supports the assumption that electrical cur-

rent in metals is caused by free electron directional movement.

Drude’s theory, supposing chaotic (thermal) motion of electrons and their drift

under the influence of directional electric field, makes possible to substantiate Ohm’s

law. In case of electron collision with imperfections in crystal lattice, the energy,

accumulated during electron acceleration in the electrical field, passes into crystal

lattice such that it becomes heated (Joule-Lenz law). Thus classic electronic theory

of metals can analytically describe and experimentally explain obtained basic laws of
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conductivity and power losses in metals. It can also explain the relationship between

electrical conductivity and thermal conductivity of metals. Moreover, some other

experiments confirm the hypothesis of electronic gas existing in metal, for example,

the curvature of electron trajectory in the transverse magnetic field: electromotive

force changes electrical resistance of a conductor.

Therefore metals are different from other solid bodies because of free electron

existence that practically are not connected with atoms but nearly freely move inside

a metal. Using the concept of free electrons not only electrical properties of metals,

but also other peculiarities can be explained, such as flexibility.

Assuming that electrons in a metal represent the classic gas, Drude’s model

offered metal as a “vessel” containing “gas” of freely circulating electrons that

makes possible to get formulas for high-frequency conductivity σ(ω) and for elec-

tronic contribution to thermal conductivity λe:

σ¼ σ0= 1� iωτð Þ; σ¼ nee
2τ=m; λe ¼ Lσ0,

where ne is number of electrons in 1cm3; ω¼2πν is frequency of electrical field; σ0
is conductivity at very low frequency; τ is free path of electron; and L is universal

constant (Lorentz number). Frequency dependence of σ is shown in Fig. 5.2, while

Wiedemann-Franz law that implies Lorentz number is discussed in Section 5.3.

Thus, by introducing metal as a system, in which positive ions are fastened by means

of freely mobile electrons, it is possible to explain basic properties of metals:

elasticity, ductility, high thermal conductivity, and large amount of electrical

conductivity.

However, there are some contradictions between conclusions of Drude’s theory

and experimental data [3]. These contradictions are as follows:

(1) disagreements in experimental and theoretical data in the temperature

dependence of resistivity;

(2) discrepancies between theoretically predicted and experimentally observed

specific heat of metals.

Namely, in metals observed specific heat is much less than predictions of Drude’s

theory; it looks like electronic gas hardly absorbs heat during metal heating. Exper-

iments show that required energy is much less than expectations of Drude’s theory.

The main drawback of Drude’s model is the assumption that free electrons in metal

are as free as molecules in an ideal gas. Also, electron-to-electron interaction is

completely neglected. These contradictions can be overcome by considering the

main standpoint of quantum mechanics.

Quantum distribution of electronic gas. The quantum theory of electronic gas in

metal helps to explain all electrical and thermal properties of electronic gas, partic-

ularly, low heat capacity of electronic gas that is not explained in Drude’s model.

In the process of metal heating, electrons located in the lower energy levels can-
not increase their velocity (by perceiving heat energy) because higher energy levels

are already occupied. Occupied levels and free levels in the electronic energy spec-

trum of metal are divided by the Fermi level. Thus only those electrons that are
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located near the Fermi level can be thermally excited—only they can rise to the unoc-
cupied states located just above the Fermi level.

Quantum distribution of electronic gas velocities is significantly different from

classic distribution of molecule velocity in the normal gas, described by Maxwell-

Boltzmann function. The point is that classic distribution is greatly dependent on

temperature: at lower temperature, the maximum of distribution is narrower than

at higher temperature. Moreover, this maximum becomes more blurred and notice-

ably shifts toward higher velocities (see Fig. 5.6A). In contrast, in case of quantum
electronic gas distribution, the density of states at room temperature (Fig. 5.6B, dot-

ted line) differs only a little from the density of states at absolute zero (Fig. 5.6B,

solid curve).

However, during the study of electrical and thermal properties of metals, usually

the distribution of energy but not the velocity is used.

Fermi energy level. Main ideas of electron quantum statistics were considered

previously (Section 4.6). To determine the number of free charge carriers in metal

the quantity of energy levels (states) of electrons in that conduction band, which

is actually occupied needs to be known. Dependent on temperature and energy,

the probability w(T,E) of electron existing on the energy level E is determined by

distribution function of Fermi-Dirac:

w T, Eð Þ¼ 1 + exp E�EFð Þ=kBT½ �f g�1
,

where kB is Boltzmann constant, T is absolute temperature, and energy EF is Fermi

level. As seen from this formula, at T 6¼ 0 distribution function for level E¼EF is

w¼½.

In the ground state, that is, at temperature T¼0K:

• For energy levels that are located below Fermi level distribution function is unity

(w ¼1), because E < EF and exp[(E � EF)/kBT!0. This means that all

levels that lie below Fermi level at absolute zero are occupied by electrons.
FIG. 5.6

Comparison of classical Maxwell-Boltzmann distribution of gas molecule velocity (A) and

quantum Fermi-Dirac distribution of electronic gas velocities (B); dotted lines corresponds to

higher temperatures.
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• For energy levels that are located above Fermi level the Fermi-Dirac distribution

function equals zero (w ¼0), because if energy E > EF and T!0 the

function exp[(E � EF)/kBT!∞, so the probability w(T,E)!0, that is, at

absolute zero all levels, lying above Fermi energy, are empty.

Thus, in metals at temperature T¼0 Fermi level divides conduction band by a half:

entirely occupied part of a band and entirely empty part of a band without any energy
gap between these parts.

Fig. 5.7 shows the difference between Maxwell-Boltzmann classical statistics

and Fermi-Dirac statistics. However, Fermi-Dirac statistics should be used only

when the quantum effects are considered, and particles (in this case, electrons) do

not differ from each other. Quantum effects are found when concentration of parti-

cles n is greater than quantum concentration nq, while the distance between particles
is close to de Broglie wavelength, that is, if wave functions of particles are touching
but not overlapping.

This situation corresponds to metals. As a result of electrostatic repulsion, free

electrons in a metal never come close to one another: each electron is surrounded

by a free cavity, into which another electron cannot enter. However, this cavity is

partially filled by positive charge of lattice; therefore this positive charge screens

given electron from all others. Thus, due to electrical repulsion force, electrons move

inside a metal with very rarely collisions between them.

Typically, Fermi-Dirac statistics is used at low temperatures, but in case ofmetals
this statistics should be applied at normal temperature. The point is that temperature

�300K with correspondent energy kBT�0.03eV for metals seems very low,

because Fermi energy in metals is large (EF�5…10eV). As shown in Fig. 5.7, Fermi

function at temperature 300K for metal varies only in the narrow range near Fermi

energy.

In contrast to the ideal gas, in which additional energy is absorbed by all mole-
cules, in metal absorbed heat can excite only a relatively small amount of electrons
located near Fermi level. For this reason, to raise temperature of electronic gas much

less heat is required (see Fig. 5.4, electronic thermal capacity Celec).

Fermi surface. Unlike classic electronic theory, quantum mechanics shows that

gas of electrons in a metal under normal temperature is found in a state of
FIG. 5.7

Maxwell-Boltzmann fMB and Fermi-Dirac fFD distributions near room temperature.
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degeneration. In this state, energy of electronic gas is practically independent of tem-

perature, that is, thermal motion changes electron energy only a little. That is why

thermal energy practically cannot heat electronic gas, and this is clearly detected by

measurement of thermal capacity. In this state, similar to conventional gas, electronic

gas appears as if its temperature were several thousand degrees [6].

According to quantum statistics, gas of electrons cannot have more than two elec-

trons with same quantum parameters. Electrons occupy all allowed states of

impulses, but not higher than those limited by Fermi level. The Fermi surface

(Fig. 5.8) is a boundary between occupied and unoccupied states of electronic gas

at absolute zero. Therefore Fermi surface is the isoenergetic surface in a space of

quasipulses (p-space) that corresponds to Fermi energy EF:

Es pð Þ¼EF:

Here Es(p) is dispersion law of conduction electrons; s is number of energy band;

therefore Fermi surface at temperature T¼0K separates occupied electronic levels

from empty levels.

Sometimes, in Fermi-surface representation, it is possible to restrict the task by

using only one p-space, namely, the 1st Brillouin zone, located just at the ends of

vectors p that describes all nonequivalent states. If the Fermi surface is completely

housed in one cell of p-space, then this surface is closed (Fig. 5.8A). In this case,

Fermi surface is a sphere with radius kF¼ (2mEF)
1/2ℏ�1 that is determined by the

concentration of valence electrons. If Fermi surface intersects the boundaries of cell

in p-space, it is called opened (Fig. 5.8B). When extended p-space is used, closed

Fermi surface is endlessly repeated from cell to cell.

In the impulse space, all states inside Fermi sphere of radius pF are filled. The

linear response of metal to electrical and magnetic fields or to thermal gradient is
FIG. 5.8

Closed (A) and opened (B) Fermi surfaces for copper and lead, respectively.
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determined by a shape of Fermi surface, because electrical current is due to changes

in the occupancy of states near Fermi energy.

Thus Fermi surface is the abstract boundary in the reciprocal space, which is

useful to predict thermal, electrical, magnetic, and optical properties of metals

and semimetals [1]. The shape of Fermi surface is derived from the periodicity

and symmetry of crystal lattice, as well as from occupation of electronic energy

bands. The success of Fermi surface model is direct confirmation of Pauli principle

that allows maximum one electron per one quantum state. Most electrons are placed

inside Fermi surface, and only some of them can be outside of it (in the strip of kBT,
see Fig. 5.7)

Remarks on band theory of metals. Band theory uses the fact that an electron has
both properties of particle and wave; therefore in case of close location to ions in a

lattice, wave properties of electrons necessarily manifest themselves. The Bloch

wave functions, used in one-electron band theory, is true for metals with s- and
p-electronic orbitals, which have a large length of orbital space with considerable

mutual overlap. However, in case of metals with d- and f-orbitals, band theory

should be used with caution. Conduction electrons in these metals (and in their

alloys) have increased effective mass; moreover, other physical properties of these

crystals might be very specific [7].

Electronic energy bands of metals with s- and p-electrons are discussed in more

detail in Section 4.6, where specific examples are shown: energy spectra of sodium

that has very simple electronic energy spectrum (Fig. 4.19), and more complicated

band structure of well-known conductor—copper (Fig. 4.20). The wavelength of

electron in crystal depends on its impulse; simply stated, not a wavelength (λ) is used,
but the wave number (k) that is expressed as k¼2π/λ. Obviously, wave number is

directly proportional to wave velocity. Movement of electron can be described,

using the relationship between wave number of electron and its energy; this depen-

dence looks similar to energy dependence on velocity. Therefore Fermi surface can

be shown in the space of wave numbers.

The curvature of Fermi surface is dependent on density of allowed states near it,

and this curvature affects electrical, thermal, and magnetic properties of metal.

The more electrons are located near Fermi surface, the more electrons can increase

their energy during metal heating as well as the more electrons can orient their spins

in magnetic field (which results in paramagnetism of electronic gas in metal).

Metals always have some electrons on the blank levels above Fermi level (for this

reason, metals are good conductors of electricity), implying that metals have such

Fermi surface from which electrons can easily be transferred to the blank (allowed)

higher energy levels. Current in conductor is carried by those free electrons that can

be easily accelerated, moving through allowed unfilled states.

Decrease of electrical conductivity with increasing temperature is a typical prop-

erty of metals. This dependence is due to local thermal vibrations in crystal lattice.

Accelerated by electrical field, electrons are scattered on these vibrations, and,

therefore, the velocity of electrons reduces. Raising temperature increases thermal

vibrations intensity, thereby decreasing free path of electrons between two collisions.
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Conversely, with lowering temperature, the interval between collisions (and relax-

ation time) increases and conductivity increases. Electrical conductivity of any metal

can be calculated, if the shape of Fermi surface and the relaxation time for these elec-

trons are known. Fermi surface also permits to evaluate electrical and thermal con-

ductivity of metal at different conditions. Finally, knowledge of Fermi surface shape

is necessary to explain peculiarities of metal structure and their absorption and

reflection properties, as well as to describe superconductivity in some metals at

low temperatures, and many other physical properties.

Charge carriers in metals are free electrons that are also called as conduction elec-

trons. They are typical quasiparticles. Their properties are substantially different

from “normal” electrons existing in a free space, although electrical charge of con-

duction electron coincides with the charge of electron in a vacuum. However, the

energy of “electron¼quasiparticle” is a complex periodic function of impulse.When

an electron is found in a free space, the surface of its equal energy is a sphere. For

conduction electron in metal, the surface of equal energy might be complicated,

being correspondent to the surface of equal energy in the impulse space. The form

of this surface and its size depend on energy value that, its turn, is dependent on qua-

siparticle dispersion law [7].

Fermi surfaces of different metals can be quite various. In some metals, they

resemble billiard balls (K, Na, Rb, Cs), and in others, they are complex designs

of various shapes (Au, Ag, Cu, Zn, Cd, and others). One of ordinary Fermi

surfaces—for copper crystal—is shown in Fig. 5.8A. This example is chosen because

copper has one of the highest values of conductivity at 300 K and copper is widely

used in electrical engineering and electronics.

The change of particle energy is equivalent to its impulse change multiplied by

velocity. Therefore, to explain complicated energy spectrum in a given metal,

one needs to know the shape of Fermi surface and superpose electron velocity

with this surface. Increasing energy of any crystal (particularly, metal) can be

described as generation of new quasiparticles. The increase of conducting elec-

trons’ energy in metal is possible by moving at least one electron under the Fermi

surface into external impulse space. At that, the appearance of electron beyond

Fermi surface is always accompanied by unoccupied state in filled part of a

band—the hole, which can also be interpreted as a kind of quasiparticle—the anti-

particle to the electron that emerges from under the Fermi surface. Therefore

increasing energy of free electrons in metal is always accompanied by the birth

of two quasiparticles. Calling hole as an “antiparticle,” there is the possibility of

recombination: when electron returns “into its place” (under Fermi surface), metal

is returned again closer to its ground state, because both quasiparticles—electron

and hole—disappear.

Therefore from full Fermi sphere only those electrons that are located directly

beneath the surface and in small distance from it should be selected. For this reason,

it is important to identify and explore just nearest neighborhood of Fermi surface—

the portion of impulse space in which quasiparticles—electrons and holes—can

coexist. The mechanism of current flow through conductor might be rather intricate.
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Due to applied electrical field, electrons by infinitely small portions increase their

impulses (and energy); next, by collisions with foreign atoms, dislocations, bound-

aries of crystallites, and phonons (i.e., with any kinds of defects in crystal lattice),

electrons return its impulse, gained from electrical field, to the lattice. For electrons

located in fully filled areas deep under Fermi surface, such a process is impossible:

Pauli principle of exclusion prevents them to leave their energy levels; electrons can

only move from their level to the releasing level.

The quantum model of nearly free electrons is successful in theoretical descrip-

tion of many properties of metals. It has been found that in some cases the main cause

of Fermi surface complications is the interference effects, arising due to crystal peri-
odicity. This understanding allows building models of Fermi surfaces for polyvalent

metals, and, with the support of a variety of methods, specifies their quantitative

characteristics.
5.5 ELECTRON SCATTERING IN METALS
While referring to average free path or average free run time, the term “average” has

two senses: all electrons are averaged (although one is scattered in a certain manner,

and another a little differently), or the obstacles, in which electrons are scattered,

are averaged.

An ideal crystal does not exist, with the absence of such a thing in nature. At

that, each violation of lattice periodicity is perceived as the barrier to electrons.

These obstacles can be the impurities of atoms that accidentally fall into crystal,

the boundaries of crystallites (usually metal consists of many small crystals—

crystallites), the vacancies that appear in crystal when regular sequence of ions is

disturbed, and so on.

Thus, in the real crystal, there are many varieties of defects. However, at normal

(room) temperature, the main cause of electron scattering (hence, the cause of which

electrical resistance) predominantly depends not on the static defects in crystal but

also on the thermal motion in lattice. Only at very low temperatures (near absolute

zero), when thermal motion is almost absent, the structural defects becomemain cen-

ters of scattering.

Mechanisms of electron scattering can be divided into three classes: collisions of

electrons with phonons (with thermal motion in crystal lattice); collisions of elec-

trons with static violations of crystal periodicity; and collisions of electrons with

each other [7].

Scattering on crystal defects. If it would be possible to create a perfect infinite

crystal, even in this case electrons will have a limited free path—due to the thermal

motion. However, free path in an ideal case infinitely increaseswith decreasing tem-

perature; the length of free path in a perfect crystal is the ideal free path lid, while
resistance of ideal crystal is the ideal resistance ρid.

In a real crystal, near-zero-temperature electrons collide mostly with static struc-
tural defects. The length of free pass that depends on these collisions is the residual
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free pass lres, while corresponding resistance is the residual resistance ρres. This resis-
tance remains even if temperature is very close to absolute zero.

There is a simple rule, according to which the resistance ρ of a real metal is con-

sidered as the sum of ideal and residual resistances (Matthiessen rule):

ρ¼ ρid + ρres:

Analysis of experimental data supports this rule formulation. It has been experimen-

tally shown that in samples of the same metal (but with different additives) the tem-

perature dependence of resistance is quite similar. As shown in Fig. 5.9, one ρ(T)
curve is shifted relatively to another on value ρres1 �ρres2 (the number indicates

the number of sample).

In order to determine using Matthiessen rule what is the ideal resistance of metal,

there is no necessity to create a perfect sample (usually this is not possible). Tem-

perature dependence of real sample resistance should be extrapolated to absolute

zero. Accordingly, it is possible to find the ρid for given metal, studying its nonideal

samples: ρres¼ρ(T!0) by subtracting from ρ(T) the part ρres.
Resistance caused by scattering. Average free path and average free time have a

simple meaning: the probability of collisions (scattering) w�1/τ. If in a crystal there
are several possible reasons for scattering, the probability of collisions is the sum of

probabilities of each obstacle:

w¼wres +wid:
FIG. 5.9

Experimental verification of Matthiessen rule for copper and its alloys; dotted line shows

copper with distorted structure.
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A comparison of wres, probability of collisions, correspondent to residual free pass,

and wid, probability of collisions in perfect crystal, gives

1=l¼ 1=lres + 1=lid,

that is equivalent to Matthiessen rule, because resistance ρ¼1/σ, while coefficient of
proportionality between ρ and 1/l is independent of scattering mechanism. Thus it is

possible to divide various mechanisms of resistance, studying each of them

separately [7].

Electron scattering on phonons. The term “collision” needs clarification—it

should not be understood mechanically. In fact, just as electrons so also phonons

are waves, and interaction between waves should take place as between quasiparti-
cles; therefore the laws of energy and impulse conservation must be implemented

(Fig. 5.10).

Solid lines in the figure depict electrons, while dashed lines depict phonons;

near these lines, pulses and energies of electron and phonon are written, before

and after collisions. In the first case, collision does not occur, but electrons gener-
ate phonons. In the second case, there is electron and phonon collision. However,

here phonon “dies” (being absorbed by electron). It is possible to determine

whether such a process can really take place, by applying conservation laws to

impulse and energy [7]. Neglecting indexes, in both cases the conservation laws

can be recorded by the same way:

E pð Þ + ħω¼E p+ ħkð Þ: (5.18)
FIG. 5.10

Symbolic description of electron scattering on phonon mechanisms.
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It is pertinent to recall that at electrical and thermal conductivity only those elec-

trons whose energy is close to Fermi level are primarily involved, wherein it

should be noted that Fermi energy is much higher than energy of phonon:

EF ≫ ℏω¼ℏωmax¼kBθD. Indeed, Debye temperature usually equals θD � 102K,

while Fermi temperature of electronic gas is TF � 105K. Therefore in formula

(5.18) the value ℏω can be neglected; therefore conditions of birth (or death) of pho-

non with absorption of its pulse can be simplified:

EF pð Þ¼EF p + ħkð Þ:

This equation shows that this process is allowed, that is, just as the “birth” (gener-

ation), so also the “death” (doom) of phonon is possible. Turning to classic descrip-

tion, it is better not to speak about “birth or death of phonon” but about sound wave
radiation (or absorption). Radiation or absorption of sound waves is possible,

because the Fermi velocity much exceeds sound velocity in crystal: υF ≫ υsound. This
condition always holds true: υF � 5�105 m/s, υsound � 5�103m/s.

In order for collisions to take place, implementation of conservation laws is not

adequate: the effective interaction between colliding quasiparticles is also necessary.
Phonon is a quantum of lattice vibrations, while electron moves in the field of oscil-

lation ions. When ions are shifted from their equilibrium positions, interaction

energy between electron and ions varies; therefore, energy of electron-phonon inter-

action changes due to the shift of ions.

Calculations show that only that part of electrical resistance, which nature owes

to the collisions with phonons, turns to zero at absolute temperature. The point is that

collective motion (drift) of electrons is described by the average velocity that is very

low. An “average” electron cannot emit sound waves, that is, generate phonon, but it

can be dissipated on the oscillating ions. However, when such a condition is created,

under which average velocity of directional motion of electrons becomes greater,

then conductor’s resistance increases dramatically—“average” electrons begin to

excite phonons.

Scattering of “average” electrons can be also described without using the under-

standing about phonons. Such an approach can be used not only to understand the

nature of electrical resistance, but also to estimate the ideal free path. Thermal

motion disturbs strong periodicity of lattice: ions oscillate in disorder and create dis-

ordered scattering. The probability of scatteringw is a value inversely proportional to

average free pass: w¼υF/lph, and this value becomes greater the larger the square of

amplitude of ion oscillation: x2. Correspondingly, the average free path of phonon lph
is determined by

1=lph ¼Nix
2,

where Ni is number of ions per unit volume. This formula means that the probability

of dissipation is proportional to the area that oscillating ion occupies in a plane, per-

pendicular to electron’s velocity. Calculations show that at all temperatures x2 ≪ a2;
therefore in the case of scattering on phonons, free path is much higher [7].
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The inefficiency of electron collisions on oscillating ions is an important phenom-

enon, which is a main cause of deviations from Wiedemann-Franz law. In the event

of collision, an electron changes its energy on phonon energy, while its impulse

changes on a value of phonon impulse. Estimations show that the module of impulse,

which is changed by phonon absorption, is very small compared with Fermi impulse,

and this confirms the fact that for a significant deviation of electrons a large number

of collisions are required.

When studying thermal conductivity, one needs to know how an electron loses its

heat. With each collision, an electron changes its energy by amount close to kBT.
Although an electron only slightly deviates from its path, nevertheless, it loses

energy. When colliding with phonon, the length of an electron’s free path lT (rela-
tively to heat loss) is much less than its common free path l for loss of direction.
The ratio of lT/l≪ (T/θ)2 is a measure of collision inefficiency at low temperatures;

therefore deviation from Wiedemann-Franz law is possible. At higher temperatures

(T ≫ θD), the majority of phonons have energy kBT; therefore each collision

completely knocks electron out of its way, and, hence, if lT� l the Wiedemann-Franz

law is performed.

Electrons collision with each other. The term “gas” corresponds to the image of

many particles moving in different directions with different velocities; they collide

with each other and change their direction, exchanging by energy and impulses.

Electrons in metal also face each other and this affects resistance of metals, but only

in such a case when these processes are accompanied by the transference from one
band to another [7].

Both before and after collision, all energy states that are less than Fermi energy

are occupied. However, what kind of electrons exactly occupies these levels is

impossible to determine, because all electrons are indistinguishable (indistin-
guishability of electrons is one of basic principles of quantum mechanics). The con-

sequence of this principle is the infinite length of electron free path at absolute zero

temperature.

As the resistance is proportional to 1/l, then a part of resistance, caused by elec-

trons collision, is proportional to square of temperature (ρel�T2). However, this term
(in Matthiessen rule) can be reliably observed only in the transition metals; in
other metals this mechanism is not seen on a background of more significant

mechanisms.

Thus at high temperatures (T>θD), the main reason for resistance in metals is the

scattering on thermal vibrations of ionic lattice (phonons), and, therefore,

Wiedemann-Franz law is executable. At low temperatures (T<θD), the resistance

of metals can be submitted as a sum of three items:

ρ¼ ρadd + ρph + ρel: (5.19)

The first item ρadd is conditioned by scattering on impurities and it is independent on
temperature; the second item ρph that corresponds to scattering on phonons is pro-
portional to T5; the third item ρel, being responsible for scattering electrons on elec-

trons, is proportional to T2.
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The resistance in an ideal metal is determined both by phonon item ρph and by

electron item ρel. True properties of metal (i.e., peculiarities of given metals ρid) that
are not associated with technology of preparation of the studied sample can be deter-

mined by examining the “ideal part” of resistance using the Matthiessen method [5].

As a part of resistance ρid¼ρph+ρel is the fundamental parameter of given metal

(and it falls with decreasing temperature); therefore the desire to reduce resistance by

decrease of ρadd is natural. The art of growing pure metal samples at present is so

advanced that the average free path, in fact, is no more a microscopic parameter.

In most pure metals near absolute zero, the average free path reaches several milli-

meters. At that, in these pure metals at room temperature the free path of electrons is

approximately 10�6cm. Note that in atomic scales this free path is not so small: it is

about 100 times that of atomic distances. Therefore collisions are not a restricting

factor for freedom of electron movement in a metal.
5.6 SPECIAL ELECTRONIC STATES IN METALS
Based on quantummechanics, band theory of solids successfully explains most prop-

erties of metals. However, in some cases, experiments are confronted with habitual

simple explanations, and these cases are not only important in themselves but also

allow to enhance understanding of some peculiarities of band theory. In this section,

highly unusual properties of some metallic alloys are discussed that extend the appli-

cation possibilities of band theory.

There is a special class of metals and alloys with strong anomalies in many prop-

erties: compounds of rare-earth metals, characterized by incomplete 4f-shell. Their
electronic properties are difficult to explain using existing concepts. The point is that

these substances are the intermediate materials between magnetic and nonmagnetic

materials as well as between metals and dielectrics, while valence electrons in them

are found between the localized and free states. Investigation of these compounds

helps to understand their metallic and magnetic properties, specify the conditions

of “energy band arrangement” in metal and dielectric states, and understand some

peculiarities of electronic states in crystals [9].

Metals with intermediate valence. During investigation of rare earth metal prop-

erties, the main attention is focused on a phenomenon known as “intermediate

valence” or “heavy fermions.” It is appropriate to bear in mind that all electrons

of atoms that form a solid can be divided into two groups: electrons strongly bounded

inside atom (in the residue) and electrons that can leave its atom—they either move

to another atom (i.e., from atom Na to atom Cl during formation of ionic rock salt

crystal, NaCl) or form covalent bonds (such as in germanium crystal). Electrons also

might be generalized within crystals, and this occurs with conduction electrons in

metals. In all these cases, the conception of atom valence is used, that is, a number

of electrons that can be detached and moved away from the atom in the process of

solid formation. For example, valence of Na is “+1” as in ionic crystal (NaCl) so also

in metal (Na).



1935.6 Special electronic states in metals
However, there are some known substances in which outward electrons demon-

strate a binary, ambivalent nature: keeping partly localized in “native” atom, they

also can demonstrate the intention to collectivization. Regarding the systems with

unstable valence (or intermediary valence), some compounds of rare-earth metals

can be included (those elements that have unfinished 4f- electron shells). These com-

pounds have unique physical properties and anomalous characteristics that can be

accounted for formation of heavy fermions: extraordinary electrons whose effective

mass is 102–103 times greater than the mass of free electron.

Historically, the study of this phenomenon began when peculiar α-γ phase tran-
sition in the metallic cerium was discovered. Most phase transitions in solids are

accompanied by a change in crystal symmetry, which means change in atom packing

in a lattice (as well as the spin ordering in ferromagnetics or dipole ordering in fer-

roelectrics). However, the α-γ phase transition in Ce appears to be an exception:

when it occurs, the ordering in lattice symmetry does not change, but transition is

accompanied by an essential jump in crystal volume, reaching 15%.

Primary explanation of this phenomenon is reconstruction of electron structure of

ionic residue during α-γ transition in cerium. This concept, with some additions and

changes, is still preserved, and even applied to many other systems. Recently, a

rather wide class of compounds have been found, in which valence instability is

accompanied by strong anomalies of almost all physical properties of correspondent

substances.

Among these systems, many features are close to the ordered magnetic states, and
some substances have been found to be ready to transform into the superconducting
state. This is quite unexpected: the antagonism between magnetism and supercon-

ductivity is well known (see next Section 5.7). However, an important fact is that

not only normal, but also superconducting properties of these substances are quite

unusual, which has led to speculation that these are a new type of superconductors

that differ from all available data.

Compounds with intermediate valence and heavy fermions, where anomalous

properties are most severe, include UBe13, in which uranium atoms form cubic lattice

while Be13 atoms are placed between them, creating an almost regular polyhedron—

icosahedronBe12 with another “extra” Be in the center of this icosahedron. There are
also some cerium compounds: CeAl3 with hexagonal lattice, CeCu6 with orthorhom-

bic structure, CeCu2Si2 with tetragonal lattice, and some others. Besides, there are

many systems with less-heavy electrons; they are compounds with the intermediate
valence.

Specific heat in metals with heavy fermions. Heat capacity is a well-known

defining characteristic of solids. In ordinary metals, electronic contribution to spe-

cific heat linearly increases with temperature: C¼γT. At that, temperature depen-

dence of lattice specific heat corresponds to Debye law: C � T3. In sum, the

specific heat of normal metals is C¼ γT+ξT3, but using scale (C/T)(T) more simple

for analyses dependence can be seen: C/T¼γ+ξT2 (Fig. 5.11A). In Fig. 5.11B, to

compare the behavior of ordinary metals (curve 1) and metals with heavy fermions

(curve 2) another comfortable coordinates can be also used: (C/T)(T2).



FIG. 5.11

Specific heat temperature dependence in various scales (A, B); comparison of normal metals

(1) and systems with heavy fermions (2).

Table 5.1 Proportionality Factor γ¼C/T and Magnetic Susceptibility χ
in Different Metals

Crystal Cu Li CePd3 CeAl3 CeCu6 CeCu2Si2 UBe13

γ, mJ/molK2 0.695 1.63 35 1620 1500 1000 1100

æ (T!0)
10�3CGSE/
mol

0.008 0.03 1.5 36 27 8 15
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Temperature coefficients of specific heat in normal metals and heavy-fermion

materials at low temperatures are given in Table 5.1. In conventional metals (Cu,

Li), the proportionality coefficient γ¼C/T is about 1 mJ/molK2, while in the tran-
sition metals this ratio is greater by order of magnitude γ�10mJ/molK2: this indi-

cates a particular behavior of electronic subsystem already present in transition

metals.

It is noteworthy that heavy-fermion systems have coefficient γ even greater by

2–3 orders of magnitude (and the same applies to their magnetic susceptibility).

At that, CePd3 is the compound with intermediate valence, while CeAl3, CeCu6,

CeCu2Si2, and UBe13 are the systems with heavy fermions. If specific heat were

to be estimated as in normal metals, the observed values of γ will correspond to

the effective mass of electron 102–103 times greater than the mass of free electron.

Unusual is also the temperature dependence of specific heat (Fig. 5.11B).

Magnetic properties of heavy-fermion metals. In conventional metals with col-

lectivized electrons, magnetic susceptibility æ of free electrons is almost indepen-

dent on temperature: æ ffi const (Fig. 5.12A, curve 1). This is because æ (as well

as the temperature coefficient γ of specific heat) is proportional to the effective mass
of electron. However, in paramagnetic metals (Fig. 5.11A, curve 2), temperature



FIG. 5.12

Comparison of normal metals and heavy-fermion metals: (A) temperature dependence

of magnetic susceptibility: 1—nonmagnetic metal, 2—paramagnetic with localized

magnetic moments, 3—heavy-fermion systems, this susceptibility really is situated much

above than curve 2; (B) temperature dependence or resistivity: 1—normal metal, 2—metal

with heavy fermions.
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dependence of susceptibility obeys Curie law: æ�1/T, that is, parameter æ increases

as temperature decreases (sometimes, such substances at low temperatures can even

come to a state with magnetic ordering—ferromagnetic or antiferromagnetic).

In the systems with heavy fermions at low temperatures, increase of æ(T) with
decreasing temperature is also seen, but, unlike paramagnetics, the increase reaches

saturation (stops at fixed temperature, Fig. 5.11A, curve 3). At that, any magnetic

ordering in systems with heavy fermions is not established (except for some special

cases, such as U2Zn17), but temperature change of susceptibility æ(T) enters onto a

mode, peculiar in conventional metals, when æ¼const (such as in curve 1). It is nec-
essary to note that the quantity of this constant looks abnormally large (Table 5.1).

When T!0 magnetic susceptibility in systems with heavy fermions may exceed

values of paramagnetic susceptibility of conventional metals more than 1000 times.

Previously, such a large value of paramagnetic susceptibility was supposed as

specific property of the ferromagnetics. Among “nonferromagnetic” substances

the record shows metal Pd, in which at low temperature χ(T!0)¼0.7�10�3

CGSE/mol. However, it is necessary to note that palladium is nearly a ferromagnetic

metal: adding to Pd only a few percent of iron makes it a typical ferromagnetic. Nev-

ertheless, in CeAl3, for instance, paramagnetic susceptibility is 50 times greater than

in Pd, although no ferromagnetism in this alloy can be observed. Despite this, some

heavy-fermions systems, instead of magnetic ordering, become superconductors (we

recall that in classical cases superconductivity is incompatible with magnetism).

Electrical conductivity of heavy-fermion systems. It should be also recalled that
in conventional metals specific electrical resistance ρ decreases with temperature

fall, at that, approximately linearly. The resistance of pure metals, ideally, in case

of T!0 tends to zero (Fig. 5.12B, curve 1), while in the presence of impurities small
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residual resistance can be observed. As stated earlier, positive temperature coeffi-

cient of resistance (which means negative temperature coefficient conductivity) is

the hallmark of metal.

By contrast, in semiconductors or dielectrics electrical resistance increases with
decreasing temperature and at T!0 tends to infinity. Similarly, at a sufficiently high

temperature in the heavy-fermions metals ρ(T) dependence resembles the behavior

of dielectrics or semiconductors that is quite atypical for conventional metals

(Fig. 5.12B, curve 2). However, at a certain temperature ρ(T) reaches a maximum

and then, as in metals, it decreases practically linearly in the low-temperature region.

Theoretical explanation of this unusual combination of properties of heavy-

fermions materials will be given later.

Band theory and heavy fermions. According to band theory, it is possible to

make a conclusion that all properties of solids depend on the ratio of free electron

number to the number of states in bands. If the quantity of electrons is just enough

to fill a certain band completely (while the next band that has higher energy remains

empty), those crystals belong to dielectrics or semiconductors (see Section 4.6). Inas-

much as electronic states are localized, under the influence of electrical field, no

electrical current can flow in such crystals. At zero temperature in dielectrics and

semiconductors, electrons in conduction band are absent, while valence band is

completely filled, in accordance with Pauli principle: every energy level can hold

only two electrons with opposite spins.

Another possible behavior of electrons is realized in metals, in which only lower
energy levels of the conduction band are filled, while the nearest energy levels are

available for electrons—without any energy gap. In this case, even arbitrarily small

electrical field can easily move electrons; therefore crystal exhibits metallic conduc-

tivity. It is appropriate to recall that highest energy level, occupied in metal at zero

temperature, is the Fermi level.

Therefore for most solids the states of valence electrons are clearly described: in

metals (such as Na, Al, Pb), semiconductors (such as Ge and Si), and typical dielec-

trics, such as NaCl. Metal type of electron behavior is symbolically illustrated in

Fig. 5.13A: it shows trajectories of collectivized (delocalized) electrons and elec-

trons localized near atoms. Conception of delocalized states supposes that internal

electrons of atomic residue have relatively small radius of their orbits and, of course,

these orbits vary only slightly in case of associations of atoms in a crystal.

However, quite another behavior is possible for electrons, based on the external

shells of atoms: they can be only partially tied with their native atoms, so only for a

while revolve around residue, but from time to time they move to neighboring atoms

like “free” electrons (Fig. 5.13B), and then return to the partially connected state.

These electrons are almost delocalized.
According to band theory, developed for crystal with entirely delocalized elec-

trons, theymove in the periodical field of ionic cores: the result is formationof allowed

and forbidden energy bands. Electrons have effective mass m* that is described by

energy near the bottom of energy band: Ε¼p2/m*, that is, by the same equation

as for free electron, but with effective mass m* instead of free electron mass me.



FIG. 5.13

Schematic representation of electron movement: (A) in metals with delocalized electronic

states, (B) in metals with heavy-fermion state.
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The value of effectivemassm* is closely connectedwith thewidth of conduction band
ΔE: m*�1/ΔE. If impulse of electron runs a certain value (actually, in crystal

jp j � ћ /a, where “a” is interatomic distance), the width of band is ΔE�ћ2 /2ma2,
that is, small effective mass meets the wide band, while large effective mass corre-

sponds to the narrow band.
However, another description of electron properties in solids is considered: the

delocalized electronic states, the collectivized electronic states, and the states of elec-

trons localized in atoms. Despite the fact that this discussion concerns metals, it

makes sense to consider whether all dielectrics are similar. Each substance, including

dielectric, is individually different from another substance by a specific set of attri-

butes: color change, hardness, electrical conductivity, and so on. Hence, it is not evi-

dent whether the nature of dielectric state is the same in various substances.

Corresponding to standard band theory, dielectric is a substance, in which

valence energy band is entirely occupied, while located above it conduction band

is empty and separated by the essential energy gap. However, not all dielectrics

are arranged exactly this way—another nature of dielectric state is possible.

Description of electronic structure of solids is based on the conception that an elec-

tron moves in the lattice, created by regularly situated atoms or ions. If there are

many electrons, it is assumed that they do not interfere with each other, and they

are allowed to occupy energy levels in accordance with Pauli principle. However,

in reality all electrons interact with each other; therefore it is necessary to compare

their interaction energy U with their kinetic energy, which is characterized by the

width of energy band ΔE. If U <ΔE, then simple band theory is applicable. If,

on the contrary, U>ΔE, the situation changes cardinally.

Formally, energy band can be completed only partially, but the movement of

electrons (that is required for charge transfer) is prevented by other electrons—

electrons of neighboring atoms. By their influence, they can “lock” each electron

in the atom and make the dielectric crystal, although based on energy band charac-

teristics it would be a metal. These substances are Mott’s dielectrics, named after

English physicist H. Mott. The width of band ΔE depends strongly on interatomic
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distance a, more precisely, on ratio between a and corresponding radius of orbital aq:
the smaller the aq/a, the narrower the energy band.

Therefore, to obtain a status of “dielectric crystals” there is not only a single way,

but at least two: (1) complete filling of energy bands (in usual band diagram), and

(2) strong repulsion of electrons that leads to Mott type of dielectrics. Metals with

heavy fermions sometimes behave like Mott-type dielectrics (it suffices to recall

dependence ρ(T) shown in Fig. 5.12B, curve 2).

Specificity of rare-earth metals. The electronic structure of rare-earth com-

pounds is as follows: typical valence of rare-earth metals is “+3,” that is, three outer

electrons can be detached from the rare-earth atom and directed into the conduction

band (or form chemical bonds in the compound). As a result, ion R3+ is formed,

which usually keeps incomplete 4f-shell. For example, in gadolinium ion (Gd3+)

instead of 14 electrons permitted in the 4f-shell, only partial filling of shell is

observed: 4f7, while in dysprosium ion (Dy3+) only 9 from 14 electrons exists: 4f9

(Table 5.2).

As the f-states are located rather close to atom’s nucleus, they have a small radius:

a0�0.4 Å. It is much smaller than the distance between atoms in solids that is usually

about 3Å. Therefore it looks like f-electrons are not involved in chemical bonding,

and it would seem that their state can be considered as localized; therefore they
Table 5.2 Electrons Spins Allocation in the Orbitals of Lanthanides
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belong to the ionic residue. By analogy with Mott type of dielectrics, f-electrons
can be regarded as being located far on the “dielectric side” of Mott-type transition.

The nature of chemical bonding and the type of crystal lattice (which determines

metallic or dielectric properties) should have been identified only by three valence
electrons.

Therefore electrons of f-state strongly influence the magnetic properties of cor-
respondent crystals. If f-shell is only partially filled, magnetic moments of electrons

are not compensated, so total magnetic moment is nonzero. Thus such ions are sim-

ilar to elementary magnets. It is clear that the presence of these ions in crystal results

in the fact that crystal is paramagnetic with localized magnetic moments, and at low

temperatures these moments might be spontaneously ordered, making crystal either

ferromagnetic or antiferromagnetic, or might acquire a more complicated ferrimag-

netic structure.

Valence instability of rare-earth elements. This instability is caused by the fluc-
tuations of a valence. In conventional rare-earth compounds the valence of rare earth

ion is “+3” while f-shell is filled only partially. However, sometimes, the rare-earth

elements in their compounds exhibit the anomalous valence: “+4” or “+2.” For

example, among crystals, based on cerium, there is ionic compound CeF4, in which

cerium is clearly tetravalent, while the rare-earth metal Eu (europium) even in its

metallic modification can show properties with valence “+2.” Among other things,

it should be noted that europium is one of basic materials of magnetic semiconduc-

tors: EuO and EuS, where europium is bivalent.

Anomalous valence in the compounds is peculiar for rare-earth elements located

in the beginning, in the end, and just in the middle of rare-earth elements group

(Table 5.2). At the beginning of this period, there are Ce and Pr; in the end of the

period, there are Tm and Yb, and in the middle of the period, Sm and Eu are located.

The quantum theory offers a convincing explanation of this situation, which implies

that such electronic states have anomalies in valence stability, when 4f-shell appears
empty, or completely filled, or filled in exactly half.

Aforesaid can explain the nature of anomalous valence in compounds of

these elements. As cerium would have normal “+3” valence, its f-shell will have
only one f-electron. However, this configuration is competing with the empty con-

figuration of f-shell, that is beneficial to pull away from ion still one (the fourth) elec-

tron. The result is a state of tetravalent cerium, in which its f-shell is empty. This

situation is quite competitive, because its energy is close to the energy of conven-

tional trivalent state.

Similar arguments show, that, for example, compounds based on ytterbium ion

instead of valence “+3” (when 4f-shell has 13 electrons) might have an advantageous

condition for Yb2+ in which f-shell is completely filled, that is, nf¼14 (Table 5.2).

Similarly, for europium the valence of Eu2+ state is competitive (and often preferred)

before expected Eu3+, because in a state Eu2+ has exactly half-filled f-shell, nf¼7.

The presence of similar energy states in rare-earth ions with different valences

significantly affects their properties, changing fundamentally all characteristics of



FIG. 5.14

Electronic structure of f-metal, illustrating nature of transitions with changing valence;

conduction band is filled up to Fermi level EF, while f-level marked as Ef.
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correspondent substances. The instability of ionic valence state leads to the emer-

gence of a special class of systems with intermediate valence, and, in some special

cases, heavy fermions.

A possible situation for metals is demonstrated in Fig. 5.14 (while the situation

for semiconductors is shown in Fig. 5.15) [9].

The normal state of a rare-earth metal with whole valence (i.e., with whole filling

of f-levels) corresponds to a picture shown in Fig. 5.14A. It is evident that for such a
rare-earth metal the energy Ef of f-level is much lower than Fermi level EF. Accord-

ingly, in the semiconductor (Fig. 5.15A), f-level is located in the forbidden band

(energy gap) below the bottom of empty conduction band.

In metals with unstable valence, such a situation is realized, when level Ef is

located near the Fermi level EF (Fig. 5.14B; or in the semiconductor Ef is located

close to bottom of conduction band, Fig. 5.15B). Complex configuration of f-orbital
leads to the fact that some external conditions can move Ef level, for example, this

level floats up when pressure increases or temperature changes (Figs. 5.14B

and 5.15B).

If, due to this displacement, the Ef level rises sufficiently to cross the Fermi level

of metal (Fig. 5.14B; or cross the bottom of conduction band in semiconductor,

Fig. 5.15B), the energy of those electrons that occupy Ef level becomes greater than

the energy of other states in conduction band, located between Ef and EF (most of
FIG. 5.15

Transition with a change in valence for compound that in initial phase is a semiconductor with

whole number valence.
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them previously were empty). It is obvious that this is not profitable energetically;

therefore the electrons will move from Ef level to empty states of conduction band

(Fig. 5.15B).

If the number of these empty states is large enough, this situation leads to dev-

astation of the Ef level (Figs. 5.14B and 5.15B). However, in a more general case, the

electron filling of Ef level is arranged in such a way that only one of Ef electrons

leaves each ion. Because of this, in the conduction band only one electron per ion

can be found (Fig. 5.14C; in semiconductors with rare-earth element—

Fig. 5.15C). This corresponds to the increase by one the valence of rare-earth ion.

This change in electronic state results in a fundamental modification of crystal

properties. Very often, a possibility occurs for transition from nonmagnetic to mag-

netic state. Indeed, if the initial situation (Fig. 5.14A) with localized electron on the

f-level remained unchanged, the system with localized magnetic moments can

become ordered at low temperatures (leading, e.g., to ferromagnetism). At the same

time, the situation with the f-level devastation (Fig. 5.14C) would lead to the

unpaired electrons leaving f-level, making localized in ion magnetic moments dis-

appear (Fig. 5.14C) that corresponds to normal nonferromagnetic metal.

Thus the position of f-level relative to Fermi level determines the presence or

absence of magnetic properties in a system: at that, a possible shift of the f-level
(e.g., under temperature action) may cause phase transition from a magnetic to

nonmagnetic state.

In the case of semiconductors, in conduction band the initial state is empty

(Fig. 5.15A), but after possible transition (Fig. 5.15C) some electrons appear in this

band and then can move freely in a crystal. In other words, the valence transition will

be also the transition of metal-dielectric type (such transitions are described in

Chapter 10).

There are some systems in which a new state of electrons can be implemented as

described earlier; however, the transition with a change in valence might be not com-

pleted in full, but stopped “halfway.” There are some compounds, in reality, that in

normal conditions (standard temperature and pressure) exhibit the intermediate sit-
uation. Many compounds with unstable f-shell are known, in which the intermediate

phase is realized; therefore this state demonstrates specific physical properties. Also,
in this case special electronic states are formed, and compounds with intermediate

valence are identified as possessing of “heavy-weight” fermions [9].

Thus, when such a state of intermediate valence occurs, in which f-level is located
very close to Fermi level, this f-level will be filled only partially. For example, exper-

iments show that, on average, f-electron level has only 1/3 of electrons. At that, a

possibility arises that a crystal, regularly or randomly, possesses atoms with two dif-
ferent types of f-electrons. If f-electron exists in every third atom, so, on average, one

atom holds only 1/3 of f-electron. Compounds of this type really exist: they include,

for example, crystals such as Eu3S4 and Sm3S4, very important for electronic tech-

nology, as well as well-known ferrimagnetic magnetite (Fe3O4).

At high temperatures, crystals Eu3S4 or Sm3S4 show a rapid exchange by elec-

trons that resembles Eu2+ $ Eu3+ transition and determines a conductivity of metal
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type. However, at lower temperatures, these electrons become “freezed” in their cen-

ters; therefore the segregation of valence occurs, that is, ions Eu2+ and Eu3+ now

become different from each other and occupy in the lattice fixed positions, alternat-

ing by a certain way.

This “freezing”-type electronic transition is the phase transition that is accompa-

nied by the restructuring of crystal lattice with the superlattice arising and essential

changing in electrical properties. It is this transition that actually occurs in the mag-

netite Fe3O4 at temperature 119K. This transition has long been discovered, and it is

the first experimentally studied metal-dielectric type of transition. Thus crystals with

intermediate value of average valence can be arranged simply as alternation of ions

with different but integer-valued valence. Such substances are the mixed-valence
substances.

However, systems with intermediate valence can be arranged differently. All

ions, that is, all centers of crystal lattice, are completely equivalent; at that, the con-

centration of centers is the same as unit cells, that is, about 1022 cm�3. Therefore

they are not impurities but the principal system, and each cell contains rare earth

ions. Intermediate filling of f-level, that is, the fractional number of f-electrons per
one center, remains all times, but it captures the electron from f-level, sometime

(e.g., 1/3) holds it, and then throws out this electron into conduction band [9]. Then

the probability of finding any ion in the state of “f-electron” is 1/3 (while the prob-
ability of state “without f-electron” is 2/3), that is, on average, the chance of f-level
filling is 1/3.

This situation is symbolically illustrated in Fig. 5.13B: electron moves in the con-

duction band, then is captivated by a center on closed orbit, almost being localized,

sometime it turns again on this orbit, and next jumps back into the conduction band,

only to be caught again by some other center, and, possibly, by the same center. Thus,

in systems with intermediate valence, all centers are equivalent but each of them

shows the valence fluctuations, giving on average the fractional filling of f-state.
From a quantum mechanical point of view, this means that the total electronic wave

function Ψ is superposition of wave functions Ψ f of the f-state and the state in con-

duction band Ψ e, that is, Ψ ¼αΨ f+βΨ e.

The “weighting factor,” with which Ψ f-function is included in this sum, deter-

mines the probability to find electron in the f-orbital, because the average number

of f-electrons per one center is nf/¼jα j2. This process of constant conversion from

f-state of electron into conduction band and back characterizes the probability of

such transition, or the lifetime of electrons in the f-state. Through uncertainty rela-

tion, Δt �ΔE¼h, the finite lifetime of state means the uncertainty of its energy.

Explanation of heavy-fermion system features. Abnormal behavior of heat
capacity (Fig. 5.11), as compared with conventional metals, follows from the fact

that basic electrical properties of metals in dependence on temperature are deter-

mined by the electrons located in the energy range kBT near Fermi level. Indeed,

in conventional metals at temperatures T¼0 all states inside Fermi sphere are occu-

pied, while outside of it, when energy E>EF, all states are empty. With increasing

temperature, a redistribution of electrons on energy states starts, inasmuch as some
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electrons gain energy and move into the empty states above EF. Accordingly, under

Fermi level the holes remain. At that, a rather small number of states of electrons are

exited: only in the range of kBT≪ EF.

However, in systems with heavy fermions the number of states in the range kBT is

much greater (from two to three orders of magnitude!) than in conventional metals.

Therefore factor γ is in many times larger (see Table 5.1). A high value of γ (see

Table 5.1), observed in systems with heavy fermions, becomes understandable, as

well as a slightly smaller (due to increased width of f-zones) but still quite high values
of γ in compounds with intermediate valence.

As for peculiarities of magnetic properties (see Fig. 5.12A), it should be noted

that heavy fermions below a certain temperature T* are degenerated, that is, they take
their “heavy band” according to Pauli principle, but above temperature T* they

become nondegenerated. Consequently, these fluctuations smooth out various sub-

levels and stop the growth of magnetic moment, which results in saturation of mag-

netic susceptibility æ(T). Magnetic properties of heavy-fermion systems also cause

anomalies in temperature dependence of electrical resistance (Fig. 5.12B).

Thus heavy fermions arise in such systems that contain the uncompleted 4f-shells
(or 5f-shells), where filling of electronic orbitals is unstable; therefore there is a prox-
imity of valence instability [9]. These fermions have a record high value of effective

mass, and the heaviest fermions are observed primarily in compounds of cerium and

uranium—just in the elements located in the beginning of 4f- and 5f-periods. Among

compounds with heavy fermions, there are magnetics as well as superconductors.

The mechanism of heavy electron appearance right at the Fermi level can be

rather complicated. Generally, different opportunities should be noted.

One such situation is when f-level itself goes to Fermi level and at low temper-

atures forms an energy district, where f-electrons are mixed with conduction elec-

trons. In this version, heavy fermions are primarily f-electrons themselves that are

found near the Fermi level, and they are partially delocalized. In this case, the inter-

action of f-electrons with other excitations in crystal (phonons, conduction electrons,
and maybe others) might play a special role. These types of interactions can result in

the narrowing down of energy band and, consequently, the effective mass of electron

increases.

In another tested case—electron-phonon interaction influence—effective mass

increases due to the “polaron” effect: electrical field of electron deforms crystal lat-

tice in its nearest surroundings, and then electron moves in a crystal, surrounded by

“coat” of lattice deformations created by electron itself. Similar interactions with

conduction electrons can lead to “electronic polaron” formation: deformed lattice

near heavy fermion that additionally increases its mass.

The interaction of f-electrons with each other is another possible mechanism of

their effective mass increase. Such interaction between electrons may even result in a

complete localization of electrons, that is, their mass becomes “infinite” (Mott’s

dielectric). However, if the limit of localization is not exceeded but only draws near,

the crystal can remain a metal, but with very a narrow energy band and, correspond-

ingly, with a large effective mass of charge carriers.
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5.7 SUPERCONDUCTIVITY IN METALS AND ALLOYS
Superconductivity is one of “cooperative” effects in the ensemble of conduction

electrons, but it cannot be explained using simple models within “independent

electrons.” Superconductivity is highly interesting in science and is important for

technique, in the sense that superconductors have no skin effect; therefore energy

losses are significantly reduced. In addition, as found by Josephson, the contact of

various superconductors, separated by thin dielectric layer, can produce microwave

generation, as well as enabling the creation of a variety of sensory devices.

Superconductivity was discovered about 100 years ago when comparing plati-

num and mercury electrical resistivity at cryogenic temperatures. The change in

resistivity ρ during deep cooling of platinum (Pt) and mercury (Hg), in which at

the time of conducting the experiment a superconductivity was discovered, is shown

in Fig. 5.16. Platinum is not a superconductor, but in the superconductor mercury

below critical temperatureDC resistance becomes zero: ρ¼0 (respectively, conduc-

tivity σ¼∞). In mercury this phenomenon occurs at Tc�4K, but in some others

pure metal temperature of phase transformation to superconducting phase is higher:

for lead Tc�7K and for niobium Tc�9K. In the alloy Nb3Sn, transition tempera-

ture is Tc�18K, while Nb3Ge reaches the highest transition temperature for super-

conducting metallic alloys: Tc�23K.

Theory of superconductivity in metals (having 3D lattice) was created much later

after this discovery. Conduction electrons form the Cooper pairs (that belong to

bosons), and they can propagate in superconducting metals without any loss of

energy [1]. However, according to theory the temperature of superconducting tran-

sition cannot exceed 25K (in agreement with experiments conducted on metals and
FIG. 5.16

Temperature dependence of resistivity of platinum and mercury; ρ273 means resistivity at

room temperature.
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alloys). This limit follows from the mechanism of electron-phonon interaction in the

3D regular structures.

Indeed, despite many years of research, either in pure metals or in metallic alloys,

effort to reach a higher temperature of superconducting phase transition than 25K

was not met with success. For this reason, application of metallic superconductors

in power engineering, electronics, and microwave technique necessarily requires

devices that could cool to liquid helium temperature (near 4K). This leads to a very

high cost of cryogenic devices. Nevertheless, cryoenergetics with hardware elabo-

rated for helium cooling and superconducting alloys of Nb3Sn type are widely

applied. In microwave cryoelectronics, mainly niobium is used (in resonators and

millimeter range waveguides). In the devices based on Josephson effect, lead, tin,
and other superconductors cooled by liquid helium are applied.

In contemporary cryoelectronics and some electronic devices, cooling by liquid
nitrogen is also used (at 77K, i.e., 100 times less expensive than helium hardware);

this has become possible after discovery of high-temperature superconductivity.
Zero resistance of superconductors. Temperature of phase transition into super-

conducting state is critical temperature Tc. Most prominent pure metals-

superconductors are lead, tin, niobium, and some others. Note that conductors, which

are best in normal conditions, such as copper, gold, or silver, cannot turn into super-

conducting phase: at very low temperatures, they are only cryoconductors.

Most known superconductors are alloys and composite compounds; their total

number is up to several hundreds, and growing. In particular, the substances that

belong to a family of high-temperature superconductors (HTS) consist of three, four,
and even five components. In principle, due to high-pressure technology, it is pos-
sible to transfer into superconducting state even typical dielectrics, such as solid

nitrogen and oxygen, but physicists expect the highest Tc in the solid hydrogen (how-
ever, superconductive “metallic hydrogen” up to now is not reliably prepared).

Magnetic field influence. It was found that superconductivity in metals can be

destroyed not only by temperature growth, but also under the influence of magnetic

field that is also the critical parameter, Hc. This effect is shown in Fig. 5.17 in a phase
FIG. 5.17

Phase diagram: dependence of superconducting phase S on relative temperature T/Tc and

relative magnetic field H/Hc for superconductor of the first type; the border between

superconducting S and normal metallic phases N is shown.
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diagram of superconducting state S and normal state N. This diagram is drawn using

“normalized” temperature (ratio T/Tc) and “normalized” magnetic field (ratio H/Hc).

However, such a diagram is characteristic only for superconductors of a first type. In
the superconductors of a second type (that are not considered here), the dependence

of Tc on magnetic field is much more complicated [1].

Therefore superconducting state can be realized at very low temperatures and at

relatively small magnetic fields. Magnetic field influences the orientation of electron

spins: in the Cooper pairs (that mainly cause superconductivity) spins of interacting

electrons obviously must have opposite orientation.

Meissner effect.When temperature decreases below critical Tc, the superconduc-
tor completely forces itself out of the magnetic field: the first-type superconductivity

is incompatible with a magnetic field.

While an “ideal conductor” (i.e., not a superconductor) is first exposed to a steady

magnetic field, penetrating through it (Fig. 5.18A), and then is cooled down, the

magnetic field in it will be same, Fig. 5.18B (in this experiment, the conductor is

supposed as diamagnetic). However, the magnetic behavior of a superconductor is

quite different from an “ideal conductor” (Fig. 5.18C and D). When passing through

phase transition into superconducting state, it will actively exclude any magnetic

field presence. Expulsion of magnetic field from the superconductor at phase tran-

sition from normal to superconducting state is the Meissner effect.
As shown by direct experiments, at temperatures T<Tc under external magnetic

field, regardless of how superconducting state is activated, inside of superconductor
any magnetization is always absent: B¼0. Otherwise, this result is treated as zero
permeability of superconductor, that is, μ¼0. This fact clearly demonstrates that

a superconductor is quite different from an “ideal conductor.” Superconductivity

can exist when the external magnetic field is less than the value of critical field
FIG. 5.18

Diagram of Meissner effect. Magnetic field lines are represented by arrows: (A) ideal

conductor at elevated temperature; (B) same conductor at extremely low temperature;

(C) superconductor above Tc; and (D) superconductor below Tc.
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(H<Hc), and it is independent of previous history of a sample. Corresponding equi-

librium state is thermodynamically stable, and it can be characterized within thermo-

dynamic approaches.

Therefore one can make an important conclusion: superconductivity is such a

state of high conduction systems in which two conditions are always fulfilled:

ρ¼ 0

μ¼ 0:

A theoretical explanation of Meissner effect comes from London equations [1]. They

show that magnetic field, actually, can slightly penetrate inside a superconductor, but

with an exponential decrease over a distance of 20–40nm. It is described in terms of a

special parameter: London’s penetration depth.
As a rule, at a rather strong magnetic field superconductivity disappears

(Fig. 5.17). However, known superconductors can be divided into two classes,

according to how magnetic breakdown occurs. In type I, superconductivity is

abruptly destroyed, when the strength of the magnetic field rises above critical value

Hc. However, in type II superconductors, magnetic field, which exceeds first critical
value Hc1, converts the superconductor to a peculiar mixed state, when magnetic

fluxes can penetrate locally in the material, but, as a whole, the superconductor

remains as nonresistive up to achievement of second critical field Hc2 (when electri-

cal current in the superconductor becomes too large). Pure metallic superconductors

usually belong to type I, while most superconductive alloys belong to type II.

Anomaly of heat capacity at phase transition. The change of energy and entropy
in a superconductor can be expressed through magnetic interaction; firstly, because

the magnetic field H is able to destroy superconductivity, and, secondly, the surface

current in a superconductor creates magnetic moment M that completely compen-

sates the external magnetic field applied to the superconductor. Calculations show

that at the point of phase transition into superconducting state specific heat must

show a jump (Fig. 5.19), and this expectation is confirmed by numerous experiments.

Indeed, a maximum of heat capacity at superconductor transition point exists despite

the expected linear increase C(T) in metals (in normal metals the electrons with their

half-integer spin obey Fermi-Dirac statistics that cause linear dependence C¼ γT).
However, it is noteworthy that not linear but the parabolic temperature depen-

dence of specific heat is seen below phase transition temperature, that is, in super-

conducting phase: C�T3. This fact clearly indicates that statistics of electrons in the
superconductor is changed: now it is the Bose statistics that is a characteristic for

substances with the integer spin (Cooper pairs of electrons are bosons).

Quantization of magnetic flux. If one would take the ring of superconductive

material and induce a current in it by the external magnetic field (Faraday effect),

this current will flow in the ring indefinite time, because any resistance in the ring

is absent. To realize this experiment, superconducting ring should be taken at a tem-

perature higher than the transition temperature (T>Tc); at that, lines of magnetic

field cross the area of a ring (Fig. 5.20A).



FIG. 5.19

Specific heat capacity temperature anomaly in superconductor phase transition.

FIG. 5.20

Quantum properties of superconductivity: (A) frozen magnetic flux through superconducting

ring; (B) schematic representation of Josephson contacts—weak connection.
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Then temperature might be lowered below Tc and the source, creating the mag-

netic field, is turned off. At the time of switching off the magnetic flux, the decrease

starts inducing electromotive force in the ring with a current. This current will pre-

vent the reduction of magnetic flux; therefore after turning off the external magnetic

field, the magnetic flux in the ring will remain at the same level, because it is sup-

ported by a current in the superconducting ring [2].

If this ring has a resistance R, after turning off the external field the current in the
ring (that has inductance L) will disappear with time dependence of exp(� t/τ), where
τ�R/L. Since the superconductor has R¼0, the time of current existence is t¼∞.

This means that the magnetic flux is “frozen” due to constant current in the super-

conducting ring. Moreover, this “frozen” magnetic flux has not any, but a certain,

value multiplied by Φ0¼2.07�10�7 Gs/cm2. This parameter is a fundamental
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constant, the quantum of magnetic flux that can be expressed through other funda-

mental constants: Φ0¼hc/2e. Magnetic flux quantization identically confirms the

quantum nature of superconductivity.
Josephson effects. These effects also demonstrate the quantum nature of super-

conductivity. There are two Josephson effects: stationary and nonstationary, and they

both belong to a weak superconductivity—when two semiconductors are connected

though any nonsuperconducting layer. This “weak coupling” can be tunnel junction,

thin-film narrowing, and, finally, simple touching of one superconductor to another

at a point (Fig. 5.20B).

The stationary Josephson effect is a small current, passing through the poor con-

nection, even if this weak link is a dielectric layer. Under created conditions, the weak

link does not showelectrical resistancewhenmovement of electrons in both supercon-

ductors is agreed coherently. The weak connection does not prevent superconducting

electrons to be in the same quantum ensemble. In other words, wave function of elec-

trons is able to penetrate the weak connection from one superconducting area to

another—this is the interference. All electrons in the macroscopic superconductor

can be described by a single wave function (such as electrons in individual atom).

The nonstationary Josephson effect is the increase of current through a weak con-
nection when voltage V is applied to it. Then, under the influence of voltage, in addi-

tion to constant component the variable current component appears, described by

frequency ν, related to applied voltage by ratio ν¼2eV/h. The frequency of this gen-
eration is very high (located in the range of microwaves), and this frequency is a lin-

ear function of applied voltage. Nonstationary Josephson effect can be used to

generate microwaves in the GHz range [5].

Electron-phonon interaction. It is important that in superconductors the isotopic
effect is discovered: this means that the temperature of phase transition depends on

the mass of ions of crystal lattice. Such experimental data clearly indicate the active
part of lattice oscillations (i.e., ionic cores) to create the superconducting state.

According to results of theoretical analysis, interaction between electrons and lattice
vibrations is the main reason for superconductivity in simple metals and their alloys.

Under certain conditions, electron-phonon interaction might have a character of

attraction. If this attraction is stronger than Coulomb repulsion between electrons,

it dominates between charge carriers; as a result, at very low temperature, supercon-

ductivity looks as the more ordered and, therefore, more comfortable energy state.

For a simplified analysis of electron-phonon interaction, let us initially assume

that in a metal at temperature T¼0 no thermally excited phonons exist (it is believed

that nothing disturbs a lattice or nothing interacts with it). When an electron moves in

crystal lattice with wave vector k1, it can collide with a stationary ion, and due to

scattering process this electron will turn into another energy state with wave vector

k1
0
. In such a case, one can say that “electron generates” phonon, which was absent

before scattering. Lattice is characterized by invariant translations; therefore the law

of impulse conservation has to be implemented:

k1 ¼ k01 + q:



FIG. 5.21

Diagram explaining electron-phonon-electron interaction in superconductors.
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Next, this phonon can be absorbed by a second electron with wave vector k2, forcing
it to move to state k2

0
. As the phonon was generated and it disappears, the electron’s

impulse before and after scattering must be the same:

k1 + k2 ¼ k01 + k
0
2:

It is considered that such scattering corresponds to the electron-phonon-electron pro-
cess, or otherwise, to indirect electron-electron interaction that can be characterized

by a diagram shown in Fig. 5.21. When electron goes from state k1 to state k1
0
, the

oscillations of electronic density occurs with a frequency

v¼ E k1ð Þ�E k01
� �� �

=h,

where E(k1) and E(k1
0
) are energies of initial and final state of electron, respectively.

Suppose that as a result of such fluctuations of electronic density in one place this

density locally becomes increased. Positive ions of lattice will sense this temporary

attraction that occurs in this place. They will move to it, and, having relatively larger

mass and inertia, will continue their movement even after the compensation of local

negative charge is achieved. This, in turn, results in the excess of a positive charge in

the same place. Now it becomes the center of attraction for electrons, to where they

move toward from nearby regions. As a result, a dynamic picture is created in such a

way that it looks like an attractive interaction between electrons.

However, it should be noted that attraction by this scheme is only possible if dis-

tinctive frequency of such interaction is less than the own frequency of ionic subsys-

tem (last is characterized by Debye frequency νD). In order for electron to move to

state k1
0
from its initial state k1, first of all, this state should be free (Pauli principle).

This is possible, as is known, only near the Fermi surface (or in the vicinity of Fermi

energy) that can be simplistically represented as a sphere of radius kF in the k-space
(Fig. 5.22).

Next it is possible to formulate the rule of interaction of electrons via phonons

involving, or, finally, through interaction with them [1]. The electrons, whose energy

is different from Fermi energy on a value hνD, can attract together (with the remain-

ing electrons continuing to leave). Considerable attraction is peculiar only to those



FIG. 5.22

Schematic representation of Fermi surface in metal; interaction of Cooper electrons is

possible just near this surface layer.
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electrons in which energy states lie in a narrow spherical layer around the Fermi

energy; its thickness 2Δk corresponds to energy 2hνD (Fig. 5.22).

High-temperature superconductivity (HTS) is possible not in classic metals but

in other crystals—semiconductors and even dielectrics. In these uncommon cases, at

low temperatures the conductivity, instead of smooth reduction to zero, can be con-

verted abruptly to endless value (despite relatively small concentration of charge car-

riers). At that, the energy of electron connection into Cooper pair is carried out not by

electron-phonon-electron interaction, but through some other mechanisms (excitonic

type) that also can result in superconductivity.

The crystals that have high density of excitonic states appear to be promising

materials for elaboration of high-temperature superconductors. For a long time, the-

oretical predictions showed the possibilities of electron attraction and Cooper pairs

rising by means of excitonic exchange. In principle, with such predicted mecha-

nisms, superconductivity can be obtained even at 300 K (currently, in 2017, high-

temperature superconductivity reaches temperature of about 200K).

When discussing the possibility of superconductivity, the term “exciton” should

be interpreted clearly: it means any polarized excitation in the electronic subsystem
of a crystal, including the variety of vibration modes of spatial or surface type. As

classic superconductors are three-dimensional (3D) metals or alloys, while excitons

can be extended only in dielectrics, the excitonic superconductor has to be both metal
and dielectric simultaneously, introducing a system of “crystal in the crystal.” This

system might be a complex substance, in which the metallic subsystem allows free

movement of electronic pairs, while the dielectric subsystem is the environment for

excitons spreading that join electronic pairs. In this case, the dimensionality of a mat-

ter should be decreased.

Among other possibilities, excitonic mechanism of electron coupling in Cooper

pairs might be possible in the one-dimensional system (1D, needle-like crystal). It is,
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for example, the long well-conductive molecule thread with easily polarizable side

radicals that can provide attraction of conductive electrons due to excitonic

exchange. The presence of excitons makes an appearance of high-temperature super-

conductivity possible because excitons can compensate Coulomb repulsion of elec-

trons. However, achievement of superconductivity in the 1D crystal is almost

impossible due to thermal fluctuations (so-called Peierls prohibition). Nevertheless,

in the 1D system phase transition from the quasimetallic phase to the high-ε dielec-
tric phase is possible: quasi-1D highly conductive (above Tc) system at low temper-

atures turns into “superdielectric” with ε�2000 [5].

In the vicinity of phase transition, physical properties of 1D structure are very

sensitive to fluctuations. Theoretically, in 1D longitudinally ordered structure a full

disordering (with violation of main properties) can occur just in one point. However,

in reality, in quasi-1D structures (thin, needle-like, but still macroscopic crystals by

their thickness), the situation changes, and stability of system to fluctuations

increases due to the interaction between neighboring “threads” of such structure.

The degree of “three-dimensionality” is qualitatively assessed by degree of anisot-

ropy of conductivity and permittivity in these crystals. Three-dimensional interac-

tion not only can “extinguish” fluctuations, but also can suppress Peierls

transition. Due to this suppression, in some quasi-1D structures superconductivity

becomes possible: for example, in the polymer (SN)x that is, a quasi-1D supercon-

ductor, the dielectric phase does not occur; however, temperature of transition is very

small (T¼0.3 K).

Impact of fluctuations onto the phase transition of metal-dielectric type of crys-

tals is minimal in ordinary 3D structures, in which violation of ordering should occur

on certain surface inside a crystal. The 2D structures, in terms of resistance to fluc-

tuations, are found in intermediate position, as for destruction of their ordering, that

is, “fluctuating break” should be seen on certain line (but not in a point as for lD
structures). Therefore, in quasi-2D structures, the probability to obtain superconduct-

ing state is much greater, than in 1D structures.

Electron formation into the Cooper pairs is promoted by large permittivity (ε) that
strongly reduces Coulomb repulsion of electrons. As is known, at helium tempera-

tures some paraelectrics and ferroelectrics have very huge permittivity. Indeed,

superconducting phase transitions in these dielectrics were first discovered in the

doped strontium titanate (it has ε�40,000 at temperature T�4K), as well as in

narrow-gap ferroelectric-semiconductor SnTe (ε�2000). Although the temperature

of superconducting transition in these dielectrics is less than 0.3K, a possibility of

superconductivity in these cases seems fundamentally significant.

This opportunity is used to find HTS in the mixed oxides of the perovskite struc-
ture (which is a typical structure for ferroelectrics). HTS was discovered experimen-

tally only in 1986, although theoretical prediction of this phenomenon was long time

before, known as for 2D and 1D nonmetallic structures. Theoretically, the mecha-

nism of electron interaction by excitonic exchange in these structures has no

temperature limit.



FIG. 5.23

History of superconducting materials research.
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A short history of HTS is shown in Fig. 5.23. Among superconductive 2D sys-

tems (complex oxides), first several tungstates of AxWO3 type were discovered (A is

alkali metal). Phase transition into superconductive state in tungstates was observed

at temperatures up to 7 K. Then it turned out that in another complex oxides super-

conducting transition occurs even at temperature near T¼13 K, for example, in the

compound LiTi2�xО4 and in the ferroelectric BaPb1�xBixО3. This solid solution is

of interest not only because superconductivity occurs in the material with low density
of charge carriers, but at relatively high temperature. Similar to most ceramic mate-

rials, BaPb1�xBixО3 demonstrates chemical and thermal stability; these ceramics can

be made by a standard technology (including thin films). Films of ferroelectric-oxide

superconductors are considered as promising for use in various devices of cryogenic

(helium) electronics.

Finally, a significant increase of superconducting phase transition temperature is

achieved: firstly, up to 40K in ceramic compound LaxBa1� xCuО4, next supercon-

ductivity is discovered above nitrogen temperature (liquid nitrogen boils at temper-

ature T¼77K). The mechanism of superconductivity is of a bipolyaronic type:

polarons bound in Cooper pairs (like electrons in metallic superconductors). The dis-

covery of HTS in the polycrystalline oxides, such as compounds YxSr1� xCuО4

(Tc�35K, Nobel Prize for 1987) and YBa2Cu3О7�x (Tc�100K), becomes the basis

for new components of electronic equipment [5].

In 2001 superconductivity in the fusion MgB2 (magnesium diboride) was discov-

ered with relatively high transition temperature: Tc¼40K. The crystal structure of

this substance consists of boron and magnesium layers (earlier certain compounds

of copper and oxygen, so-called cuprates were believed to have HTS properties).
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In 2008, several iron-based compounds became known as superconducting at high

temperatures. At present, the “record” of HTS is 203K: in hydrogen sulfide (H2S)

under pressure of 150 gigapascals. Theoretically, there is possibility of supercon-

ducting materials development with an operating temperature of 300K (available

experimental information is controversial).

Thanks to the discovery of HTS, it becomes possible to construct high-speed

computer memory devices, microwave converters and generators, electronic sensors,

and others. Microwave technique from many of HTS mainly uses the composition

designated as “1-2-3” with the chemical formula YBa2Cu3O7� x. In Fig. 5.23 this

compound is designated as Y-Ba-Cu-O that has a transition temperature slightly

higher than 100K. This transition temperature is sufficient for HTS application at

a temperature of 77K, that is, with cooling by liquid nitrogen. This type of cooling

costs hundreds of times less than cooling by liquid helium. Moreover, at increased

operating temperature of HTS, microwave devices can be applied in the space elec-

tronics. The technology of “1-2-3” composition is well developed: Y-Ba-Cu-O is

prepared as thin poly- and monocrystalline films, deposited onto dielectric substrates

that have low microwave losses, such as MgO, LaAlO3, Al2O3 (sapphire), and so on.

In high-frequency and microwave technologies, conductors and superconductors

are compared by their surface resistance RS, measured in ohms. For ordinary metals

the value of RS is defined by the skin effect, then

RS ¼ 1=2ρμ0ωð Þ1=2,
where ρ is resistivity, μ0 is magnetic constant, and ω¼2πν is circular frequency.

Thus, RS in conventional metals slowly increases with frequency as
ffiffiffi
v

p
.

In superconductors, particularly in HTS, the skin effect is absent, but there is

another effect uncomfortable for microwave applications: the depth of penetration
of electromagnetic field in surface of superconductor. The reason is the presence

of not only Cooper pairs of electrons (which do not cause any resistance), but also

ordinary electrons that make such a resistance in superconductors. It is determined

that at high frequencies in superconductors, RS is nonzero, and it rather increases fast
with frequency: RS�ν2.

Theoretical calculations are well documented experimentally. Frequency charac-

teristics of the best (at room-temperature) conductor, copper at 77K, niobium in the

normal state (at temperature 300K), and in the superconducting state (at liquid

helium at temperature 5.2K) are compared in Fig. 5.24. The most important in this

figure is the frequency dependence of the Y-Ba-Cu-O film: surface resistance

increases with frequency very rapidly as in classic superconductor Nb, so also in

the HTS film. Therefore, at millimeter waves (100GHz and above), superconductors

have no advantage over copper.

However, at frequencies lower than 20GHz, the HTS electrodes have a signifi-

cant advantage as compared to Cu (even being cooled to liquid nitrogen, 77K). At

that, electrodes made of niobium look better than HTS, but they need very expensive

cooling by helium. Superconducting YBa2Cu3O7� x films deposited on dielectric

substrates are successfully used instead of the usual superconductive metals in



FIG. 5.24

Frequency dependence of surface resistance in superconductors and copper.
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microstrip and coplanar microwave devices, thus allowing obtaining record high-

quality filters, phase shifters with small losses of energy, and other passive micro-

wave devices [5]. There are also some active devices based on the HTS films that

use Josephson effects.
5.8 SUMMARY

1. Mechanical properties of metals are characterized by great durability, hardness,

and other parameters; these properties are dependent on mechanical and

thermal processing, determining structural defects and impurities. Annealing of

metals results in a significant decrease in their strength and increases their

compliance. Assuming metal as a system, in which positive ions are fastened by

means of freely mobile electrons, corresponds to basic properties of metals:

ductility, plasticity, high values of thermal conductivity and electrical

conductivity.

2. Most metals crystallize in one of three main structural types: cubic or hexagonal

dense packing and space-centered cubic lattice. In dense packing, each

metal ion is located at equal distances from 12 nearest neighbors.

Interatomic distances in crystalline structure of metals are characterized by

“metallic ionic radius.”

3. The negative temperature coefficient of electrical conductivity should

be considered as the most characteristic physical feature of metals, that is,

electrical conductivity decreases with increasing temperature. At that,

temperature dependence of conductivity is close to law σ(T) � T�1. In case
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of deep cooling, the σ(T) dependence shows saturation, the level of which

depends on concentration of static defects. In metals that have ferromagnetic

impurities at low temperatures, the σ(T) dependence may show even a decrease

while cooling.

4. Electromagnetic waves up to optical range are almost entirely reflected from the

surface of a metal, so that metals are nontransparent for electrical field

and demonstrate metallic luster. Metals have high thermal conductivity λe
[W/(Km)] caused by high-mobility electrons; at that, thermal conductivity λe
is proportional to conductivity σ. The uniformity of ratio λe/σ for various

metals is Wiedemann-Franz law. Electrons in metals are always found in fast

movement; they move even at lowest temperatures (near absolute zero).

This motion of electrons is chaotic; therefore different electrons move with

different velocity. In most metals, electrons move with Fermi velocity:

υF �106 m/s.

5. In an “ideal metal” with infinite conductivity, electrical field cannot exist.

In a real metal only very small electrical field can be applied, as high

current will lead to metal melting. In the presence of external electrical field,

the current flows through a metal, that is, movement of electrons becomes

partially directed; electron drift superimposes over their chaotic movement.

To calculate, this current one needs to estimate average drift velocity υev
(velocity of chaotic motion is independent of applied field).

6. Direct proportionality of electron drift velocity to strength of electrical

field is characterized by the mobility. Mobility characterizes the resistance

of substance to electron drift in direct electrical field. If inhibitory force is

absent, then electrons will move in the electrical field with acceleration
(such as in vacuum), but not with constant average velocity as they

move in crystals. Therefore mobility is degree of electron freedom in crystals.

7. One experimental method of electron concentration ne measuring in conductors

(and semiconductors) is Hall’s effect—the difference of potential across
investigated sample placed in perpendicular magnetic field, when current

flows through the sample.

8. Magnetoresistance is the change of material’s electrical resistance in

magnetic field. It depends on the sample orientation relative to the

magnetic field; that is, magnetic field does not change projection of particle’s

velocity on direction of magnetic field, but, due to Lorentz force, bends

the trajectory in plane perpendicular to magnetic field.

9. Movement of electron in real metal under external electrical field is not

continuous but interrupted: as soon as electrical force appears, the electron

starts moving with acceleration and its velocity gradually increases, but

also the force of “friction” increases that is proportional to electron’s

velocity. After time τ ¼ meu the inhibitory force compensates completely
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the acceleration force; therefore electron (or hole) moves with constant velocity.

The time constant, characterizing installing of steady state of electron

movement in metal, is small: τ �2�10�14 s.

10. Parameter τ is average time between two collisions of electron; using its

product by Fermi velocity υF it is possible to estimate average free path δ
(middle distance between electron collisions): τυF ¼ δ. Charge transfer in
metals is carried out by electrons and holes located near Fermi surface; they take

energy from applied electrical field. As far as electrons (being excited by

external field) move to higher levels, they are replaced by other electrons,

previously located much deeper under Fermi level.

11. At high and ultrahigh frequencies (108–1011 Hz), electromagnetic field

penetrates into conductor (metal) to a small depth, and damps the faster the

higher field frequency and magnetic permeability of metal. The result is

nonuniform distribution of current density in the cross section of conductor—

this is the surface effect (or skin effect).

12. Heat can be extended in metal rather easily by the same free electrons that

determine metal conductivity. Thermal conductivity of metals is high as

number of electrons per unit volume of metal is large. Therefore electronic

thermal conductivity λe in metals usually is much higher than heat transport

by phonons λph in dielectrics that have predominantly lattice-vibration

mechanism of thermal conductivity.

13. Despite large electronic conductivity, metals under normal conditions

(T �300K) give a rather small electronic contribution Ce to specific heat.

However, electronic contribution to heat capacity of metals increases in

direct proportion to absolute temperature: Ce ¼ ξT without any saturation at

high temperatures. Besides, it is necessary to note that in metals at very

low (cryogenic) temperatures heat transferred by “electronic gas” can

surpass phonon contribution to specific heat.

14. In case of two different metal connection (and semiconductors also), the

difference of contact potential occurs between them. If these connections are

found at different temperature, a thermoelectric power is caused due to

distinction in electronic work functions of two metals; thermoelectromotive

power is dependent on free electron concentration in relevant metals.

15. Classic electronic theory of metals is based on Drude hypothesis about free
electronic gas. This theory enables to explain and describe analytically most

experimental data in metals (conductivity, power losses, relationship

between electrical conductivity, thermal conductivity, etc.). In addition,

some experiments confirmed the hypothesis of electronic gas, such as the

curvature of electron trajectory in metal placed in transverse magnetic field,

as well as the change of electrical resistance in magnetic field. However,

Drude’s theory has contradictions with some experimental data. For
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example, this theory cannot explain experimentally observed paramagnetic
susceptibility in some metals; another discrepancy is the theoretically

obtained value of specific heat: experimentally seen specific heat of metals

is much less than it follows from Drude’s theory (it looks like electronic

gas hardly absorbs heat while metal is heated). Quantum mechanics

overpasses these contradictions.

16. Unlike classic electronic theory, quantummechanics show that electronic gas in

metals under normal (and higher) temperature is found in the state

of degeneration. In this state, the energy of electronic gas is almost

independent on temperature, that is, any alterations in thermal motion of

ionic lattice almost do not change energy of free electrons. Therefore,

while crystal is heating the energy practically is not consumed by electronic gas,

as clearly seen during heat capacity measurements. In a state similar to

conventional gases, the electronic gas would have temperature estimated as

thousands of degrees.

17. Quantum mechanics explain why for metals normal temperature looks like very

“low”: because Fermi energy of electrons in metals is large (about 5–10eV).
Electronic gas in metal is always degenerated; therefore energy distribution

function at normal temperature varies only in narrow range kBT near Fermi

energy level. From Fermi surface electrons can be easily transferred to the

allowed higher energy levels; for this reason, metals are good conductors of

electricity.

18. Fermi surface in the space of impulses at 0K separates occupied by

electron ground states from the empty states. At nonzero temperature, most

electrons, however, are placed under Fermi surface, and only some of them

shift outside of it (in energy stripe kBT). Fermi surfaces in different metals

might have quite a different form. In metal energy, increase can be described as

the birth of quasiparticles. The increase of electron energy in metal is

possible by moving at least one electron under Fermi surface into external

allowed level in the impulse space. At that, the appearance of this electron above
Fermi surface is accompanied by unoccupied state below Fermi surface—the

hole, which can be interpreted as a kind of quasiparticle that is the antiparticle as

to the born electron. Therefore increasing energy of free electrons in a metal

always is accompanied by the birth of two quasiparticles. Calling hole as

antiparticle, there is the possibility of its recombination, when electron will

return “in its place” under Fermi surface, and metal again returns closer to its

ground state, because both quasiparticles—electron and hole—disappear.

19. Behavior of conductors in magnetic field can be determined, taking into

account, firstly, that magnetic field does not change energy of electron

(Lorentz force vector is directed perpendicular to velocity of electron),

and, secondly, Lorentz force has no effect on electron, which moves along

the magnetic field.
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20. Mechanisms of electrons scattering (collisions) can be divided into three

classes: (1) electron collision with static violations of crystal periodicity;

(2) electron collision with thermal motion of lattice (phonons); (3) collisions of

electrons with each other. At normal (room) temperature, the main cause

of electron scattering, and, hence, resistance of metal is not due to crystal

lattice defects, but to phonons—thermally excited wave-type motions of ionic

lattice. Only at very low temperatures (near absolute zero), when thermal

motion in crystal is almost frozen, scattering on defects of structure becomes

a more important mechanism of electrical resistance.

21. In recent years, an important class of solids with anomalous properties was
discovered: they are compounds of rare-earth metals, characterized by

incomplete 4f-shell. Their electronic properties are difficult to explain

using existing concepts. These substances are intermediate between magnetic

and nonmagnetic materials, as well as between metals and dielectrics,

because most of their electrons are found among localized and free states.

Studies of these compounds help to understand many properties of metals

and magnetics, to extend conceptions of band theory for metallic and dielectric

states, as well as to investigate possible types of electronic states in crystals.

22. Some compounds and metals are known, in which electrons have the binary,

ambivalent nature: keeping largely localized (atomic) nature, they also can show

intention to collectivization. Systems with unstable valence (or intermediate

valence) belong to compounds of rare-earth metals and actinides, that is, the

elements that have incomplete 4f- or 5f-shells. These compounds have unique

physical properties and anomalous characteristics that explain formation of

heavy fermions—peculiar electrons that have effective mass 102–103 times

greater than mass of free electron.

23. Heavy fermions arise in such a systemwhere the proximity of valence instability

exists. Such fermions have large effective mass; the heaviest fermions are

observed primarily in compounds of cerium and uranium—the elements located

in beginning of 4f- and 5f-periods. Among compounds with heavy fermions,

there are magnetic materials, disordered in their normal state crystals, as well as

superconductors.

24. Superconductivity is one of “cooperative” effects in the ensemble of

conduction electrons, and it cannot be explained by simple models of

“independent electrons.” Superconductivity is interesting in the sense that

superconductors have no skin effect and can significantly reduce energy loss.
In superconductors, two effects were found by Josephson: (1) current that

flows indefinitely long time without any voltage applied across a junction

that consists of two superconductors, parted by weak link; (2) when external

voltage is applied, Josephson junction demonstrates effect of microwave

generation. Using these effects a variety of sensitive electronic devices are

elaborated.
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25. DC resistance of superconductor is zero: ρ ¼0; respectively, its conductivity is

the infinity: σ ¼∞. This phenomenon was first discovered in mercury at

temperature Tc �4K, but in some metals and alloys, phase transition into

superconducting state is observed at higher temperatures: for lead Tc �7K,

for niobium Tc �9K. In alloy Nb3Sn transition temperature is Tc �18K, while

alloy Nb3Ge shows highest observed temperature for metals: Tc �23 K.

26. The nonstationary Josephson effect arises if voltage V is applied to a weak

connection; in addition to constant component of current, the variable

component appears that is determined by frequency ν connected with voltage by
ratio: ν ¼2eV/h. This generation lies in ultrahigh-frequency range, and its

frequency is a linear function of applied voltage. Nonstationary Josephson effect

is used to generate microwaves in the GHz range.

27. Phase transition temperature of superconductors is their critical temperature Tc.
For cryoelectronics, among most prominent superconducting metals are lead

and niobium. Best (under normal conditions) metallic conductors, such as

copper, gold, and silver, whose resistance at temperature 300K is minimal

among other metals, cannot have superconducting state. At low temperatures,

they are only cryoconductors.

28. Discovery of high-temperature superconductivity (HTS) in polycrystalline

oxides, for example, in YBa2Cu3О7�x (Tc �100K), becomes a basis for

new components of electronic equipment. At present (year 2017), the

“record” of superconductivity appearance is 203K. Due to HTS the high-speed

memory devices for computers, microwave converters and generators, as well as

other electronic devices are constructed, cooling by liquid nitrogen (77K).

Theoretically, the possibility exists to develop superconducting materials with

an operating temperature 300K.
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Magnetism is a special kind of physical interaction from a distance between moving

electrical charges (that creates magnetic moment), as well as the interaction between

particles and bodies with naturally existing magnetic moments. Magnetic interaction

is characterized by the magnetic field.

There is no complete symmetry between magnetic and electrical fields. The

sources of electrical field are electrical charges, but similar single “magnetic

charges” are absent in nature. That is why, the sources of magnetic field are also elec-

trical charges, but only the moving charges (even if this movement is hidden in ele-

mentary particles). Cyclically moving charges create magnetic moment, also called

the magnetic dipole.
Any material is magnetosensitive in its nature, that is, it interacts with an external

magnetic field and has certain magnetic property. In every matter, elementary circu-

lar current exists, such as the rotation of electrons around the nucleus (orbital mag-

netism) and fictitious rotation of electrons around their own axis (spin magnetism).

These movements lead to orbital and to spin magnetic moments, both created by the

electrons. Magnetic moment of electronic shells of atoms determines magnetic prop-

erties of any material, because this moment is 1000 times greater than the magnetic

moment of the atomic nucleus. That is why exactly the peculiarities in electronic
structures of atoms stipulate differences in magnetic properties of substances [1].

Magnetic materials are widely used in many areas of technologies: electronics,

electrical engineering, information, computing and measuring instruments, and

others. In recent years, a qualitative “jump” in the development of magnetic mate-

rials is seen, and on this basis, new types of electromagnetic and magnetoelectronic

devices with unique properties are created owing to scientific discoveries in the phys-

ics of magnetic materials and advanced technologies.
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The current stage of magnetic device development is characterized by the tran-

sition from the use of discrete magnetic components to the application of homoge-

neous magnetic environments, when magnetopolarized charge carriers by their

directional movement create magnetic domains. Low-inertia reorientation of mag-

netic domains is widely applied in magnetic electronic devices. The small size of

magnetic domains together with their high mobility can create on their basis various

functional devices that have large memory (109–1010 bits) and high density of infor-
mation (108–1010 bits/cm2), as well as characterized by great speed of processing

(106–108 bit/s) [2].
Further progress in the creation of materials with new properties is due to the

development of nanotechnologies for supersmall elements. This progress is associ-

ated with the changes in the structure of matter, thus affecting its fundamental prop-

erties. Currently, it has become possible to “manage” properties of substances by

decrease in their fragmentation (dimensions). At present, most technical implemen-

tations of nanoelectronic elements are observed only in the magnetic electronic

devices [3]. Based on microelectronics and nanoelectronics, one of the promising

areas of functional electronics is the development of magnetic electronics, which
is qualitatively new stage in the creation of components to build a broad class of log-

ical and storage devices, as well as various information-processing devices.

At present, magnetic materials with large magneto-optical effects are synthe-

sized, and they combine good transparency of the material in visible and near-

infrared regions of the spectrum. On this basis, many advanced magneto-optical

elements and devices are developed: magneto-optical drives, controlled banners,

printers, deflectors, integrated optics elements, various converters, and so on. Owing

to a variety of types of magnetic materials, their properties and manufacturing

methods promote the creation of new items and devices. Magnetic electronics

require the development of electronic equipment through the knowledge of physics

of magnetism, features of magnetic interaction in solids, getting control over

manufacturing technology materials with different properties, and exact understand-

ing of modern technology and trends.

This chapter focuses on the physical fundamentals of magnetism in solids, pro-

cesses that determine principles of magnetic electronic devices, as well as operation

characteristics, requirements, scope, and prospects of development of magnetic

devices.
6.1 BASIC DEFINITIONS
For quantitative description of magnetic phenomena in solids, the axial vectors are
introduced: magnetic field H, magnetic induction B, magnetic momentM, magnetic

flux Φ, and magnetization J.
Themagnetic field is specified by its direction and strength; it characterizes mag-

netic effect, which is created by electrical currents or by internal magnetic properties

of materials. The symbols B andH are used for two distinct but closely related fields.
In SI units, the vectorH is measured in amperes per meter [A/m], whereas vector B is
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measured in Newton per meter per ampere [N/(m�A)]¼ tesla [T]. Magnetic induction

B sometimes is also called as “magnetic field” (it is, most commonly, defined in

terms of Lorentz force, which acts on moving electrical charges).

The magnetization (magnetic polarization) is also an axial vector field that

expresses the density of permanent or induced magnetic dipole moments in a mag-

netic material. It can be compared with electrical polarization, which is the measure

of response of a material under an electrical field. Magnetic moment per unit volume

is represented by the vectorM. Sometimes, during practical investigation of magne-

tism, the magnetic flux Φ through surface is also used. This is the surface integral of
the normal component of magnetic field B, which passes through the surface; the SI
unit of magnetic flux is weber (Wb¼V�s), whereas the CGS unit for magnetic flux is

maxwell [1].

Magnetic field strength H, in a more specific description, is defined as a

certain distance l from the conductor through which current I flows, and it is given

byH¼ I/2πl. This ratio determines the field dimension in SI unit [A/m]. According to

this definition, magnetic field H is not dependent on the magnetic properties of a

medium. For example, in the center of a round loop of wire with radius R and circular

current I, the magnetic fieldH¼ I/2R regardless of the environment. The unit of mag-

netic fieldH in the CGS system is oersted (abbreviated as [Oe]), which is identical to

dyne/maxwell. The oersted is 1000/4π�79.6 [A/m].

Magnetic induction B is the main characteristic of the magnetic field in the mate-
rial: it is the average value of the total intensity of microscopic magnetic fields gen-

erated by individual electrons and other elementary particles. In vacuum, magnetic

induction B is defined only by an external magnetic field: B¼μ0H. To make agree-

ment between dimensions of parameters that are used in magnetism, the SI system

uses μ0¼1.25�10�7H/m (symbol [H]¼“henry” is the unit of electrical inductance in

the International System of Units). In the Gauss system (GHS), the unit of magnetic

induction is [Gs] and includes a ratio: [T]¼104 Gs.

MagneticmomentM is one of the important characteristics of magnetic properties

of a body. The sources of magnetism are both macroscopic and microscopic electri-

cal currents. Magnetic moment vector is expressed by an analogy with electrical

dipole moment, only remembering not electrical dipoles, but magnetic dipoles
(formed by electrical currents in closed circuits). Magnetic moment has dimension

[A�m2]¼ [J/T] (joules per tesla), and it is the sum of all elementary moments that are

induced in a substance under the influence of magnetic field (or it can be formed

spontaneously, as in ferromagnetics).

The magnetization J is the density of magnetic moment M, that is, magnetic

moment per unit volume of material: J¼M/V. It corresponds to the macroscopic

description of the magnetic state of a body. In the SI system, the dimension of mag-

netization coincides with the dimension of field strength (J¼A/m¼Wb/m2) and

represents such magnetization, when 1m3 of the material has a magnetic moment

of 1A/m3 (remember that Wb¼ “weber” is the SI unit of magnetic flux; hence flux

density is Wb/m2, that is, one weber per square meter, which is one tesla).

By formal analogy that is used for dielectrics, in polar electrical vectors

(D¼ε0εE¼ε0E+P, ε¼1+χ, where D is the electrical induction, E is the electrical
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field, P is the electrical polarization, ε is the permittivity, and χ is the dielectric sus-
ceptibility), the axialmagnetic vectors are joined by material tensors of second rank:
permeability μ and magnetic susceptibility æ:

B¼ μ0μH¼ μ0H + J,

J¼ μ0H,

μ¼ 1 +�:

The permeability and the magnetic susceptibility are relative values; therefore they
are dimensionless. In vacuum, relative permeability μ¼1 because in the absence of

a substance, magnetic susceptibility is zero: æ¼0. Similarly, without any sub-

stance, relative dielectric permittivity of vacuum ε¼1 and dielectric susceptibility

χ¼0 [3].

However, the analogy between electrical and magnetic phenomena is purely for-

mal. This follows, for example, from Fig. 6.1, which compares magnetic and elec-

trical dipoles. Electrical dipole is a system of two electrical charges separated in

space, with equal magnitude and signs opposite to each other. Conventionally, elec-

trical dipole is indicated by an arrow: it is the polar vector. Magnetic dipole is formed

by themovement of electrical charges, approximately representing circular electrical

current: it is the axial vector. For both types of dipoles (electrical and magnetic),
FIG. 6.1

Mirror-like reflection: (A) from electrical dipole; (B) from magnetic dipole.
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the potential of corresponding fields decreases with distance as 1/r2. However, by
this factor, they become dissimilar.

Significant differences between electrical and magnetic dipoles can be seen by

reflecting them in mirror, as shown in Fig. 6.1. Electrical dipole changes its direction

to opposite, whereas reflected magnetic dipole maintains its direction [4]. On the

contrary, according to a mental operation called the inversion in time (when believed
that passage of time is reversed), electrical dipole remains unchanged, whereas mag-

netic dipole changes its sign to opposite.

In themacroscopic examination, magnetic dipole can be represented by electrical

current in a closed circuit, whereas in the microscopic processes, properties of mag-

netic matter might also be caused by the internal (hidden) forms of electrical charge

movement, which is possible to describe only in quantum mechanics.
Microscopic magnetic dipole can be created:

• by changing the orbital moment of the electronic shell of atom (ion or molecule),

it results in the diamagnetic component of magnetization;

• by “own rotation” of elementary particles represented by spins of electrons,

which leads to the paramagnetic of ferromagnetic components of magnetization;

• owing to the presence of magnetism in some atomic nucleus (it should be noted

that nuclear magnetism is weak).

Thus in the atomic scale, electrons can create two types of magnetic moments

(microscopic currents): the orbital moment that is due to electron rotation around

the atomic residue and the spin moment that is due to natural magnetic momentum

of the electron. Practically, magnetism is the characteristic of the orbital and spin

magnetic moments of electrons. Protons and neutrons also have their own magnetic

moments, but nuclear magnetism, compared with electronic magnetism, is very

small (around 1000 times weaker) because magnetic moments are related to the

mechanical moment and therefore is inversely proportional to the mass of particles.
In this way, the smaller the magnetic moment of a particle, the greater is the mass.

Therefore the magnetic properties of matter are determined mainly by electrons, as

electrons are lighter by nearly three orders in magnitude than the atomic nuclei—

proton, which is the lightest. However, in some cases (very rare but important for

special studies and applications in physics, chemistry, and biology), nuclear magne-

tism might have considerable interest. First, only the effect of nuclear magnetic res-
onance has applications in medicine and in solid-state physics; second, the effect of

nuclear demagnetization is used for deep cooling of matter to achieve experimentally

very low temperatures [5].

The energy of magnetic interaction of microscopic particles, although it is smal-

ler than the energy of electrical interaction, is still large enough to affect the structure

of matter. As any stable system tends to minimize its energy, internal magnetic

moments in substances strive for maximum compensation. For example, in the elec-

tronic spectrum of a crystal (see Section 4.6), electrons tend to occupy the lowest

possible energy levels; each level can be occupied only by two electrons with oppo-
site values of spin (Pauli principle).
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For instance, in basic energy state of the helium atom (state 1s2), both the spin and
the orbital electronic moments are zero; hence the magnetic moment induced by an
external field can only occur. The same is applicable to hydrogen molecule H2. Thus

in atoms or molecules with completely filled electronic shells, total spin moment and

total orbital moment are zero.

Summary spin magnetic moment in the completely filled orbitals (2, 6, 10,

14 electrons) is totally compensated. Therefore in most substances, electronic

orbitals of atoms and molecules, generally, are entirely filled (self-organized) with

the even number of electrons (filled s-, p-, d-, and f- shells contain 2, 6, 10, and

14 electrons, respectively). Nevertheless, there are some quite uncommon (but very

important for practical use) exceptions of stable but only partially filled d- and

f- shells of atoms, in which uncompensated total spin magnetic moment can exist.

The main effects of an external magnetic field that influence matter were discov-

ered in the 19th century by Faraday. First, according to the law of electromagnetic

induction, an external magnetic field creates induced microscopic electrical current

in a substance, whereas the magnetic field is directed opposite to the applied field

(such reaction of matter to the applied magnetic field always exists). Faraday iden-

tified this effect as diamagnetism. The prefix “dia-” means the opposition to an

externally applied field or deviation of magnetic field lines: external magnetic field

turns around the diamagnetic, as shown in Fig. 6.2A. That is why diamagnetic repels
with any pole of a permanent magnet (it is pushed out of the magnetic field but with a

small force because this effect usually is very small). Magnetic induction in the dia-

magnetic becomes smaller than that in vacuum [1].

Second, if atoms (or molecules) of a matter have particles with natural nonzero

magnetic moments (spin, or orbital, or both), an external magnetic field will orient

them along the field. The result is the appearance of an additional magnetic moment

that is collateral to the external field; Faraday called these materials as paramag-
netics. The prefix “para-” means “consistency” of magnetism in a substance with

magnetic field lines; magnetism in the paramagnetic becomes stronger than
that in vacuum. In Fig. 6.2B, the magnetic field draws into a paramagnetic.
FIG. 6.2

Handling (A) diamagnetic (D) and (B) paramagnetic (P) in a magnetic field.
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The paramagnetic is attracted by any pole of a permanent magnet. As the diamag-

netism phenomenon exists always, this attraction indicates the preference for para-

magnetism over diamagnetism (almost in all cases when both effects take place).

The dependence of magnetization on the magnetic field (J¼μ0æH) for some typ-

ical cases is shown in Fig. 6.3. Magnetic moment induced in matter by an external

field can be both positive and negative. Fig. 6.3A shows the comparison of magne-

tization under an external field for diamagnetic and paramagnetic. In both cases, to

obtain a noticeable effect, the applied magnetic field has to be large (hundreds of

[Oe]¼oersted).
Significant magnetic properties, even under a small external magnetic field, can

be seen in substances that have a strong internal magnetic interaction between

particles—carriers of own magnetic moment (atoms, ions, and molecules). Through

this interaction, the involuntary ordering of internal magnetic moments might be

energetically favorable (without action of external magnetic fields). In these cases,

a strong magnetic effect usually can be seen. The dependence of magnetization,

induced by an external magnetic field in the ferromagnetic, can be seen in

Fig. 6.3B: even if an external magnetic field strength is only 1Oe, the induced mag-

netization is thousands of times greater than that in the diamagnetic or paramagnetic

substances. Faraday has shown that a ferromagnetic is attracted to both poles of a
permanent magnet.

Therefore in the diamagnetic, any proper magnetic moments of particles are

absent: its magnetization is induced exclusively by the external field. Induced

diamagnetic moment disappears very fast on removal of external field—at time of

around 10�14 s. As to the paramagnetism, it is conditioned by the existence in a

material intrinsic (natural) magnetic moments, which are, however, completely dis-

ordered if an external magnetic field is absent, as shown in Fig. 6.4A. Magnetiza-

tion of a paramagnetic (similar to diamagnetic) is also induced by an external
FIG. 6.3

Field dependence of magnetic moment induced in: (A) diamagnetic and paramagnetic,

(B) ferromagnetic.



FIG. 6.4

Schemes of magnetic moment ordering in different lattices: (A) paramagnetic;

(B) ferromagnetic; (C) antiferromagnetic; and (D) ferrimagnetic.
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magnetic field owing to the orientation of existing natural magnetic moments. How-

ever, the external magnetic field orients only a small part of natural moments and,

after switching off the magnetic field, magnetism induced in a paramagnetic disap-

pears, but not so fast as in a diamagnetic (at time of 10�9–10�2 s) [6].

In some solids, their magnetic structures can be characterized by different types

of spontaneous magnetic ordering. A crystal (or polycrystal), in which natural mag-

netic moments are oriented in parallel to each other, is a ferromagnetic (Fig. 6.4B).
Accordingly, antiferromagnetic has neighboring atomic magnetic moments oriented

in an antiparallel direction, as shown in Fig. 6.4C. Moreover, ferromagnetism and

antiferromagnetism can coexist in a single structure; such material is the ferrimag-
netic, in which compensation of atomic magnetic moments is incomplete, as shown

in Fig. 6.4D. Related substances are known as ferrites, and they are very important

for technical applications. Except for relatively simple collinear ferromagnetics,

atomic and electronic structures of antiferromagnetics and ferrimagnetics might

have more complicated and even noncollinear magnetic structures (i.e., spiral,

triangular, etc.).

Thus magnetic properties of a substance can be divided into weak magnetism

(diamagnetism and paramagnetism) and relatively strong magnetism (ferromagne-

tism, antiferromagnetism, and ferrimagnetism). The magnetization of materials dif-

fers significantly from polarization. For comparison, it should be pointed out that in

case of electrical polarization in dielectrics, static dielectric susceptibility is always

positive (χ > 0); that is why, static permittivity of anymaterial surpasses one (ε > 1).

However, while a matter is magnetized, depending on the nature of magnetism, the

value of magnetic susceptibility æ can be positive or negative. Hence in a substance,

static magnetic permeability μ can be both greater than 1 (μ>1) and less than 1

(μ<1). The superconductor (in which electrical resistivity is zero, ρ¼0) formally

is characterized by the value μ¼0 (i.e., it has æ¼�1) being supposedly the

“ideal” diamagnetic.

The complexity of the atomic structure of matter, constructed from a wide variety

of particles, leads to many forms of magnetic structures. While considering the prop-

erties of solids, usually the general term “magnet” is used. The association of mag-

netic properties of substances with their nonmagnetic properties (electrical,
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mechanical, optical, etc.) enables the investigation of magnetic properties as the

source of information on the internal microscopic and macroscopic structures of

materials.
6.2 DISORDERED MAGNETICS
Magnetic materials can be divided into magnetically ordered and magnetically dis-

ordered structures. Magnetic properties of orderedmaterials usually are strongly pro-

nounced, in particular, this causes widespread use of such materials in electronics

and electrical engineering. Magnetically disordered solids, as a rule, show weak

magnetism, but sometimes they also demonstrate useful properties for application

in instrumental technique and in medicine. As already noted, in the cryogenic tech-

nology, weak paramagnetism is used to achieve very low temperatures. Similarly, in

experimental physics (as in medicine), methods such as electronic paramagnetic res-
onance and nuclear magnetic resonance are very important for research and diag-

nostics, although these methods use weak magnetism [5].

Therefore the terms “weak” and “strong” magnetism are conventional and might

be used here only in understanding the engineering of these phenomena. For most

calculations related to electromagnetic wave spreading, slowing, or absorption in

a material, weak magnetism can be neglected because both diamagnetic and para-

magnetic have magnetic permeability μ � 1, which is only slightly different from

vacuum value μ¼1. At the same time, in strong magnets, the value of μ usually

is rather high and can even be very large (sometimes, it reaches thousands).

Diamagnetism. Electrons, which move around the nucleus in their closed orbit,

under the influence of an external magnetic field, change its trajectory, so that a new

trajectory of their movement becomes helical rotation. Exactly, this phenomenon is

related to the diamagnetism in atoms. According to classic representation, the phys-

ical nature of diamagnetism lies in the induction of nondamped microscopic currents

by a magnetic field owing to the helical rotation of an electron in its closed orbit with

variable angular velocity.

As a rule, diamagnetism represents a very weak response of substances to the

applied magnetic field: its contribution to magnetic susceptibility is very small:

æ¼�(10�5–10�6). The sign “–” indicates that the induced diamagnetic moment

is directed opposite to the applied field H. The small magnetic induction B that

appears in matter can be compared to the magnetic induction in vacuum:

μD¼0.99999 … � 1. As already is shown in Fig. 6.2, any diamagnetic “pushes”

out the magnetic field.

Temperature dependences of magnetic susceptibility in various types of weak

magnetism are shown in Fig. 6.5.

In any matter, the Larmor diamagnetism is a common mechanism that occurs due

to the precession of electronic orbitals of atoms, ions, and molecules. In an external

magnetic field H, this precession always occurs as the manifestation of fundamental



FIG. 6.5

Temperature dependence of magnetic susceptibility in case of “weak” magnetism:

P1—Curie law for Lanzheven type of paramagnetic; P2—paramagnetism of electronic gas

in metals; P3—Van Vlack paramagnetism; D1—Larmor diamagnetism; and

D2—diamagnetism in fullerites and nanotubes [3].

FIG. 6.6

Larmor precession of electronic orbit in a magnetic field, which leads to diamagnetism:

(A) electronic orbit is perpendicular to the magnetic field H, electron moves with velocity υ;
(B) electronic orbit is tilted to the field, so that the effect of the magnetic field causes

precession of the orbit.
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properties of electrons moving in their orbits, as shown in Fig. 6.6. In a magnetic

field, the angular velocity ω of an electron decreases by Δω. In an orbital plane,

the electron moves in a cone around the magnetic field vector H with constant angu-

lar velocity of precession.

Thus, diamagnetism is associated with the orbital movement of electrons and

occurs in all atoms and ions (inasmuch as the orbital movement of electrons exists
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in any atomic core). Diamagnetism causes a slight deceleration of angular velocity of

orbital movement when the atom is placed in a magnetic field. This effect can be

explained on the basis of the following general considerations. The movement of

an electron in its orbit can be considered as a closed current. In case when a circuit

with current is placed in a magnetic field, according to Faraday’s law of electromag-

netic induction, an additional electromotive force (EMF) arises. As a result, current

in a circuit changes, and this modifies the magnetic moment. According to the well-

known Principle of Le Chatelier in physics, this current should be directed as coun-

teracting to the external field, and this results in counter induction. This means that

the induced magnetic moment is directed against the applied field that, by definition,
is the key feature of diamagnetism. From Le Chatelier principle, it follows that dia-

magnetism is manifested in materials by repulsion out of the magnetic field.

As the size of the electronic shell of an atom or ion is almost independent of tem-

perature, the diamagnetic susceptibility (that has a negative value), only slightly var-

ies with temperature because of the decrease in material density, as shown in Fig. 6.5,

curve D1. In this sense, the diamagnetism induced by the external magnetic field H
reminds the electronic polarization of dielectrics, which is also explained by a dis-

tortion and shift of electronic orbital under an external electrical field E. Indeed, in
case of electronic polarization, dielectric susceptibility χe (as diamagnetic suscepti-

bility) practically is independent of temperature, but the χe always has a positive
value (unlike negative diamagnetic susceptibility æd). However, it should be noted

that electronic dielectric susceptibility in different crystals lies within χe¼0.8…4,

that is, 1000 times higher than the diamagnetic susceptibility æd.

In metals, in addition to Larmor diamagnetism, another mechanism of diamag-

netism exists (Landau diamagnetism) [1]. This diamagnetism is conditioned by con-

duction of electrons moving under the external magnetic field. By Lorenz force, the

magnetic field compels electrons to move in a spiral, but not in straight, trajectories.
Landau proposed quantization of the energy of electrons in metals (when Landau
energy levels occur). It is necessary to note that this mechanism is also characterized

by a very small value of magnetic susceptibility (æL��10�5).

Substances with pronounced diamagnetic properties include the following:

• all matters (atoms and ions) that have no natural magnetic moments;

• organic compounds with nonpolar bonding, in which molecules or radicals have

no intrinsic magnetic moment (when the paramagnetic effect in them is less than

the diamagnetic effect); hence magnetic susceptibility æd ��(10�5–10�6) and

shows significant anisotropy;

• crystalline substances such as certain metals (Zn, Au, Hg, etc.), some metallic

alloys, and chemical compounds with prevailing diamagnetism in the ionic cores

(ions, similar to atoms of inert gases: Li+, Be2+, Cl�, etc.).

Thus, diamagnetism is peculiar to all substances, being a preferred type of magne-

tism in the materials with completely filled electronic shells (many dielectrics, semi-

conductors, and certain metals). For example, among materials important for

electronics, many semiconductors are diamagnetics (in germanium, æ¼�8�10�6,
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and in silicon, æ¼�3�10�6), as well as many metals (in copper, æ¼�6�10�6; in

silver, æ¼�22�10�6; and in gold, æ¼�30�10�6) and most dielectrics.
There are, however, some solids, in which diamagnetism is relatively strong: bis-

muth, antimony, graphite, and other semimetals. For example, in the bismuth, dia-

magnetic susceptibility is not only increased but also anisotropic: in the main

crystallographic directions, in Bi, æa¼�220�10�6 and æc¼�310�10�6. It is found

that difference æa�æc periodically changes in the dependence on magnetic field H
(Van Alphen effect).

Increased value of diamagnetic susceptibility (�æ) is observed also in the graph-
ite and other (recently discovered) modifications of carbon and in the fullerenes and
carbon nanotubes. It is noteworthy that in these substances, “�æ” increases signif-
icantly when temperature decreases, as shown in Fig. 6.5, curve D2. The strength-

ening of diamagnetism in the semimetals may indicate a tendency of these

materials to have superconducting transition. Indeed, the superconductors absolutely

push out the magnetic field (their magnetic susceptibility formally equals æ¼�1).

Such behavior of superconductors is caused by the electrical currents flowing in a

thin surface layer of superconductor (thickness of this layer is around 10�5 cm). This

surface current in superconductor shields external magnetic fields; hence in the bulk

of superconductor, magnetic field is zero. Except superconductors, there are other

cases of “giant” diamagnetism in some materials.

Therefore a relatively weak effect of diamagnetism is inherent in all matter, but if
a more strong effect—paramagnetism—exists (which is usually characterized by a

higher magnetic susceptibility), total magnetic susceptibility turns to the positive

value (æ>0); hence it is considered that these substances belong to paramagnetics.

Paramagnetism is a property of materials whose structural units (atoms, mole-

cules, ions, and cores) have natural magnetic moments. However, without external
magnetic field action, these moments are oriented randomly; hence the overall mag-

netization of a paramagnetic is zero (J¼0 if H¼0).

When the external magnetic field H is switched on, magnetic moments of atoms

in a paramagnetic become partially oriented toward the field, and with increase in

applied field, magnetization increases, at first—linearly (see Fig. 6.3A). If external

magnetic field would be large enough, then most magnetic moments of paramagnetic

particles will become already oriented strictly in the direction of field. Therefore,

dependence of J(H) becomes nonlinear; as a result, magnetic saturation is observed,
as shown in Fig. 6.7 [7]. Knowing the value of magnetic moment at saturation and the

concentration of paramagnetic particles in a matter, it is possible to determine the

magnitude of elementary magnetic moment (e.g., total spin moment is “3/2” for

Cr3+, “5/2” for Fe3+, and “7/2” for Gd3+). Paramagnetic susceptibility is positive
within the values æ¼+(10�4–10�1). This means that the permeability of paramag-

netic is higher than one (μ>1), unlike diamagnetic in which μ<1.

Magnetic field, as shown in Fig. 6.7, is large enough to reach almost complete
orientation of magnetic dipoles (overcoming the impact of disordering by thermal

chaotic motion). This is possible because there are no individual magnetic charges
that would be accelerated in the magnetic field. It should be noted that in similar



FIG. 6.7

Magnetic moment in paramagnet dependence on magnetic field: I—chromium-potassium

alum, II—iron-ammonium alum, and III—gadolinium sulfate [1].
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cases of dipole-type dielectrics, usually it is impossible to orient majority of dipoles

because under the strong electrical field existing electrons are necessarily acceler-

ated and cause the electrical breakdown much ahead of the orientation of most

dipoles.

Magnetic moments of atoms or ions that cause paramagnetism are conditioned by

the spin moments of electrons (spin paramagnetism) or by the movement of electrons

in atomic shells (orbital paramagnetism). It should be noted that magnetic moments

of atomic nuclei also lead to nuclear paramagnetism, but usually this effect is neg-

ligible (the smaller the magnetic moment of particle, the greater is the particle mass).

As a result, total magnetic moments of atoms, ions, and molecules are created mainly

by electrons that have a magnetic moment thousands of times greater than that of

atomic nuclei.

There are several mechanisms of electronic paramagnetism: temperature depen-

dence of paramagnetic susceptibility, as shown in Fig. 6.5, points to three most

important mechanisms. According to the Lanzheven-Curie mechanism, when a

crystal is cooled, its paramagnetic susceptibility increases according to Curie law:
æ�K/T, where K is the Curie constant. In case of Pauli paramagnetism, magnetic

susceptibility is practically independent of temperature. This is also seen for the

Van Vlack paramagnetism (typical in some molecular compounds): in this case,

magnetic susceptibility is small and almost independent of temperature.



Table 6.1 Electronic Construction of d-Orbitals in Transient Metals

Element
K
(n5 1) L (n5 2) M (n5 3) N (n5 4)

Symbol
Atomic
Number 1s 2s 2p 3s 3p 3d 4s 4p

K 19 2 2 6 2 6 1

Ca 20 2 2 6 2 6 2

Sc 21 2 2 6 2 6 1 2

Ti 22 2 2 6 2 6 2 2

V 23 2 2 6 2 6 3 2

Cr 24 2 2 6 2 6 5 1

Mn 25 2 2 6 2 6 5 2

Fe 26 2 2 6 2 6 6 2

Co 27 2 2 6 2 6 7 2

Ni 28 2 2 6 2 6 8 2

Cu 29 2 2 6 2 6 10 1

Zn 30 2 2 6 2 6 10 2
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The Lanzheven-Curie paramagnetism. One reason for the existence of the own

magnetic moment in an atom (or ion) might be electronic spins, which are not com-
pensated in the noncompletely filled d-shells or f-shells. For example, in the transi-
tion metals, listed in Table 6.1, noncompensated atomic magnetic moments are due

to some of the 3d-electrons.
Table 6.1 shows that 3d-orbital is empty in atoms K and Ca, whereas in atoms Cu

and Zn, 3d-orbital is completely filled (spin magnetic moments of electrons in this

case are totally compensated). This means that atomsK, Ca, Zn, and Cu are not para-
magnetic. In other atoms, listed in Table 6.1, their 3d-orbital is not completely filled.

The exact calculations of 3d-electron distribution are complicated, but the manner of

these electron distribution is expressed by Hund’s rules, following which 3d-
electrons are arranged in the 3d-shell according to their magnetic spins [1].

The conception of multiplicity is introduced: it equals to 2S+1, where S is the

total spin angular momentum for all electrons. Applied to electronic shell filling,

Hund’s rules determine the character of energy level filling by electrons in an atom,

under which the ground state must follow such requirements:

• term with maximum multiplicity has the lowest energy (the maximum value of

full spin S is in accordance with Pauli principle);

• term with the largest value of total orbital angular momentum L has the lowest

energy (the maximum value of L is consistent with the value of S);
• full angular momentum J (total angular momentum) meets jL�S j, if electronic

shell is filled less than half, and jL+S j, if electronic shell is filled more than half.

(When in shell, exactly half of levels are filled; then using the first rule leads to

L¼0, and hence to equality J¼S.)
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The first Hund’s rule is based on Pauli principle and on Coulomb repulsion between

electrons. Pauli principle does not allow two electrons to exist in one energy state

with the same spins. Thus electrons with the same spin direction should be separated
in space. However, because of Coulomb interaction, the energy of electrons with the

same spin directions is reduced. Thus the average potential energy of parallel spin

orientation in might be less than that in the antiparallel spin orientation.

For example, the Mn2+ ion may be considered. The 3d-shell of this ion has five

electrons; hence this shell is filled exactly half. Spins of electrons can be oriented

parallel, if electrons occupy different states; in the 3d-shell, exactly five different

states are allowed, which are characterized by the orbital quantum number m¼2,

1, 0, �1, and �2. Each of these states can be occupied by one electron. In this case,

it might be expected that the total spin will be equal to: S¼5/2, and because
P

m¼ 0,

the only possible value is L¼0, which is observed experimentally.

Orientation of spins in the first period of transition metal is shown schematically

in Fig. 6.8. The limiting number of 3d-electrons is 10; hence in the d-shell, up to five
electrons may have the same spin orientation (as it is seen in the case of manganese

and chromium) before filling these states by electrons with an opposite orientation.

Quantum mechanical calculations show that for transition metals, a convergent ori-

entation of electronic spins in the d-shell corresponds to the minimum energy (as the

more stable state). In case of chromium, for example, the configuration 3d54s1 exists,
but not 3d44s2. Similarly, copper atom has the electronic configuration 3d104s1 but
not 3d94s2 as one might expect.

As magnetic properties of atoms are due, primarily, to spins of electrons, the

uncompensated spin orientation, as shown in Fig. 6.8, enables to evaluate the mag-

netic moment of the atom. For example, single titanium atom has a magnetic moment

of two spins (two Bohr magnetons, 2 μB), whereas single cobalt atom has an own

moment of three spins (3 μB). Up to five 3d-electrons in atoms can be placed with
FIG. 6.8

Location spins of electrons in orbitals in transition metals: 3d-electrons in atoms can be

arranged with the parallel orientation of spins.



FIG. 6.9

Distribution of 3d spins of electrons in two-valence and three-valence iron ions.
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a parallel orientation with spin preservation. The second electron in each state should

be oriented antiparallel.

To date, mostly, magnetic moments of atoms are considered. The ions of

3d-metals, generally, have varying valence, and depending on this, they can have

different number of uncompensated spin moments. This fact is significant for mag-

netic material synthesis for various purposes. A very important example is shown in

Fig. 6.9: the distribution of spins in the 3d-shell for two different iron ions: Fe2+ and
Fe3+ compared with the atom of iron (Fe). It is seen that the two-valence iron ion has

a total magnetic moment of 4 μB, whereas the three-valence iron ion might be char-

acterized by 5 μB.
It should be noted that in Fig. 6.9 only simplified models are shown because it

does not consider the spin-orbital interaction. Considering this interaction (and

according to experiments), the magnetic moment of Fe2+ is dependent on a given

crystal; for the first case, it might have 4.4 μB, whereas for the second case, Fe3+

can have 6.9 μB.
Atoms and ions of the rare-earth elements with valence “+3” also might have

uncompensated spin moments, but in the 4f-orbital. Location of spins in the 4f-shells
for lanthanides was shown previously in Table 5.2. The maximum nonpaired elec-

trons (seven!) in the 4f-shell can be seen for gadolinium (Gd), where, instead of

14 possible electrons, only partial filling is observed: 4f7.
The ions of various rare-earth elements have quite similar chemical properties as

their outer electronic shells should be identical: they all have the configuration

5s25p6 (similar to that of the neutral xenon atom). The radius of trivalent ion, when
transition from one element of this group to the other, gradually reduces from 1.11Å

in cerium to 0.94Å in ytterbium. This phenomenon is the lanthanoid compression.
This fact enables tomanage properties of crystals that contain rare-earth elements by

selecting lanthanide ion with the required radius for a given crystal.

Experimentally found values of magnetic moments of rare-earth element ions are

shown in Table 6.2. Magnetic properties of rare-earth ions are very appreciable. In

lanthanum (La), which is the starting element of rare-earth metal group, the 4f-shell
is empty, but in cerium atom, the 4f-shell already has one electron. Further, the num-

ber of 4f-electrons consistently increased in each next element of up to ytterbium

(Yt), which has 13 electrons in its 4f-shell, and lutetium (Lu) in which 14 electrons

completely fill the 4f-shell. It is obvious that the ions La3+ and Lu3+ are diamagnetics,



Table 6.2 Experimental Data as to the Number of Bohr Magnetons in
Lanthanides

RE Ion La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ Lu3+

Moment, μB 0 2.4 3.5 3.5 – 1.5 3.4 8.0 9.5 10.6 10.4 9.5 7.4 4.5 0
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whereas all other ions of rare-earth elements (from Ce3+ to Yb3+) belong to

paramagnetic [8].

The difference between the magnetic properties of rare-earth (4f ) metals and

those of transition (3d) metals is that the radius of 4f-shell equals only �0.3 Å,

and this shell is hidden under the outward electronic shells. Therefore, the metals

widely used in engineering ferrimagnetic materials (ferrites) that are synthesized

with rare-earth elements have the highest electromagnetic quality factor Q (i.e.,

small loss of electromagnetic energy at microwaves). In rare-earth ferrites, there

is rather weak connection of deep-seated active magnetic 4f subsystem with lattice

thermal movement (phonons) that mainly touches external electronic shells. The

external electromagnetic field excites exactly the 4f magnetic subsystem, which

being partially screened from phonon losses less energy: under microwaves, rare-

earth ferrites have much higher quality factor than ferrites based on transition metals

in which the 3d-shell is not shielded from the thermal movement of ions.

Magnetic susceptibility of paramagnetics can be quite different. If paramagne-

tism of “electronic gas” in metals (Pauli mechanism) prevails over the diamagnetism

of electrons (Landau mechanism), the magnetic susceptibility of metals isæ�+10�5

(in sodium, æ¼+16�10�6; in barium, æ¼+20�10�6; and so on). But in metals with

unfilled 3d- or 4f-shells, paramagnetic susceptibility shows increased values: in the

range of æ�+(10�4–10�3). For example, in titanium, æ¼+160�10�6; in uranium,

æ¼+400�10�6; and so on, as shown in Fig. 6.10.
FIG. 6.10

Paramagnetic susceptibility in transition metals, z is the element number.
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Paramagnetism conditioned by d-electrons in transition metals and by f-electrons
in lanthanides agrees with the Langevin-Curie mechanism. It should be noted that

transition metals, such as those shown in Fig. 6.10, demonstrate a significant increase

in paramagnetic susceptibility, if their serial number approaches to the “iron triad”

(Fe-Co-Ni). In some chemical compounds, based on d- and f-metals, paramagnetic

susceptibility is comparatively high and reaches the value æ�10�1, for example,

the crystal MnCl2 has susceptibility æ¼14,350�10�6, whereas the crystal CoCl2
shows æ¼122,000�10�6.

Temperature dependence of magnetic susceptibility in paramagnetic (see

Fig. 6.5, curve P1) is well described by the classic Lanzheven theory: magnetic sus-

ceptibility is determined by the formula æ¼Nma
2/3kBT, where N is the concentration

of paramagnetic atoms in a substance; T is the temperature, kB is the Boltzmann con-

stant, and ma is the magnetic moment of an atom. This formula is obtained by

methods of statistical physics for a system of interacting dipoles that are placed in

a magnetic field at relatively high temperatures (when maH<kBT).
Thus in case of constant field and with temperature increase, the thermal motion

grows up and results in magnetic moment disorientation; hence the susceptibility of

paramagnetic reduces according to the Curie law: æ� K/T. It is interesting to

note that a similar temperature dependence is seen also for electrical susceptibility
(χ�K/T) in the system of noninteracting electrical dipoles. It should also be noted

that temperature dependence of conductivity in metals also follows the dependence

σ�K/T due to electron scattering by lattice thermal vibrations that, consequently,

reduces the mobility of electrons. Thus, the similar temperature dependence of elec-

trical and magnetic parameters (decrease in æ, χ, and σ by law K/T) is explained by a
growth in the intensity of lattice thermal vibrations (phonons) with increasing tem-

perature. Phonons disorder magnetic and dielectric dipoles and reduce the mobility

of electrons [9].

However, Curie law holds true only for relatively weak magnetic fields. In strong

magnetic fields, as well as at low temperatures (when maH>kBT), magnetization of

paramagnetic nonlinearly approaches maH (this is the “saturation,” when almost all

magnetic moments become oriented, as shown in Fig. 6.7). Possible deviations from

the Curie law, in particular, deviations from the Curie-Weiss law foræ (and χ), which
is also seen above phase transition in ferromagnetic (and in ferroelectric: it is caused

by the interaction between magnetic (or electrical) dipoles).

Paramagnetism may be observed in some chemical compounds whose ions have

no magnetic moment in the ground state. This kind of paramagnetism is associated

with quantum-mechanical characteristics due to the admixture of excited states with

magnetic moment (Van Vlack paramagnetism, as shown in Fig. 6.5). In this case,

magnetic susceptibility does not depend on temperature, as well as in the case of

paramagnetism in electronic gas.

Paramagnetism is widely used in experimental methods such as electronic para-
magnetic resonance (EPR). This method in solid-state physics enables to determine

magnetic moments of individual atoms, ions, and molecules, to promote investiga-

tion of complicated structures of molecules, and to perform fine structural analysis of

materials used in engineering. Paramagnetic substances are also applied in cryotech-
nology to achieve extremely low temperatures (paramagnetic cooling).
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The Pauli paramagnetism in metals. As an electron has its own magnetic

moment that is approximately equal to that of Bohr magneton, it would be expected

that conduction electrons in metals would make great contribution to the paramag-

netic properties of metals, described by the Curie law: æ¼NμB
2/3kBT, where N is the

concentration of electrons (in metals, it equalsN�1022cm�3). However, experimen-

tal studies show that magnetic susceptibility of normal (nonferromagnetic) metals

does not depend on temperature, and its value can be estimated as only around

10�2 compared to a value defined by the Lanzheven mechanism. As a result, the

paramagnetism of conduction electrons is quite small that in manymetals the Landau

diamagnetism present within them dominates.

As it was shown by Pauli using the quantum theory, the weakness of paramag-

netism of free electrons in metals can be explained by Fermi-Dirac statistics. Wave

functions of conduction electrons are quite different from electrons located in the

atomic shells (where any level of valence electrons has two spin states). For most

electrons in a metal, the probability of an event that under the influence of an external

field their spins can change their direction is zero because most energy states are
already occupied by the electrons with opposite spins. Indeed, in the valence band

of metal, all “deep” levels (which are located significantly below the Fermi level) are

completely filled with electrons with opposite spins; hence these electrons cannot

orient their spin moments according to the applied magnetic field. Only for a small
fraction of electrons, located near the Fermi level (whose energies are in the range of
kBT), their spins are able to follow the direction of the applied magnetic field. How-

ever, Fermi energy is much greater than the heat energy: EF≫kBT. Thus only a little
part of the total quantity of conduction electrons (in proportion to kBT) contributes to
paramagnetic susceptibility.

For this reason, it would be expected that paramagnetic susceptibility æP2

(Fig. 6.5) must increase along with temperature increase in proportion to T.
However, the opposite effect also works: owing to temperature fluctuations of

the crystal lattice (that intensity is also proportional to kBT), the contribution of

“free” electrons to paramagnetism æP2 should decrease with increasing temperature

as 1/T. As a result, Pauli paramagnetism shows temperature constancy of æP2, as

shown in Fig. 6.6. Free electrons in a metal usually behave as in diamagnetic, hence

it is possible a paramagnetic contributes to magnetic susceptibility; typically, the

paramagnetism of free electrons is larger than their diamagnetism; hence the total

contribution of free electrons to magnetic susceptibility usually has a paramagnetic

nature.

Thus paramagnetism of conduction electrons in most metals makes contribution

to paramagnetic susceptibility, which is not subjected, with the Curie law being prac-

tically independent of temperature.

The spin of electron. If a primary physical cause of diamagnetism is the orbital
motion of electrons in atoms and ions, the paramagnetism is conditioned by the spin
moments of particles. The value of spin is denoted by the letter s, particle with spin½,

and electrical charge e has a magnetic moment μB¼eℏ/2mc. This value (called as

Bohr magneton) equals �10�20erg/Gs. It should be noted that electronic magnetic

moment is an unusual vector because it can be oriented in space only by two ways:

either on the field or against it.
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The ratio of magnetic moment of particle to its mechanical moment is the con-

stant “γ” that is magnetomechanical ratio (or gyromagnetic ratio). Its unit in SI is

“radian per second per tesla”: [rad/(s�T)]. However, very often, another term gyro-
magnetic ratio is used for different but closely related quantity, namely, the g-factor,
which unlike γ is dimensionless [9].

Magnetic moment of an atom is expressed by the formula μat¼ γћJ¼gμBJ, where
ћJ is the total angular momentum, which is the sum of the orbital moment ћL and spin
moment ћS. Bohr magneton is determined as μB¼eћ/2m, which is very close to the

spin of free electron. The value of g-factor for an electron is defined as g¼�γћ/μB,
and it is also called the spectroscopic splitting factor. For electrons, g¼2.0023, but

usually the value g¼2 is used.

The nuclear magnetism. For better understanding, the nature of particle interac-
tions, which examines not only electrical but also magnetic properties of materials, is

necessary. According to experiments, the “classic” size of nucleus is around

10�13cm, which is negligibly small compared with the size of an atom (10�8cm).

As the mass of cores in four orders of magnitude is greater than the mass of electron,

it might be considered (while electronic processes are studied) that atomic core is

“infinitely heavy.” This approach is so-called adiabatic hypothesis, when the con-

densed matter theory is applied to justify electronic spectrum. Electrical fields in

atomic nuclei are very large, and it is determined by the number of protons in the

nucleus. However, nuclear magnetism is 1000 times weaker than electronic magne-

tism; hence in technical applications, as a rule, magnetism of cores can be ignored.

It is necessary to mention that, in general, magnetic interactions are much weaker

than electrical interactions.Actually, the energy of magnetic interaction in an atom is

appreciated as Umag � μB
2/a3, where μB is the Bohr magneton and a is the average

distance between electrons. Energy of electrostatic interaction between two electrons

under the same conditions equals Uelec¼e2/a. The ratio of these two energies is

Umag=Uelec � αZ
2

where αZ¼e2/ℏc � 1/137 is the Sommerfeld constant (fine structure constant), char-
acterizing the strength of electromagnetic interaction between charged elementary

particles. Thus the magnetic interaction of electrons is much weaker than their elec-
trostatic interaction. In physics of magnetism, it is important because small “fine

structure constant” results in a small value of diamagnetic susceptibility. It can be

shown that this susceptibility is estimated as ædia � αZ
2 � (1/137)2 � 5�10�5, which

is well consistent with experimental data [8].
6.3 FERROMAGNETISM
Magnetic crystals and polycrystals with high ordering of spin and orbital magnetic

moments demonstrate the so-called strong magnetism. In this case, permeability is

large and corresponding materials can be the sources of strong magnetic fields that

are widely used in engineering.
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When considering paramagnetics, it was shown that some atoms, whose elec-

tronic shells are not completely filled, have their own magnetic moments and behave

as small permanent magnets. The degree of magnetization of such crystal is deter-

mined by the total magnetic moment, which is the vector sum of the magnetic

moments of atoms.

Natural magnetic moment involves atoms and ions of transient groups of Men-

deleev’s periodic table because they are characterized by unfilled inner electronic

shells that are available to hold the spin of unpaired electrons. An example

(Table 6.1) is the iron atom, in which 26 electrons move around the nucleus;

18 of them fill the inner orbitals (as well as in the argon atom). However, in the

3d-shell of the iron atom, only 6 of the possible 10 electronic states are occupied;

hence the 3d-shell in iron is not filled completely, as there are four empty states

(see Fig. 6.9). Moreover, four magnetic moments of electrons in the 3d-shell of
Fe atom are self-ordered, thus making a system with uncompensated magnetic spins.

Such feature of the 3d-shell, which determines big intrinsic magnetic moment of an
atom, is peculiar to several elements of the iron group.

If a crystal is formed from atoms that have natural magnetic moments (such as

iron), different ways of magnetic moment orientation may be realized. The simplest

types of regulation in two-dimensional case are shown in Fig. 6.4. The tip of the

arrow shows the north pole of a magnet linked to an atom. If magnetic moments

are oriented randomly, as shown in Fig. 6.4A, then the total magnetic moment of

the crystal is zero (this corresponds to paramagnetic). When one applies a magnetic

field to such a crystal, the forced ordering of magnetic moments occurs with their

overwhelming focusing according to a field that creates deposit in total magnetic

moment (paramagnetism). In Fig. 6.4B, the ordered structures are shown very

simplistic—only as a comparison with disordered structures.

Different ordered structures are shown in a more detailed way in Fig. 6.11. In the

simplest ferromagnetic structure (Fig. 6.11A), all magnetic moments of atoms are

directed equally. Examples of such ferromagnetics are metals: Fe, Ni, Co, Gd,

and Dy. These strictly magnetically ordered metal crystals can behave like perma-

nent magnets (if they have a single-domain structure).

Simplest-ordered antiferromagnetic structures might also be collinear, but mag-

netic moments in them are directed oppositely; hence they are totally self-

compensated, as shown in Fig. 6.11B. Axis, at which all these moments are directed,

is the antiferromagnetic axis. Typical representatives of crystals with antiferromag-

netic structure are some oxides of transition metals (Mn, Ni, Co, and Fe) and many of

their fluorides, chlorides, sulfides, selenides, and others [8].

Crystallographically, all magnets that have a structure with a similar direction

of their magnetic moments might be presented as magnetic sublattices. In an illus-

trated case, shown in Fig. 6.11B, some of the magnetic moments of atoms are

directed “up,” thus forming one sublattice, whereas atoms with a direction opposite

of their magnetic moments form another sublattice. These two sublattices consist

of atoms that are located in the equivalent positions (two equivalent magnetic

sublattices).



FIG. 6.11

Different types of ordered magnetic structures: (A) ferromagnetics structure,

(B) antiferromagnetics structure; (C) ferrimagnetics structure; (D) weak ferromagnetics

structure; (E) weak antiferromagnetics structure; (F) strongly noncollinear ferrimagnetics

structure.
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In general, a magnetic structure may contain several sublattices, formed by atoms

that are crystallographically located in nonequivalent positions. Magnetic sublattice

is a set of all atomic magnetic moments that can be obtained using parallel transla-

tions at distances that are divisible to the period of unit cell. In the collinear ferri-
magnetic structure (Fig. 6.11C) the neighboring atoms also show antiparallel

orientation, but the totalmagnetic moment of elementary cell of a crystal is different
from zero. Therefore this structure has spontaneous magnetization, as magnetic

moments of ions that belong to different sublattices are noncompensated.

Partial compensation of magnetic energy may be conditioned by several ways.

First, elementary magnetic cell may account different numbers of ions belonging

to two sublattices (magnetic moments of ions in this case might be the same). Sec-

ond, magnetic moments of ions of two different sublattices may have different size.

Most often, both causes are observed, as shown in Fig. 6.11C. Ferrimagnetism usu-

ally is called as noncompensated antiferromagnetism, which better reflects the nature
of this phenomenon.

The types of magnetic structures that belong to collinear magnetic structures are

shown in Fig. 6.11A–C. There are also different types of noncollinear magnetic
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structures, and some of them are shown in Fig. 6.11D–F.Weakly noncollinear mag-

netic structure (Fig. 6.11D) is inherent to the weak ferrimagnetics, and they are char-

acterized by small resultant magnetic moment (in Fig. 6.11D it is directed upward).

This causes a slight slanting of antiferromagnetic ordering of magnetic moment sub-

lattices. Weakly noncollinear magnetic structure is seen in Fe2O3 (hematite); in the

crystals FeBО3 and FeF3; in the carbonates MnCО3, CоCО3, and NiCO3; in the

orthoferrites RFeОз, as well as in the orthochromites RCгОз (R is a rare-earth

element).

There are also such weakly noncollinear antiferromagnetic structures

(Fig. 6.11E) that have no resultant moment. Triangular (corner) structures shown

in Fig. 6.11F belong to strongly noncollinear magnetic structures. In this case, mag-

netic lattice is formed by blackened atoms, divided into two sublattices, whose mag-

netic moments are directed at an angle to each other; as a result, magnetic moment

can be created, and it is antiparallel to the moment of the third sublattice. All these are

very special cases of ferromagnetic structures. There are also more complicated

cases of “screw” and “helical” magnetic ordering, which is not considered here.

The physical nature of ferromagnetism. It is necessary to consider why in some

materials (ferromagnetics) natural magnetic moments of individual atoms become

spontaneously ordered, whereas in other materials (paramagnetics) no ordering is

observed.

When a permanent magnet is placed in a constant magnetic field, then its mag-

netic moment tends to take a position, coincident with the direction of the applied

field. In the majority of crystals, which contain d- and f-atoms, each structural unit

has its own magnetic moment that creates around itself a magnetic field. If this field

would be large enough, it can force magnetic moments of the nearest neighboring

ions to be oriented in parallel. This happens in case when the energy of interaction

of magnetic moments of neighboring ions is larger than the energy of thermal fluc-

tuations (kBT) in crystal lattice. It is determined that two types of interaction between

magnetic moments of neighboring ions might exist: dipole interaction and exchange
interaction. Exchange interaction is a purely quantum effect, and usually, it is stron-

ger than dipole type of interaction.

The main ferromagnetics are listed in Table 6.3. In most of them, carriers of fer-

romagnetism are uncompensated ion spins associated with orbital moments of elec-
trons belonging to crystal lattice. As known, electronic magnetism is manifested as

spin with orbital moments. Magnetization of a ferromagnetic summarizes magnetic

moment M consisting of ordered magnetic moments of electrons and appropriate

mechanical moment P. Ratio M/P equals �qμ/2m, if magnetization is caused by

the orbital magnetic moments of atoms, but equals �qμ/m, if magnetization is

caused only by spin magnetic moments [4].

There are some important experiments related to these assumptions:

1. Magnetomechanical effect (mechanical moment arising at magnetization) was

studied by Einstein and de Haas. The iron rod was hung on elastic string inside a

solenoid; when magnetized, the rod turns and twists the string. If the direction of



Table 6.3 Curie Temperature and Magnetic Saturation Induction
of Ferromagnetics

Matter TC (K) 4πBS (Gs)

Fe 1043 21,580

Cо 1604 17,900

Ni 631 6084

Gd 293 –

Dy 87 –

CrTe 339 3100

FeCo 1243 24,000

MnBi 633 7800

NiMn 733 9000

EuO 97 –

EuH1,86 24 –

MnAs 318 8400

MnB 533 1850

GdFe2 803 5000
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the magnetic field changes, the direction of rod rotation also changes. From this

experiment, the value of gyromagnetic ratio is determined as M/P¼�qμ/m,
which implies that this effect is caused by the spins of electrons.

2. In the reciprocal experiment, the magnetization of iron rod occurs in case of its

rapid rotation. This means electron aspiration (representing the so-called

whipping tops with angular momentum) to be oriented in the direction of the axis

of rod rotation. Along this experiment, mechanical and magnetic moments of

electrons were oriented. This also confirms the spin model of magnetization.

3. In another experiment, a previously magnetized rod was subjected to rapid

heating above the Curie point. As a result, previously oriented “whipping tops”

acquire a random direction; hence the demagnetization stimulated rotational

momentum of the rod that can be directly measured in the experiment. In this

case, also the gyromagnetic ratio indicates that ferromagnetism is due to the spin

momentum of electrons.

However, convincing calculations show that only spin interaction cannot provide
their parallel orientation, which is the main characteristic of ferromagnetic at tem-

peratures below the Curie point. Theory is obliged to assume (F.R. Weiss) that stable

orientation of spins can be caused by themolecular field, which is nonmagnetic by its

nature. It was first shown by Y. Frenkel that the forces that compel orientation of

magnetic moments have an electrostatic nature. The spontaneous orientation arises

as a result of the exchange interaction of spins and orbital moments of electrons in a

crystal lattice.
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Exchange interaction is repeatedly considered in quantum mechanics, for exam-

ple, to describe constitution of a hydrogen molecule. In case of small particles that

have magnetic moment (such as electrons), their arrangement in the magnetic field is

determined by a fact that projection of spin vector on the magnetic field direction can

take only two values: �(1/2)μB. For two-electron system in the H2 (as example), it

cannot be specified which of the two electrons has a definite state. However, follow-

ing Pauli principle, two electrons cannot be located on a single energy level with the

same spin quantum number. In quantummechanics, this is considered by introducing

the antisymmetric wave function, that is, two electrons that interchange their wave

function must change their sign.

Exchange interaction has an electrostatic nature; however, it is not a simple

Coulomb-type, but a quantum interaction. During mechanism of exchange interac-

tion, the direction of electronic spins of neighboring atoms is coordinated. Such inter-

action is titled as “exchange” because in the process of interaction between

neighboring electrons, magnetic atoms appear as if their places are changing. The
result of exchange interaction is the establishment of electronic spin moment orien-

tation in parallel to each other; hence spontaneous magnetization arises without any
external field.

As both spin and orbital moments of electrons are interrelated, it can be argued

that spontaneous magnetization is created by the ordering of magnetic moments of

atoms. While heating to the Curie temperature lattice, thermal motion destroys

orderly setting of atoms, established by exchange interaction. It follows that the

greater the exchange interaction in ferromagnetic, the higher should be its Curie tem-

perature at which magnetic ordering becomes destroyed.

In the exchange integral, both positive and negative members are included; hence

it might have both positive and negative signs. This sign identifies what kind of spin

orientation of electrons is involved in the bonding exchange and is energetically

more favorable: parallel (corresponding to ferromagnetism) or antiparallel (corre-

sponding to antiferromagnetism). Thus, exchange interaction characterizes the dif-

ference in Coulomb energy between parallel and antiparallel orientation of spins. For

ferromagnetics and antiferromagnetics, exchange integral has an opposite sign.

As exchange interaction occurs only in case of overlapping orbitals, it follows that
this interaction has a short-range nature: between adjacent orbitals. Conversely, spin-
type interaction (between own magnetic dipoles in the lattice of magnetic ions) is

called as long-range dipole-dipole interaction. Thus the main magnetic interactions

are exchange interactions (short range) and dipole-dipole interactions (long range).

Results of exchange integral calculation in dependence on the ratio of lattice con-

stant a and radius r of the 3d-shell for different metals of the iron group are shown in

Fig. 6.12. It can be seen that only for ferromagnetic metals—iron, cobalt, and

nickel—exchange integral is positive, that is, parallel location of spins for neighbor-

ing atoms appears energetically favorable [9].

The value of exchange integral correlates with the Curie temperature: that is, the

greater the exchange energy, the higher the ordered structure of spins can resist to

action of thermal phonons. Indeed, the greatest value of exchange integral is



FIG. 6.12

Calculated data for exchange integral for different metals of the iron group in ferromagnetics.
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observed in the cobalt with a Curie point of around 1400K. Exchange integral is

smaller in iron (TC¼1040K), whereas the lowest in nickel (TC¼509K). The density

of electronic states (partially filled orbitals) in the ferromagnetic must be big enough

so that kinetic energy cannot exceed exchange energy.

Interestingly, manganese (and other representatives of 3d-metals, in which the

ratio of a/r<1.5) is not ferromagnetic, but the value of exchange integral in Mn

is very close to Fe, as shown in Fig. 6.12. Therefore, if lattice constant of manganese

would be slightly increased so that the ratio of a/dwill be>1.5, it would be expected

that manganese will become ferromagnetic. Experiment confirms this expectation:

ferromagnetism in Mn occurs after its doping by a small amount of nitrogen, which

causes the increase in manganese lattice parameter. Similarly, many manganese-

based alloys are also ferromagnetics despite not having components that are ferro-

magnetics in pure crystal. For example, the alloy Mn-Si-A1 is very important for

application, as well as the compounds MnSb, MnBi, and some others that contain

manganese atoms at distances larger than those of pure manganese atoms.

Apparently, for ferromagnetism emergence, it is important to have certain

“optimum” in the atomic distance in the crystal lattice. When atoms approach very

close to each other (Ti and Cr), then significant dispersal appears in electronic energy

band with a rapid increase in kinetic energy, and ferromagnetism is absent. The point

is that atoms are located very far from each other, and exchange interaction becomes

insufficient for ferromagnetism. In the iron group of metals, only spin interaction

(i.e., dipole-dipole attraction) is not large enough for ferromagnetism formation.

Thus the presence of unfinished internal electronic shells in some atoms, as well

as the positive sign of exchange integral (which results in parallel orientation of

spins), is the necessary and the sufficient conditions when ferromagnetism exists.

Temperature characteristics of ferromagnetics. It needs to be recalled that mag-

netization J (density of magnetic moment M in a sample) is defined as the total
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magnetic moment per unit volume, induced by an external field H (in which mea-

surement is performed). Magnetic “response” of crystal to an applied field H is char-

acterized by magnetic susceptibility æ because J¼μ0æH. However, in the

ferromagnetic materials, æ≫1, and therefore magnetic susceptibility practically

equals to permeability that follows from ratio B¼μ0μH, so that in ferromagnetics,

æ � μ and B � J.
Permeability temperature dependence. While cooling from high temperatures

(i.e., cooling from the disordered paramagnetic phase), permeability (and magnetic

susceptibility) of ferromagnetic increases and reaches the maximum at the Curie

temperature TC, as shown in Fig. 6.13. In the paramagnetic phase, above phase tran-

sition point, the Curie–Weiss law is fair: æ � μ¼C/(T�θ), where C is the Curie–
Weiss constant and θ is the Curie-Weiss temperature [3].

Once a crystal is ferromagnetic, then spontaneous internal magnetic field Hsp

appears; hence it is measured in a small external magnetic fieldæ � μ below its sharp

maximum and rapidly decreases with temperature lowering due to saturation process
occurring in Hsp. (However, in strong measuring magnetic field μ � æ continues its

smooth increase, hence the sharp maximum μ(TC) is seen only in a small magnetic

field.) As it follows from temperature dependence of the inverse magnetic suscep-

tibility, near phase transition, the increase in æ(T) becomes a little slower, and there-

fore θ 6¼ TC.
Temperature dependence of spontaneous magnetization. Magnetization that

arises below the Curie point is spontaneous: Jsp � Bsp. Temperature dependence

of spontaneous magnetization in iron, nickel, and cobalt is shown in Fig. 6.14. On
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Temperature dependence of magnetic susceptibility and inverse susceptibility for various

magnetic materials (θ is the Curie-Weiss temperature, TC is the Curie temperature, TN is the

Neel temperature): 1—ferromagnetic, 2—antiferromagnetic; 3—paramagnetic.



FIG. 6.14

Temperature dependence of spontaneous magnetization for different magnetic materials:

●—iron, �—nickel, and +—cobalt.
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the vertical axis, the relative value of magnetization is designated. Dependence of Jsp
on T/θ is depicted by the same curve for these three ferromagnetics. As temperature

increases, magnetization decreases, and the Curie point (as well as above it) becomes

zero [1].

The temperature at which phase transition occurs from ferromagnetic ordered

state into paramagnetic disordered state is ferromagnetic Curie point, TC. Above this
temperature, a substance ceases to be ferromagnetic and behaves similar to many

other paramagnetic solids. Afterwards, when cooling to temperature below critical,

spontaneous magnetization occurs again, and dependence Jsp(T) is restored. In other
words, spontaneous magnetization of the material decreases with increasing temper-

ature and vanishes at the critical point.

The value of saturation in Jsp(T) curve depends on the fundamental properties of

ferromagnetic. As this value corresponds to magnetization inside domain, it does not

depend on the method of preparation of the ferromagnetic sample. This feature of

spontaneous magnetization temperature dependence is explained by F.R. Weiss:

in ferromagnetic, an internal (molecular) field exists, which orients all elementary

magnets along one direction.

This field is directly proportional to existing magnetization. Thermal fluctuations

seek to destroy orientation of elementary magnets, and the more intense, the higher is

the temperature. The violation in ordering means less spontaneous magnetization,

but, for its turn, it decreases the field that organizes magnetic dipoles. Thus there

is a kind of “positive feedback”: the aspiration for magnetization to zero as temper-

ature increases is progressively increasing with decreasing magnetization. On the

contrary, when temperature decreases, magnetization gradually increases.

To explain internal (or molecular) Weiss’s field existence, it is insufficient to

consider only magnetic forces, acting between elementary dipoles. Calculations

show that magnetic forces between the spins cannot play a vital role for internal

forces; according to Weiss’s theory, these forces have around three orders of
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magnitude smaller than it is necessary to overcome the action of heat disordering.

That is why as it is considered before, the electrical forces also act between electrons

that stipulate for their exchange interaction.

Heat capacity of ferromagnetic. Temperature behavior of spontaneous magne-

tization resembles a melting process. When solid melts, the crystalline ordering of

atoms suddenly disappears, and the solid turns into a liquid (disordered) state.

The intensity of thermal vibrations of atoms becomes large enough to overcome

the forces that seek to maintain atoms in the ordered state. The process of overcom-

ing the strength of bonds between atoms at melting temperature results in the large
heat capacity anomalies in melting point [5].

The analogy between heat capacity temperature dependence in the point of spon-

taneous magnetization disappearance and critical temperature of crystal melting is

confirmed in ferromagnetic. Heat capacity of ferromagnetic shows a similar behav-

ior, namely, the sharp maximum at critical temperature. Still heat capacity maximum

in TC is not “infinite” because temperature does not remain constant when heat is

admitted.

Dependence of specific heat on temperature in a typical ferromagnetic is shown

in Fig. 6.15 in comparison with the heat capacity of a nonferromagnetic metal. In a

nonmagnetic metal, as shown in Fig. 6.15A, lattice heat capacity (curve 1) domi-

nates, whereas electronic contribution to heat capacity is small and increases linearly

with temperature (curve 2). In the ferromagnetic, a sharp maximum of heat capacity

is observed at the Curie temperature caused by excess energy, necessary for disor-

dering magnetic moments, as shown in Fig. 6.15B.

Moreover, in heat capacity behavior of ferromagnetic, another significant prop-

erty is seen—pronounced deviation of C(T) dependence, which is quite different

from the smooth curve with saturation at high temperatures, observed in nonmag-

netic metals. It means that inherent to ferromagnetic destruction of spin, ordering
FIG. 6.15

Temperature dependence of heat capacity for lattice (1) and electronic (2) contributions in

metal: (A) nonmagnetic metal; (B) ferromagnetic metal (iron).
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adds some energy throughout the temperature range. Therefore heat capacity of fer-

romagnetic, as shown in Fig. 6.15B, is significantly increased in comparison with

usual metals. A particular noticeable effect of increased heat capacity is seen in

the range of fast decrease of spontaneous magnetization with temperature.

Thus peak-type anomaly of specific heat in the critical point is caused by disor-

dering of elementary magnet orientation, which occurs at a narrow temperature inter-

val. The energy of magnetization approximately equals thermal energy required to

destroy spontaneous magnetization. That is why in the case of Fe, Co, and Ni, in

which Curie temperature equals �1000K, magnetization energy is of around

0.1eV per atom, or 2000kcal/mol. When energy is applied to the lattice of ferromag-

netic while temperature increases from absolute zero, the heat capacity of a ferro-

magnetic crystal looks bigger than the heat capacity of a nonferromagnetic

crystal. The point is that contribution to specific heat of magnetic materials is made

not only by phonons but also by magnons (see Section 4.3). Therefore heat capacity

of ferromagnetic metals in a wide temperature range substantially surpasses the heat

capacity of conventional metals. Effect of increased heat capacity is especially

noticeable at temperatures just below the Curie point because at this temperature

the magnetization decreases faster.

Domain structure of ferromagnetic. Experiments show that magnetic moment of

bulk ferromagneticmaterials at temperatures below theCurie point ismuch lower than

its theoretical prediction for a case, when all magnetic moments would be directed

equally. This is due to the formation of domains in the structure of a ferromagnetic.

Domain is a region in a magnet, in which all magnetic moments of atoms are

directed equally; hence in each domain, its magnetization reaches saturation, that

is, takes a maximal possible value at given temperature. However, in different

domains of crystal (or polycrystal), vectors of magnetization are not parallel to each

other. Thus total magnetization of a ferromagnetic sample appears much lower than

in the case of complete ordering of atomic magnetic moment orientation [4].

Simplified examples of domain structure are shown in Fig. 6.16. These structures

are formed because they reduce external magnetic energy of a pattern in the process
of domain formation. Suppose that ferromagnetic crystal totally consists of one

domain, then, under the influence of exchange forces, electronic spins of all atoms

are lined up, parallel to each other. Consequently, the crystal creates a magnetic field
in the surrounding. However, this situation is not sustainable because it corresponds
to the maximum energy of magnetic interaction.

More stable is such configuration of domains, at which the magnetic field of

neighboring areas is partially compensated, that is, their magnetization is directed

opposite to each other (Fig. 6.16A in the top shows two neighboring domains). Dur-

ing further crystal division on domains, the energy of the magnetized crystal

becomes more reduced, but to a certain limit. The fact is that there are walls between

domains, which lead to some stresses in a crystal. Such transitional layer between

domains is the “Bloch wall,” as shown in Fig. 6.17. This transitional layer wall sep-

arates two domains that are magnetized in different directions.

The conception of Bloch walls is due to the fact that change in spin direction

when transition from one domain to another (having different directions of



FIG. 6.16

Examples of ferromagnetic domain structure (A) and domain structure change; (B) domain

walls shift and domain growth under magnetic field influence.

FIG. 6.17

Structure of transition layer between domains (Bloch wall).
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magnetization) cannot occur abruptly at one atomic plane. This changing takes place

only gradually and captures many atomic planes. The exchange energy would be

lower if these directions will be distributed between many spins than the change that

occurs abruptly. In ron, thickness of the transition layer—domain wall—is around

300 lattice constant (�1000Å).
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Thus without an external magnetic field, a ferromagnetic crystal usually is com-

posed of many small individual plots, magnetized to saturation—domains. Domains

are separated by the layers—domain walls—in which spins change their orientation

inherent in one domain to orientation inherent in the neighboring domain.

The resulting size of domains depends on many factors, but usually their size is

no more than several micrometers.

Magnetization curve of ferromagnetic. Spontaneous magnetization is an aniso-

tropic property, and therefore it is turned, first, to the direction of “easy

magnetization.” Without external field action, all domains are oriented relatively

to each other by such a way, at which the total magnetic moment of the ferromagnetic

would be zero, as it meets the minimum free energy of the system. When external

field H increases, ferromagnetic becomes magnetized, gaining nonzero magnetic

moment. The following physical phenomena are observed in a ferromagnetic when

magnetization can be divided into three stages.

1. Process of domain boundaries displacement. Let us put the crystal, as shown in

Fig. 6.16B, into an external magnetic field H. Magnetic vector orientation in

different domains relative to H initially is not similar. If the field H increases, the

growth of the most favorably oriented domain is energetically more

advantageous as compared with other domains. This increase is due to a shift in

domain walls. Hence the first step in the magnetization process is the

displacement process. The shift in domain walls takes place until all favorably

oriented domains would extend to the entire crystal

Magnetization curve B of a ferromagnetic crystal is shown in Fig. 6.18. The process

of domain wall displacement corresponds to section a on this curve. At small values

of H, magnetization B increases slowly, but in case of a stronger magnetic field, this

process occurs abruptly, thus causing the Barkhausen effect—fast jumping domain

walls that are accompanied by a noise.
FIG. 6.18

Magnetic induction B and magnetic permeability μ dependence on the magnetic field.
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2. Next is the process of domain rotation. With further increase in field H,
spontaneous magnetization changes its direction toward the field. Here, the

magnetization process runs much slower than that in the first stage, and it ends

when vector Bsp acquires its location along the vector H; hence magnetization

reaches technological saturation, as shown in Fig. 6.18, section b.

3. The paraprocess. After reaching technological saturation, the increase in

magnetization with field H slows down, but not terminated. The reason is that at

given temperature (over absolute zero), the spins of not all electrons are

spontaneously magnetized and oriented in parallel to each other: thermal motion

of atoms partially disorients spontaneous orientation of spins. However, creating
a strong magnetic field can cause more complete orientation of all spins.

Magnetization, corresponding to the paraprocess, is shown in Fig. 6.18 in

section c.

As it follows from the ratio B¼μ0μH, magnetic permeability depends on the rate of
magnetization change in magnetic field: μ�dB/dH. In the region of sharp increase in
magnetic induction, permeability reaches its maximal value, as shown in Fig. 6.18.

Next, when the rate of B(H) dependence slows down, permeability μ(H) decreases.

In different ferromagnetic materials, the initial value of permeability is μ¼102–103,
but in its maximum permeability, it reaches up to values of μ¼104–106.

Magnetic hysteresis. A complete cycle of magnetization is shown in Fig. 6.19.

During magnetic field increase, magnetic moment M first increases to its maximum

(i.e., to the spontaneous magnetization Ms), but when magnetic field decreases, mag-

netization remains behind; hence when magnetic field becomes H¼0, magnetic

moment does not disappear, but its value gains to the residual value Mr.

The phenomenon of magnetization backlog when magnetic field is changing is

the magnetic hysteresis. To destroy residual magnetism, it is necessary to apply the

counter field Hc that can reverse magnetization in ferromagnetic. This field is the
HHc

Mr

Ms

M

FIG. 6.19

Magnetic hysteresis.
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coercive field (retentive force) [9]. As shown in Fig. 6.19, the closed curve, describ-

ing the reversal cycle, is the hysteresis loop. The area of this loop is proportional to

the energy that an external field spends to reverse polarization in the unit volume of

ferromagnetic. During the reversal process, this work turns into heat and character-

izes the hysteresis losses. Therefore, in case of repeated reversal magnetization, fer-

romagnetic becomes heated, and the more intense, the bigger is the area of hysteresis

loop. Heating is a result of the internal friction that occurs at continuous reorienta-

tions of magnetic domains. At higher frequencies, ferromagnetic is heated addition-

ally: due to Foucault currents arising in a ferromagnetic that usually is a good

conductor.

Depending on the shape and area of hysteresis loop, ferromagnetic materials are

divided into “soft” materials (small coercivity) and the “hard” (high coercivity)

materials. Different application of magnetic materials requires different types of

magnetization curve. Materials used in the electrical transformers and electrical

machines should show a quick response to magnetic field because they have to

change their magnetization many times per second. This might result in a partial loss

of efficiency and material heating, especially, if the ferromagnetic is rather “hard”

(with increased coercive field).

That is why many applications require ferromagnetics with a very low coercive

force that reduces the area of hysteresis loop—magnetically soft materials (with

small coercive field and large permeability). The value of magnetic permeability

of the best iron-nickel alloys (permalloys) reaches 105 with high induction of satu-

ration: Bs �1T (tesla) while their coercive force is only 0.3A/m. Hysteresis loop in

the permalloy is quite narrow that its reversal losses are around 500 times smaller

than those in iron.

Permanent magnets are used to create large permanent magnetic fields; they

must have increased coercive force that corresponds to a very wide hysteresis loop.

They do not need any reverse magnetization—on the contrary, they must consis-

tently hold the maximally magnetized state: these are the magnetically hard mate-
rials. They also need high values of saturation in magnetization. The example is

the alloys of Al-Ni-Fe type, whose coercive force reaches to around 105A/m,

whereas saturation of induction is near 1.5T. In alloys with cerium, samarium,

and yttrium, the coercive field of permanent magnets can reach a value

�106A/m. In alloys with rare-earth metals, a very large coercive fields is achieved,

for example, Hc¼2�106 A/m in the SmCo alloy [2].

Anisotropy of magnetic properties. Magnetic and, in particular, ferromagnetic

phenomena in a single crystal are anisotropic, although in conventional polycrystal-
line materials, this phenomenon is imperceptible. The anisotropy of magnetization is

caused by different forces of spin-orbital interaction in a structure, which are found in

a ferromagnetic single crystal.

Owing to the features of spin-orbital interaction in electrons, along a peculiar
axis, magnetization occurs most easily and magnetic saturation can be achieved at

much lower values of an external magnetic field. These axes are the easy-
magnetization directions. In iron crystal, for example, this direction is [100] type,



FIG. 6.20

Anisotropy of magnetization in crystals of iron (A) and nickel (B).
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as shown in Fig. 6.20A, whereas in directions [110] and [111], magnetization of iron

is more difficult, and magnetic saturation is achieved at much higher fields.

In the nickel crystal, by contrast, the direction of easy magnetization is axis of

[111] type, whereas the hardest directions of magnetization are [100] type, as shown

in Fig. 6.20B. Essential differences in magnetic anisotropy in Fe and Ni crystals

result in the frustration (uncertainty) of easy magnetization selection in the Fe-Ni

alloy (permalloy) that leads to magnetically soft properties.

Magnetostriction. The magnetization of a ferromagnetic sample by all means is

accompanied by the change in size and shape. This phenomenon is called the mag-
netostriction. The cause for this effect (which is now widely used in engineering) is

large spin-orbital coupling in ferromagnetic materials. Fig. 6.21 schematically

shows longitudinal deformation (expansion) of ferromagnetic in the magnetic field,

accompanied by its transverse deformation (compression). The sample of polycrys-

talline ferromagnetic with length l, placed in the magnetic field, can either lengthen

or shorten on a value Δl induced by magnetic field relative deformation x¼Δl/l is
proportional usually to the square of an applied magnetic field: x�H2. Nickel
FIG. 6.21

Mechanical and thermal effects in ferromagnetics: (A) magnetostriction; (B) invar effect

(coefficient of thermal expansion of nickel/iron alloys).
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sample is characterized by shortening in the direction of the applied field

(x��4�10�4); conversely, iron and steel samples in a weak magnetic field become

slightly elongated, but in a strong field, they shorten; cobalt sample in a weak field

shortens, but in a strong field, it elongates [3].

There are some special ferromagnetic alloys, in which magnetostriction is very

large. This effect is used in the magnetostrictive vibrators and produces ultrasonic

oscillations with high frequency (up to several megahertz). These vibrators are used,

for example, in ultrasonic processing of solids and cleaning them from dirt, in the

sonars that are designed to measure the depth of water, and many other facilities

and appliances including household.

Thus any process of ferromagnetic magnetization is accompanied by the magne-

tostriction; it becomes apparent in the orientation of magnetic moments of atoms

under magnetic field influence. This process resembles the magnetization of a para-

magnetic, hence it is the paraprocess. Magnetostriction is particularly strong near the

Curie point where it reaches the maximum value. In the ferromagnetics of hexagonal

structure, for example, in the rare-earth metal gadolinium (Gd), the paraprocess

occurs; hence the magnetostriction is anisotropic.

The anisotropic magnetostriction accompanies the magnetization processes in

the weak magnetic fields (whereas paraprocess is seen in strong fields only).

The components xij of strain tensor are different in their size and sign. The charac-

teristic feature of anisotropic magnetostriction gives rise to the change in shape of
the studied sample with a very small change in its volume. In recent theories,

two mechanisms of anisotropic magnetostriction are considered: magneto-dipole

and one-ion.

The magneto-dipole mechanism supposes the interaction of atomic magnetic

moments; these moments resemble magnetic dipoles (elementary magnets). Aniso-

tropic magnetostriction in the 3d-metals (Fe, Ni, and their alloys) and in some ferrites

can be described only by the magneto-dipole mechanism. However, this mechanism

makes small contribution to the anisotropy of magnetostriction.

The one-ion mechanism is more suitable to describe the phenomenon of aniso-

tropic magnetostriction. According to the quantum theory, in this case, orbital elec-

tronic cloud of ions acquires nonspherical (anisotropic) configuration. When such

ellipsoid-like atoms rotates in the magnetic field, magnetostriction might be very

large and anisotropic; this is peculiar in some rare-earth metals.

Giant magnetostriction. If the magnet has large magnetostriction, it can be used

in various sensors and actuators. However, almost all ferromagnetic materials have

only small magnetostriction with deformation of around 0.001%; hence their prac-

tical application is difficult. By contrast, the giant magnetostriction is 100-fold

greater than the usual magnetostriction; it is first found in Terfenol-D (Tb-Dy-Fe

alloy) and later in the rare earth ferromagnetic alloy TbCo2-DyCo2.

Magnetoelastic effect. According to the Le Chatelier principle (when a system is

disturbed in its equilibrium, this system will adjust itself in such a way that any

change should be minimal) such mechanical deformation of ferromagnetic, which
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causes the change in shape or size, obviously leads to magnetization. This change in

magnetic properties of the ferromagnetic in case of its deformation is observed

experimentally: this is the magnetoelastic effect. Some ferromagnetic materials

are quite sensitive to external influences that this property is used for strain and ten-

sion measurements.

Thermal expansion and invar effect. It is known that thermal expansion of solids

at their heating is caused by the vibration of atoms or ions near their equilibrium posi-

tions in anharmonic lattice. In the weak magnets (diamagnetic and paramagnetic),

this anharmonicity is the only reason of their size change during heating. As a result,

these substances mostly show only expansion with temperature increase.

However, in ferromagnetics, during their thermal deformation, another very

important (and unique) phenomenon is observed: compression while heating in a

certain temperature range. The point is that thermal deformation is essentially

connected with spontaneous magnetization. Conditioned by exchange interaction,

magnetostriction depends not only on the external magnetic field but also depends

on the internal magnetization that in the ferromagnetic is changed with

temperature (without any external field). This appears as “thermally induced

magnetostriction,” which sometimes is called spontaneous thermostriction (as it

occurs when an external magnetic field is not applied). This effect is particularly

large in the vicinity of the Curie point, that is, when phase transition to magnetically

ordered phase occurs.

The effect of spontaneous magnetostriction (with coefficient αf) affects total ther-
mal expansion coefficient of ferromagnetics because it compensates the usual

(anharmonic) lattice effect having a positive coefficient αa. Thermostriction has a

sign opposite to that of the regular thermal expansion coefficient; thus the resulting

thermal expansion coefficient in ferromagnetic materials can be both positive and

negative and even might be close to zero in a certain temperature range, as shown

in Fig. 6.21B. The group of ferromagnetic materials, in which total thermal expan-

sion coefficient is practically zero (α¼αa +αf � 0), assumes the term invar alloys.
The phenomenon of thermal expansion coefficient compensation by spontaneous

magnetostriction is the invar effect. The term “invar” comes from the word invari-
able, which reflects their ability not to expand and not shrink when the temperature

changes. Invar materials are used when high-dimensional stability is required in the

precision instruments.

Invar-type metallic alloys (which practically do not change their size while heat-

ing or cooling) have long been used in industry. At present, there are many alloys

such as “invars,” but always the nature of small coefficient of thermal expansion

is magnetic. For example, note that Invar H-36 is the alloy of iron and nickel

(36%); Kovar is the alloy of iron, nickel (29%), and cobalt (17%); and others.

The α-values in them may be dependent on combinations of components. In the gad-

olinium crystal, the invar effect is anisotropic, that is, it is diverse in different axes of

Gd hexagonal crystal; this opens additional opportunities for technical applications

of gadolinium.
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Thus in the ferromagnetic alloys, the coefficient of thermal expansion is

“manageable,” including, if necessary, α � 0. Such alloys are widely used in tech-

nologies: both in electronics and instrumentation, as well as in the aviation and

constructions.

The magnetocaloric effect consists in changing of the material’s temperature

(cooling; interesting, of course) during magnetic adiabatic demagnetization or

magnetization.

There is thermodynamic explanation of the magnetocaloric effect. In the adia-

batic condition (when there is no heat energy exchange with the environment),

the magnet does not absorb or return heat (dQ¼0), and therefore the entropy S is

constant: dS¼dQ/T¼ 0. Therefore under this condition (dS¼0) and constant pres-

sure (p¼const), the entropy is considered as a function of temperature T and external
magnetic field H: S¼ f (T, H). Temperature change in ferromagnetics, that is, its

cooling (∂T <0) or heating (∂T >0), depends on the sign of derivative and on the

change in external magnetic field: when ΔH >0, magnetization occurs, and if

ΔH <0, the demagnetization occurs.

Magnetocaloric effect also occurs in the paramagnetic, and it is caused by an

increase (or decrease) in the amount of equally oriented atomic magnetic moments

(spin or orbital) when the magnetic field is switched on (or off ). This effect is studied

and applied for a long time. The effect of adiabatic demagnetization of a paramag-

netic is used to achieve extremely low temperatures. Specific heat at low tempera-

tures is very small (Cp,H �T 3); therefore, the method of paramagnetic cooling is very

effective, if initial temperature is sufficiently low.

At normal temperature, another magnetocaloric effect can be applied—in the

vicinity of ferromagnetic phase transition (in gadolinium, this transition occurs at

a temperature of 260K). In ferromagnetic on a stage of paraprocess, a strong mag-

netic field can orient the magnetic moments that were not yet oriented because of

thermal motion. Classic ferromagnetics (Fe, Co, Ni, Gd, and their alloys) are char-

acterized by negative derivative (∂M/∂T<0); hence if one increases magnetic field,

heating will be observed (∂T >0), but when the field is turned off, magnetic cooling
causes ∂T <0 (asΔH <0). Predefined by the paraprocess, the magnetocaloric effect

can show rather high values in the vicinity of the Curie point.

Therefore in the ferromagnetic with paraprocess participation, not only positive

but also negativemagnetocaloric effect occurs. This can be explained by an example

of ferromagnetic compounds of rare-earth metals with iron, where magnetic atomic

structure is represented by two sublattices, in which magnetic moments are oriented

in antiparallel: sublattice of iron ions (labeled M1) and sublattice of rare-earth ions

(M2). At the temperature of compensation Tcom, the magnetization M1 of iron sub-

lattice is equal to the magnetization M2 of rare-earth ions. If T <Tcom, thenM2>M1,

whereas if T >Tcom, then M2<M1. It means that the total magnetocaloric effect is

negative.

Magnetic refrigerator can work at room temperature; the low TC of magnetic

materials (such as gadolinium) or various alloys of rare-earth elements can be

applied. The operating temperature range is sufficient for the application of the
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magnetocaloric effect in devices such as home refrigerators, air conditioners, and

devices for cooling products or electronic equipment. Recently, the giant magneto-
caloric effectwas discovered in the intermetallic compounds based on rare-earth ele-

ments in the system silicide-germanide Gd5(Ge-Si)4. This kind of materials provides

promising application of magnetocaloric cooling.
6.4 ANTIFERROMAGNETISM AND FERRIMAGNETISM
Antiferromagnetic interaction. In case of the negative sign of exchange integral, the
antiparallel orientation of spins in the lattice sites of the crystal is more profitable, as

shown in Fig. 6.12. Spins are ordered, but no spontaneous magnetization occurs

because magnetic moments of neighboring spins compensate each other, as shown

in Fig. 6.4C. Such crystal has two magnetically opposite sublattices that are interpe-

netrated. The well-known antiferromagnetics are listed in Table 6.4.

The structure of antiparallel arrangement of spins is formed spontaneously at

temperature below the Neel temperature (TN) in competition with chaotically disor-

dered thermal motion. When an antiferromagnetic is heated above the Neel point

(T>TN), uncompensated spins that partially fill d- or f-shells form something similar
to a paramagnetic system that is characterized, however, by a special temperature

dependence of magnetic susceptibility: æ¼C(T +θ), where C is the Curie-Weiss

constant, θ is the characteristic temperature, which in contrast to the paramagnetic

phase of ferromagnetics is located in the negative range of Kelvin temperature scale,

as shown in Fig. 6.13, curve 2.

As examples of antiferromagnetics, some d- and f-metals are to be mentioned: Cr

with Neel temperature TN¼311K, Mn with TN¼100K, and numerous other com-

pounds. Antiferromagnetics are also many oxides of d- and f-metals: MnO with

TN¼122K, FeO with TN¼198K, NiO with TN¼650K—this is the highest Neel

temperature [9].

Temperature dependence of magnetic susceptibility of an antiferromagnetic indi-

cates a sharp anisotropy in their magnetic properties at temperatures below phase

transition, as shown in Fig. 6.22.
Table 6.4 Neel Temperature of Some Antiferromagnetics

Crystal TN (K) Crystal TN (K)

MnО 122 KCоF3 125

FeO 198 MnF2 67.34

CоО 291 FeF2 78.4

NiO 650 CoF2 37.7

RbMnF3 54.5 MnCl2 2

KFeF3 115 VS 1040

KMnF3 88.3 Cr 311



FIG. 6.22

Typical temperature dependence of susceptibility of an antiferromagnetic.
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It should be noted that antiparallel spontaneous orientation of electronic

spins in the closely located ions strongly reduces electrical conductivity—an anti-

ferromagnetic below the Neel temperature is converted from conductors to

semiconductors (or dielectric). In the disordered (paramagnetic) phase, an antifer-

romagnetic does not have any band gap in their electronic spectrum (as metal).

However, as temperature decreases and transition to antiferromagnetic phase

occurs (at Neel point), in the electronic spectrum of most antiferromagnetic

compounds, the energy gap opens. Therefore, Neel phase transition in antiferro-

magnetics might be simultaneously the “dielectric-to-metal” phase transition.

Electrical conductivity in the antiferromagnetic phase is 1000 times lower than that

in magnetically disordered (conducting) phase.

However, the permeability of antiferromagnetics is small (μ � 1), which is obvi-

ously insufficient for their technical application as magnetic materials. The small-

ness of permeability is a consequence of the fact that at low temperatures (in the

antiferromagnetic phase), atomic magnetic moments of sublattices totally compen-
sate each other; thus the resulting magnetic moment is zero.

When temperature increases and antiparallel orientation of spins become disor-

dered, the value of magnetic susceptibility æ increases and reaches maximum at the

Neel point, as shown in Fig. 6.22, whereas disordering of spins occurs in a manner

similar to that in a paramagnetic. Simultaneously, movement of valence electrons

(which in antiferromagnetic phase are constrained by strongly ordered opposite

spins) becomes free; hence with a transition into disordered (paramagnetic) phase,

the crystal turns into conductor.

Ferrimagnetism. In addition to totally magnetically compensated antiferromag-

netics, there are many crystals and polycrystals in which magnetic moments of the

sublattices, although being directed opposite to each other, have significant differ-

ence in their magnetization, as shown in Fig. 6.4D. These materials have rather

complicated structures with varying kinds of atoms that form them and with variable

number of uncompensated electrons in the d- shells (or f-shells). These magnets show

properties similar to those of ferromagnetic materials because they hold spontaneous



Table 6.5 Curie Temperature TC and Magnetic Saturation Induction BS at 4K
in Some Ferrimagnetics

Crystal TC (K) 4πBS (Gs)

Fe3О4 (magnetite) 858 6400

CоFe2О4 793 6000

MgFe2О4 713 1800

CuFe2О4 728 2000

MnFe2О4 573 7000

Y3Fe5O12 560 2470

2616.4 Antiferromagnetism and ferrimagnetism
magnetization, and the total magnetic moment in their lattice is nonzero [3].

These ferrimagnetics are very important for application of substances; some of them

are listed in Table 6.5.

Therefore magnetic moments of ferrimagnetics are directed in antiparallel orien-

tation, but they are noncompensated. Electronic interaction in such lattices is known

as the indirect exchange interaction, at which there is no direct overlap of magnetic

ion wave functions. However, the overlap of wave functions of diamagnetic anions

(e.g., O2�) with the wave functions of magnetic cations (e.g., Fe3+) enables the

exchange interaction through the virtually excited state, as shown in Fig. 6.23.

The 2p-shell of the oxygen ion in its main state is completely filled, as shown in

Fig. 6.23A, and despite the overlap with iron ion wave functions (p-orbitals of O2�

and two d-orbitals of Fe3+), any exchange interaction between them is absent. How-

ever, in the excited state, as shown in Fig. 6.23B, one of the p-electrons of oxygen
transfers to the 3d-shell of the iron ion. In compliance with Hund’s rules, this electron

has to move, whose spin is antiparallel to the spins of electrons in the half-filled shell

of the Fe3+ ion. Leaving 2p-shell, the electron, because of negative exchange inter-
action, orients spins of neighboring iron ions, as shown in Fig. 6.23B.
FIG. 6.23

Diagram illustrating indirect exchange interaction in the system Fe3+�O2��Fe3+: (A) basic

state; (B) excited state.
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The intensity of indirect interaction increases with the extension of overlapping

of electronic shells, that is, with the strengthening of covalent bond. Because cova-
lent bonds are noncentral, the indirect exchange interaction reaches maximum when

three interacting ions are not collinear. Therefore, the compensation of magnetic

moments is not complete in the complex structure of antiferromagnetic.

Permeability of ferrimagnetics, being less than the values of permeability in typ-

ical ferromagnetics, nevertheless, is rather big for successful technical applications:

μ�102–103. With regard to other physical properties (hysteresis, nonlinearity, and

domain structure), the ferrimagnetic is close to ferromagnetic, but its magnetization

decreases with increase in temperature nonmonotonically (as in the case of ferromag-

netics), sometimes passing through a zero before reaching the final Curie tempera-

ture, as shown in Fig. 6.24.

Several different sublattices that exist in a ferrimagnetic make temperature

dependence of spontaneous magnetization rather complicated compared with that

in a conventional ferromagnetism, as shown in Fig. 6.14. This is because temperature

dependence of spontaneous magnetization may be different for various sublattices of

a ferrimagnetic.

It is necessary to recall that most of the ferromagnetics are metals (with high con-

ductance), and therefore they cannot be used at increased frequencies owing to high

losses (conditioned by Foucault currents). Therefore even for electrotechnical appli-

cations (at a frequency of 50 or 60Hz), and especially for mobile (transport) electri-

cal engineering (a frequency of 400Hz), the iron, permalloy, or any ferromagnetic

metal should be divided into the separate plates (or even into a thin foil) with the

electrical insulating layers between the plates (or foil).

One of the possible ways of using ferromagnetic metal at radio frequencies is to

reduce losses from Foucault current by using micron-sized ferromagnetic particles

pressed together with polymer (magneto-dielectric composites). Nevertheless, this
technology cannot prevent losses from Foucault currents in the microwave range

(where magnetic materials are widely used, particularly in information and comput-

ing technique).
FIG. 6.24

Different possibilities of ferrielectrics magnetization.
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However, insulating properties that are extremely necessary are achieved in the

ferrimagnetics by the combination of depressed conductivity with rather strong mag-

netism in the elementary crystal cell. Therefore, the main advantage of ferrimag-

netics is rather high permeability with significant manifestation of magnetic

properties, combined with high adequate electrical resistance. This is especially

important in microwave technology because of the provided small loss of electro-

magnetic energy [5].

In technologies, ferrimagnetics usually are called ferrites, and the most important

representative among them is themagnetiteFe3O4¼FeO�Fe2O3. Its unit cell is ferros-

pinels that has a cubic lattice formed of eightmolecules of FeO�Fe2O3. In thismineral,

the negative oxygen ions form face-centered lattice, inwhich the compoundFe3O4has

one divalent (Fe2+) and two trivalent (Fe3+) iron ions.As shown inFig. 6.9, the Fe atom

and Fe2+ and Fe3+ ions have different number of uncompensated spins. One sublattice

of ferrite contains one half of trivalent iron ions, and another sublattice—the second

half of trivalent iron ions and divalent iron ions (ormetal that replaces iron).Magnetic

moments of sublattices are antiparallel. Thereforemagneticmoments of trivalent iron

ions are compensated, but spontaneousmagnetization is causedbymagneticmoments

of divalent iron ions (or any other metal that replaces iron).

In various ferrites with a structure of magnetite, the divalent iron ions Fe2+ can be

substituted by the divalent ions of other metals such as Mg2+, Ni2+, Co2+, Mn2+, and

Cu2+. The general formula of ferrites with spinel-type structure isMeО�Fe2O3, where

Me is the divalent metallic ion. Only the divalent metal ions cause spontaneous mag-

netization of many ferrimagnetics. Some ferrites (manganese and nickel ferrites)

have rather high permeability: up to several thousands. In other ferrites, usually

μ�100 (however, ferrites based on zinc and cadmium are not ferrimagnetics).

Ferrites based on rare-earth elements. Magnetic materials based on the rare-

earth elements have gained considerable scientific and technological interest. It is

necessary to remember that rare-earth elements (or lanthanides) are the elements

of the third group with numbers 57–71 (La, Ce, Nd, Sm, etc.). The elements scan-

dium Sc and yttriumY are attributed to this group owing to similar properties. Alloys

and compounds of these elements have pronounced magnetic properties. Their dif-

ference from magnets of iron type (3d-metals) lies in the fact that the magnetic

moment of lanthanides (4f-metals) is determined mainly by the spin properties of
electrons, whereas the importance of orbital moment is smaller (nevertheless, orbital

moment also has some influences on their magnetic properties).

From 14 rare-earth elements, ferromagnetism is observed only in six of them

(gadolinium, erbium, dysprosium, holmium, thulium, and terbium) but in most of

them (except gadolinium) at a certain temperature, the ferromagnetism gets con-

verted into antiferromagnetism. In the gadolinium, similar to iron, the ferromagnetic

state occurs directly from the paramagnetic state (at a temperature of 290K). Five

rare-earth elements (cerium, praseodymium, samarium, europium, and promethium)

are antiferromagnetics. Magnetic moments of lanthanum and lutetium are zero (they

are diamagnetics). Thus magnetic properties of rare-earth metals are quite different

and complicated.
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Permanent magnets based on rare-earth alloys. These ferrites have very large

magnetic anisotropy (from two to three orders of magnitude greater than that in the

iron group) that allows the manufacture of permanent magnets. Of particular interest

are the intermetallic compounds of RCo type, where R is the rare-earth metal. For

example, coercive force of samarium-cobalt alloy (SmCo) is�20,000A/m (coercive

force of conventional ferromagnetics is less in order of magnitude). The RCo type

alloys are widely used in engineering as permanent magnets: very high coercivity

with a large magnetic induction can essentially reduce the weight and size of mag-

netic systems.

In recent years, some alloys based on NdFe have found important applications;

their parameters exceed the parameters of SmCo magnets. However, as a record of

the properties of hard magnets, a single crystal of terbium-cobalt alloy is considered.

At low temperatures, the coercivity of the TbCo compound surpasses the NdFe and

SmCo magnets by seven times.

Rare-earth microwave ferrites. In the microwave range, the properties of ferrites

that make them possible to create the nonreciprocal devices are used, i.e., the

devices, having different specifications for different directions of energy spreading

(valves and circulators), as well as microwave devices with fast controlled parame-

ters (phase shifters and switches).

The microwave technique also widely uses the phenomenon of microwave mag-
netic resonance. Atoms in a magnet appear similar to mechanical “whippings”

(gyroscopes). Magnetic moment of such whipping is directed along the axis of rota-

tion. If an external magnetic field is applied directed at some angle to the axis of

whipping rotation, this axis will rotate around the direction of the applied field. This

phenomenon is called precession. The frequency of precession depends on the mate-

rial and on the field strength. If damping of such oscillation would be absent, this

precession will exist indefinitely and oscillator will be lossless. However, owing

to losses (energy dissipation on phonons and defects), this precession decreases,

and the direction of magnetic moment is set along the direction of the magnetic field.

If constant magnetic field and alternating field of some frequency are simultaneously
applied to the magnetic crystal, it can increase precession angle. This angle reaches

the maximum value, when frequency of the external field coincides with the fre-

quency of precession. This phenomenon is the gyromagnetic (or ferromagnetic)

resonance.
Gyromagnetic resonance finds technical application because, at the resonant fre-

quency, the energy loss in a magnet is maximal, which provides maximum selective

absorption. The higher the quality of the magnetic crystal, the bigger is the absorp-

tion of energy and the narrower is the band of magnetic resonance. The best results

are observed in case of the yttrium-iron garnet. The microwave filters are built based

on the magnetic resonance in yttrium-iron garnet (and in some other ferrites, the

magnetic resonance close to it). The quality factor of such filters reaches 10,000.

The rare-earth ferrites are used also as the terminators of microwave power. That

is the reason why properties of single crystals of ferrites are of particular interest

in the microwave technology.
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The monocrystalline ferrites are specially grown crystals that have remarkable

highly ordered crystalline structure. The feature of single-crystal ferrites is their

increased resistivity and high optical transparency. These properties enable to apply
them not only in microwave devices but also in magneto-optical devices. Properties

of ferrites depend on their crystalline structure. They might have cubic symmetry as

ferrogarnets with the general structural formula 3Me2O3�5Fe2O3 (where Me3+ is a

rare-earth element), and they might also have a rhombic symmetry such as

orthoferrites, with the general structural formula MeFeO3 (where Me is a rare-earth

element or yttrium).

The axis of easy magnetization in ferrites might be different in various crystals. In

crystals with cubic symmetry, the axis of easy magnetization is [111]. The cubic cell

has four diagonals; hence such crystals have four axes of easy magnetization. In the

crystals with rhombic structure, the easy magnetization axis coincides with axis

[001]. In these crystals, the axis of easy magnetization is only one; hence they are

called the magneto-monoaxial.

Monocrystalline ferrites are light transparent materials, and this is their important

feature when they are used in optical spectrum. The value of absorption coefficient is

relatively small. For example, an orthoferrite plate with thickness of 1mm in the

wavelength range 1.5–5 μm transmits 95% of light, whereas a 30-μm-thick plate

transmits 50% of red light (with a wavelength of 0.6μm). Such good properties

are peculiar to high-quality crystals only. If the raw material for ferrites is not very

clean or the ferrite plate is not polished properly, optical transparency will be much

less. Magneto-optical effect in ferrites has important application in the optoelectron-

ics and instrumentation.

Giant magnetostriction. Ferrimagnetic materials based on rare-earth elements

might have a very large coefficient of magnetostriction that makes them promising

for use in the area of actuators. The main point of magnetostriction effect is the

change in sample shape and size when it is placed in the magnetic field. Previously,

magnetostriction is considered as a very small effect (in ordinary ferromagnetics, the

possible strain is only 0.003%). However, in the rare-earth metals (terbium Tb, dys-

prosium Dy, and some alloys), the giant magnetostriction effect is discovered when

the strain is higher in two orders of magnitude: 0.5% for the alloy TbDyZn. Another

alloy, namely, terbium-iron (especially the TbFe single crystal) is the best magneto-

strictive material in modern engineering.

Application of magnetostrictors, based on rare-earth materials, makes it possible

to create power actuators (need, for instance, in the adaptive optics for large reflect-
ing telescope). They can also be used in radio engineering and telecommunications

as enormous power sound sources, superpower ultrasonic transducers, magnetostric-

tive highly microshift mechanisms, and screw devices to develop ultrasensitive

audio receivers [5].

Magnetic semiconductors and dielectrics.Magnetic materials, depending on the

type of chemical bond, are divided as magnetic metals, magnetic dielectrics, and

magnetic semiconductors. Previous sections dealt mostly with the magnetic metals

and alloys that are characterized by the special type of particle bonding: ionic lattice
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crowded by electronic gas. In the magnetic semiconductors and magnetic dielectrics,

their chemical bonds are mixed (ionic-covalent) and depend on anion and cation

affinity to electron. During chemical bond formation in magnetic semiconductors

and magnetic dielectrics, a significant role is played by spin magnetic moments

of electrons in unfilled d- or f-shells of ions.
Magnetic semiconductors and magnetic dielectrics are predominantly com-

pounds whose components are transition metals and rare-earth elements that show

ferro-, antiferro-, or ferrimagnetic ordering of their lattice. This arrangement signif-

icantly affects optical and electrical properties of a material. Magnetic controlling by

optical properties (magneto-optics), peculiar exactly to dielectrics and wide-band

semiconductors, is needed in high optical transparency.

It is evident that for magnetic controlling properties by semiconductors, a strong

relationship between unfilled 3d- and 4f-shell magnetic ions with free charge carriers

is necessary. Owing to spin ordering in a lattice, its magnetic ions affect the move-

ment of free charge carriers in a crystal, and these carriers, in turn, can affect the

magnetic ordering in a lattice.

It is well known that to change magnetic moment orientation in local parts of

magnetic substance, an external magnetic field should be applied. This is the basis

of traditional magnetic memory, which is widely used in computers. The necessity to

increase the density of memory cells in devices strikes against a problem of smallness
of managing magnetic fields. Therefore a possibility of magnetic material local
reversing by a beam of spin-polarized electrons (during the time of their passing

through this local area) looks as very important. Some magnetic semiconductors

can introduce the spin-polarized electronic current between p- and n-type areas.

In case when the spins of charge curries are preliminary ordered by an external field,
this current creates spin-ordering in the adjacent semiconductor, which can be pre-

served awhile even at room temperature. Significance of this method is the possibil-

ity to control spin orientation by the electrical field instead of the magnetic field.

Magneto-optical phenomena. Telecommunications, instrumentation, electron-

ics, and computing—all these technologies now use optical frequency range of elec-

tromagnetic waves. In optical devices, mainly the transparent medium should be

used: magnetic dielectrics and wide-gap semiconductors (metals strongly reflect

electromagnetic waves but magnetically tunable reflection also can be used). Phys-

ical phenomena, applied in the magneto-optics, are highly varied. They are based on

the dependence of optical properties on the direction of light propagation (anisot-

ropy) and light beam controlling using magnetic semiconductors and dielectrics.

Next, the optical phenomena that are caused by the influence of a magnetic field

on a light-transparent magnet will only be considered. This area of science and tech-

nology (called the magneto-optics) studies and uses the change in the optical prop-

erties of a matter under the influence of a magnetic field. Magnetic materials, which

are utilized in functional magneto-optical devices, can be divided into two groups.

The first group includes materials with relatively low optical absorption, which

are applied for spatial-temporal modulation of light in the amplitude or phase. To

elaborate magneto-optical functional devices, the essential importance for material
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selection is their optical absorption. Among various magnetic materials, relatively

small absorption in the visible and near-infrared parts of the spectrum might be

expected only in nonmetallic materials. These are the following ferrimagnetics:

• ferrite-garnets of the general formula R3Fe5O12;

• orthoferrites of the general formula RFeО3 (R—rare-earth ion);

• ferrites with a spinel structure, for example, CdCr2Se4 and CuCr2Te3I.

To choose the most transparent magneto-optical materials, one should be guided by

the fact that the intensity of absorption is caused by electro-dipole transitions in the

3d-ions (usually Fe3+); this absorption can be reduced by the decrease in nonequi-

valent positions of iron ions in the structure of a magnetite.

The second group of magneto-optical materials includes thin magnetic films,

based on intermetallic compounds with rather high absorption coefficient in the vis-

ible and infrared ranges. Magnetic amorphous film designed for magneto-optical

devices and film composition follows the general formula R-Me-Z, where R is

the rare-earth ion, Me is the transition metal (Mn, Ni, Fe, and Co), and Z is the non-

magnetic metal (Mo, Cu, and Au).

The fundamental cause of the magneto-optical effect is the splitting of energy
levels of atoms in the magnetic field. During isolated atoms study, this splitting

was found, which was termed as the Zeeman effect. However, in crystals, the

magneto-optical effects are also a result of the Zeeman effect. Magneto-optical

effects, first, change light polarization characteristics, and, second, can control the

distribution of polarized light in the dispersion medium.

In addition to ordinary optical anisotropy that occurs in medium under the influ-

ence of an electrical field or mechanical strain, circular anisotropy occurs in the

magnetic field, which is caused by nonequivalence of polarization rotation in a plane

perpendicular to the field. This important fact is the result that the magnetic field is
axial. Because of absorption, the left-hand and the right-hand polarized light become

different; hence amplitudes of output components can be various. This is the mag-
netic circular dichroism. Its existence leads to the fact that after light passage through
the medium, the linearly polarized light turns into the elliptically polarized light.

In the absorbent medium, the magnetic linear dichroism also appears, and this is a

difference between absorption coefficients of two linearly polarized waves while

they pass through the magnetized medium. The presence of dichroism leads to

the rotation of orientation angle of ellipse during propagation.

When light spreads perpendicular to the direction of magnetization J, then in the
magnet, a linear double refraction is observed, called the Cotton-Mouton effect. It is

caused by a difference in refractive index of two linearly polarized components of

light waves, polarized parallel and perpendicular to J. Appeared phase change gives
rise to elliptically polarized light at the exit of a medium. The Cotton-Mouton effect,

in contrast to Faraday effect, is even: its value is proportional to the square of

magnetization.

Along with magnetic optical effects that occur during the passage of light through

a magnetized medium, there are some effects that are due to light reflection from the
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surface of the magnetic sample. Therefore optical anisotropy that is acquired in the

magnetic field can be detected not only in transmission characteristics but also by

light reflection from the magnetic surface. When magnetization of the active

medium changes the polarization of reflected light, the nature and extent of this

effect depends on the relative position of sample surface on incident light polariza-

tion and on magnetization vector. This effect is observed mainly in the ferromag-

netics; it is the magneto-optical Kerr effect. Depending on the relative orientation

of magnetization J, on the direction of light propagation k, and on the normal n to

surface, there are three types of Kerr effects: polar, equatorial, and meridional.

The polar effect is the rotation of polarization plane with the appearance of ellip-
ticity during the reflection of linearly polarized light from the surface of the magnetic

material when magnetization is parallel to normal: J jjn.
The equatorial effect is observed in the absorption of a magnetic material, and it

involves change in intensity and phase shift of linearly polarized light, reflected from

the magnetized medium, whenmagnetization is perpendicular to J and to the plane of
incidence: J?n.

Themeridional Kerr effect is the rotation of polarization plane and appearance of
ellipticity as a result of linear polarized light reflection from magnetic surface, when

magnetization J is perpendicular to normal n and located in the plane of light

incidence.

To control light transmission, magnetization of the working medium should be

changed by an external magnetic field. To do this in transparent ferromagnetic, first,

the displacement of domain walls should be used, and, second, the rotation of mag-

netization vector in a magnetic field is necessary. In magneto-optical modulators that

use the first process, optically transparent active medium often is applied: ferrite-

garnets R3Fe5O12 and orthoferrites RFeО3 (where R is the rare-earth ion). In ortho-

ferrites, abnormally large Faraday rotation is observed, although the saturation of

magnetization in orthoferrites is significantly less than that in ferrite-garnets.

Faraday’s rotation is proportional to sample thickness, and it can be observed

only when light extends along the optical axis of orthoferrite. The magneto-optical

quality Q in Nd0,8Pr0,2FeО3 reaches 14 degrees/dB, exceeding the value of merit for

all known magnets. In YFeO3, the magneto-optical Q factor is lower. The main fea-

ture of orthoferrites is the high mobility of domain walls that make them promising to

create high-speed magneto-optical devices.
6.5 NANOMAGNETIC MATERIALS
Apparently, the possibilities of volumetric materials used by engineers already

reached their maximum. It is believed that it is barely possible to get any significant

improvement in their performance only through a more thorough technology or by

changing in components. Therefore it might be assumed that a subsequent creation of

materials with new properties should be associated with fundamental changes in the

structure of substances, thus affecting properties that are necessary for contemporary
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applications. It is considered that one of most promising and relatively new

research areas in the field of material science is the creation of materials that are

condensed from very small crystals, clusters, and fragments that consist of around

102–105 atoms.

The main reason for the difference between nanomaterials and conventional

materials is that the ratio of surface to volume in nanomaterials is rather big. The

smaller the size of nanocluster, the greater is the influence of its surface properties

compared to its bulk properties. In a certain sense, the nanostructure transforms prop-

erties of the crystal surface into the volumetric properties of condensed nanomaterial.

In other words, the properties of nanoformed substance depend on the ratio of the

number of atoms located on the surface of nanocluster to the number of atoms located

in its volume, and this ratio might be quite different. Therefore, by controlling the

size and the shape of clusters, the properties of a nanomaterial can be purposefully

changed.

Nanostructurization of magnetic materials enables to operate in a wide range of

their characteristics. Nanotechnology can be used, primarily, to create a material

with adjusted type of magnetization curve: both for extremely magnetically soft

materials and for extremely magnetically hard materials. Fundamental magnetic

properties of a matter in their nanostate vary considerably owing to correlation in

the interaction of spin and orbital moments in lattice cells, located on the surface

of the nanoparticle. The properties of ferromagnetics and ferrimagnetics in their

nanostate can be changed, especially strongly. In the magnets formed from nanoclus-

ters, the nature of short-range ordering becomes different; that is why new properties

appear (sometimes, very important for technical application).

Some examples of atomic magnetic moment dependence on the size of nanopar-

ticles in the main ferromagnetics are shown in Fig. 6.25. Magnetic moment of atoms

in bulk ferromagnetic usually is less than the number of uncompensated spins in

atoms (which are 2 μB for nickel, 3 μB for cobalt, and 4 μB for iron). Owing to the

spin-orbital interaction, the effective magnetic moment of atoms in bulk ferromag-

netic is much smaller (0.6 μB for nickel, 1.8 μB for cobalt, and 2.2 μB for iron).

Changing the number of atoms in the nanoparticles leads to a significant increase
in effective magnetic moment with decrease in particle size (finally, it becomes very

close to the magnetic moment of a single atom). This effect significantly increases

the permeability of magnetic nanocomposites and causes a number of other effects.

Thus the effect of nanostructuring on ferromagnetic characteristics is very signif-

icant, particularly, the effect of nanoparticle size that is used in the composed form of

nanoparticle magnetic materials. Therefore, in modern materials technology, it is

possible to “design” their properties particularized for various fields of technology

by changing the size of grain structure.

Soft magnetic nanomaterials. The change in orientation of magnetic domains or

clusters under an externally applied magnetic field influence might be possible even

under small magnetic fields: these are soft magneticmaterials. For example, very soft

magnetics are the films of amorphous alloys, made with the compound Fe70
Si13Nb3Cu9 and obtained by rapid cooling of melt that is poured on the cold copper



FIG. 6.25

Magnetic moment per atom for nanostate ferromagnetics NiN, CoN, and FeN depending on

the particle size in the Angstrom unit scale (1A¼0.1nm).
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rotating drum: the prepared alloy consists of disordered 10-nm nanoparticles. Having

a large saturated induction (1.2T), this alloy shows small coercive force (0.5A/m).

One reason for the increase in magnetic softness and therefore the appearance of

huge magnetic permeability (μ�5�105) is the light orientation of spins. The point is

that the concentration of structural defects in the nanoparticles is small (in them, any

defects easily diffuse on the surface); as a result, the orientation of spins in the exter-

nal magnetic field becomes much easier. Nanomagnetic cluster can have its magnetic

moment orientation such as that shown in models given in Fig. 6.26 [10].

As shown by an experimental study with magnetically soft materials (nanosized

powders of amorphous alloy of the compound Fe70NiО10CO2 with a grain size of

10–15nm), the hysteresis loop coercivity is practically absent, as shown in

Fig. 6.27B, because each of the nanoscale grain constitutes only one domain. (In

common ferromagnetics, hysteresis is caused by the orientation of big domains.)

Magnetic materials of this type, showing no hysteresis, are the superparamag-
netics. This term means that at temperatures below the Curie point and in wide



FIG. 6.26

Different orientation of magnetic moments in ferromagnetic nanoparticles.

FIG. 6.27

Typical magnetic hysteresis (A) magnetization M and coercive field Hc; (B) nonhysteresis

magnetization curve for the nanomaterial Ni-Fe-Co.
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temperature range, superparamagnetics are similar to paramagnetics. In typical fer-

romagnetic (or in ferrite), their spontaneous magnetization, occurring below the

Curie point, is accompanied by the internal force that strongly maintains spins in

their oriented state; hence to change their direction, one needs to overcome the coer-

cive field (Hc as shown in Fig. 6.27A). In this case, in a ferromagnetic, a sufficiently

large energy of anisotropy exists, which makes magnetic moment to choose one or

the other direction. However, in the nanoparticles, owing to significant violations in

the structural bonds of atoms, energy of anisotropy is practically absent; hence the

direction of orientation of electronic spins can be easily changed even under a very

weak magnetic field. Therefore during the reversal of magnetization, there is no

hysteresis.

The more pronounced the magnetic softening, the smaller is the nanoparticle size.

However, unlike conventional paramagnetic (whose susceptibility at low tempera-

tures demonstrates the Curie law: æ � K/T), in case of superparamagnetics, the lim-

itative temperature exists, below which the possibility of “soft” (noncoercive)

orientation of magnetic moments is limited. The reason of this restriction is that ori-

entation of magnetic moments in nanoparticles is supported by thermal motion in a
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lattice, which at low temperatures becomes insufficient. The temperature, at which

this movement is blocked, depends on the size of nanoparticles.

Magnetically hard nanomaterials. Nanotechnology enables to also control the

coercive field that is very important to achieve a great Hc. With traditional (bulk)

materials, some powerful permanent magnets are made from the alloys of neodym-

ium, iron, and boron. Among them, a very big residual induction is reached (1.3 T)

with a coercive force value of 106A/m, which is more than a million times higher

than that in magnetically soft alloys. However, nanotechnology can significantly

improve even these data. Some results of grain size have an influence on the prop-

erties of the alloy Nd2Fe14B as shown in Fig. 6.28A. From this figure, it follows that

residual magnetization increases significantly if the grain size becomes smaller than

40nm (the coercive field becomes three times higher). Another approach on how to

change parameters of magnetization curve for this material is to create a mixture of

nanoscale particles of the magnetically hard compound Nd2Fe14B and the magnet-

ically soft α-phase of iron.

The study of soft iron particles influence on magnetically hard matter confirms

that coercive field can be further increased. This is due to the exchange interaction

between hard and soft nanoparticles, which turns magnetization of soft phase parti-

cles exactly in the direction of hard particle magnetization. By size reducing of nano-

particles, the granular magnetic material can be significantly improved [2].

Nanomagnetic films for computer memory devices. The study of magnetic mate-

rials, mainly the films produced by nanotechnology, aims to increase the capacity of

magnetic information drives—such as the hard drive of a computer. The unit of stor-

age information is bit; to reach the density of 10Gb (1010 bits) per square inch, the

single bit should have a length of �1μm and width of �70nm. The thickness of the
FIG. 6.28

Residual magnetization Mr dependence on particle size (A); scheme of double potential

well, which shows energy dependence on magnetic moment orientation in external

magnetic field absence (solid line) and presence (dotted line): 1—thermally activated

switching, 2—tunneling (B).
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magnetic layer in this case should be around 30nm. Magnetic storage medium such

as hard drives can be realized by using small crystals of chromium-cobalt alloy.

Problem of bit size diminution<10nm is the “self-erasing” of memory because mag-

netization vector of microarea can change its direction under the influence of thermal

fluctuations. One solution to this problem requires the use of nanoscale grains with

high values of saturated magnetization.

Another example: using nanotechnology, magnetic FePt nanograins that have

higher magnetization than their analogs are obtained. Particles of FePt are formed

by heating the solution of platinum acetylacetonate and carbonyl iron with addition

of a reducing agent. After spraying this solution on the substrate, it evaporates leaving

passivating particles. The thin film, obtained as a result of these operations, consists

of a hard carbon layer containingFePt particleswith a size of around3nm.This kind of

magnetic nanoparticles enables to achieve a density of 150Gb per square inch, which

is 10 times greater than that of most existing commercially available medium.

When the size of magnetic nanoparticles is very small, magnetic vectors of atoms

are oriented by a magnetic field equally within a grain, avoiding difficulties that arise

in other cases (when the adjacent domain walls exist with different directions of mag-

netization). The reason is a peculiarity of nanoclusters: the reducing defects concen-

trate within cluster (defects easily diffuse to the surface).

Typically, a magnetic medium uses elongated magnetic grains. Dynamic prop-

erties of such magnetic particles can be described by a model, which assumes that

without applying magnetic field the ellipsoidal grains have only two possible direc-

tions of their magnetic moment: “up” or “down,” relative to the long axis of magnetic

elongated particles, such as those shown in Fig. 6.28B.

Magnetic energy dependence on magnetic moment orientation is characterized

by symmetric potential well with two minima, divided by a potential barrier. Under

the influence of thermal fluctuations, the elongated particle can change orientation of

its magnetic vector. This particle can also (but far less likely) change its magnetic

orientation by means of quantum-mechanical tunneling. This occurs when heat

energy kBT is much less than the height of barrier. Tunneling is a purely

quantum-mechanical effect, which arises from the fact that there is a probability

of magnetic state changing from the direction “up” to the direction “down.” In

the external magnetic field, the potential, which divides minima, changes, as shown

in Fig. 6.28B, by a dotted line; in case when the magnetic field is equal to coercive

force, one of the levels becomes unstable.

This model explains many magnetic properties of small magnetic particles, for

example, the shape of hysteresis loop. However, this model has a limitation with

coercive field value because it allows only one way for reorientation. Magnetic

energy of a particle is assumed as a function of collective orientation of spins in mag-

netic atoms and a function of an external magnetic field. This model considers only

simple (linear) dependence of magnetic energy of particle on its size. However, when

the size of particle becomes approximately 6nm, most atoms are located on the par-

ticle surface. This means that they can have magnetic properties that significantly

differ from those of larger particles.
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It is shown that replacement of magnetically soft α-iron in a variety of chemicals

substances leads to change in coercive force up to 50%, thus indicating the impor-

tance of particle’s surface in the formation of magnetic properties in a grain. Thus,

the dynamic behavior of very small magnetic particles is more complicated than it

follows from considered model.

Nanomagnetic particles in the interstices. An interesting research in the field of
nanomagnetism is to create porous material crowded by magnetic nanoparticles. In

nature, there are substances with molecular cavities filled with nanoscale magnetic

particles. One example might be ferritin—a biological molecule that contains 25%

iron by weight, whereas its shape is a symmetric protein shell. It has a hollow sphere

with inner diameter of 7.5nm and outer diameter of 12.5nm. In biological systems,

this molecule plays a part of “repository” of iron Fe3+ in an organism. One quarter of

iron in human organism is contained in molecules of ferritin and 70% in hemoglobin.

Under normal conditions, the cavity of ferritin is filled by quasicrystalline iron

oxide: 5Fe2О3�9H2О. This iron oxide solution can enter from outside into a cavity,

in which the number of iron atoms can vary from a few to several thousand. Magnetic

properties of this molecule depend on the number and type of particles in a cavity. It

can be both ferromagnetic and antiferromagnetic.

In ferritin at low temperature, the quantum tunneling can be observed. Even when

magnetic field is absent, the magnetization demonstrates tunneling between two

minimal positions. Resonant frequency of this tunneling depends on the total mag-

netic moment; frequency dependence on the number of iron atoms in the ferritin mol-

ecule is shown in Fig. 6.29B. It is seen that resonant frequency decreases with the

increase in atom quantity in a cluster. Under external magnetic field, this resonance

disappears because the symmetry of double-well potential becomes broken.

The magnetoelectronics (spintronics). In recent years, a new science and tech-

nology has developed—magnetoelectronics, or as it is now called the spintronics that
deals with the study and application of some effects and devices that use electronic

spin. Spintronics studies magnetic and magneto-optical interactions in metallic and
FIG. 6.29

Magnetic properties of ferritin: (A) magnetization curve; (B) resonant frequency dependence

on number of iron atoms in the cavity of molecule.
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semiconductor structures, as well as quantum phenomena in the magnetic structures

of nanometer size [5].

Thus spintronics is a new research direction of nanoelectronics, in which, in addi-

tion to electron’s charge, its spin is used for information processing. In the modern

electronics, many devices already exist based on spin phenomena. This is, for exam-

ple, the capping (manufactured by IBM) that reads information from magnetic disks,

and new type of magnetic memory—magnetic random access memory (MRAM).

These devices operate using giant magnetoresistance effect (GMR).

Giant and colossal magnetoresistance. The magnetoresistance effect is caused

by electrical conductivity change in the magnetic field. In metals and semiconduc-

tors, this phenomenon is long time known: electrical resistance is caused by scatter-

ing of electrons during their collision with lattice. Under magnetic field, conduction

electrons should move on helical trajectories. The elongation of trajectory increases

the number of collisions and hence resistance increases. However, in ordinary
metals, the effect of magnetoresistance is small: increase in resistance occurs only

on part of percent (that is why this effect in ordinary metals is rarely used in practice).

Nevertheless, this positive magnetoresistance effect is more noticeable in strong

magnetic fields and at low temperatures, when electron trajectory is characterized

by much bigger free path.

In ferromagnetic materials, magnetoresistance effect is negative and reaches

already several percent. The point is that in the absence of an external magnetic field,

a ferromagnetic divides on magnetic domains, in which magnetic moments have dif-

ferent orientation; domain boundaries lead to additional scattering of conductive

electrons. Under external magnetic field, the influence of domain boundaries disap-

pears; hence the entire sample becomes close to a single domain that is completely

magnetized, and its resistance decreases. It is noteworthy also that electrical resis-

tance of magnetic materials depends on the angle between magnetic field and cur-

rent. This phenomenon is anisotropic magnetoresistance. This effect, despite

relatively small size, is used in some devices to measure magnetic field in automation

systems and in alarm information devices.

Recently, the application of magnetoresistance effect becomes wider owing to

GMR discovery. It is seen in materials created artificially by the deposition on a sub-

strate some alternating ferromagnetic and nonferromagnetic layers of nanometer

thickness. The scheme of such layered structure with magnetization vector direction

in layers is shown in Fig. 6.30A.

The GMR effect was first observed in the films with alternating layers of iron and

chromium, but later many other combinations of layers are discovered. In films com-

posed of cobalt and copper layers, magnetoresistance is much larger than that in the

Fe-Cr films. The simplest device may consist of two ferromagnetic layers placed par-

allel to each other, in which electrical resistance depends on the relative orientation

of spins in magnetic layers. If magnetic moments in ferromagnetic layers are found

as parallel, the device has smaller resistance; if magnetic moments are found as anti-

parallel, the resistance increases greatly. Electrical current can flow both perpendic-

ular and parallel to segments. In both cases, the change in resistance is sufficiently

big (�40%).



FIG. 6.30

Three structures that show giant magnetoresistance: (A) layers of nonmagnetic material with

ferromagnetic layers, magnetized in opposite directions; (B) randomly oriented ferromagnetic

cobalt nanoparticles (large circles) in nonmagnetic copper matrix (small circles); and

(C) mixed system consisting of silver layers with cobalt nanoparticles and magnetic layers

of alloy Ni-Fe.
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The effect of constant magnetic field on the resistance of multilayer iron–
chromium system is shown in Fig. 6.31A. The degree of resistance change depends

on the thickness of iron layers and reaches the maximum at thickness of 7nm, as

shown in Fig. 6.31B.

This effect occurs from electron scattering dependence on the direction of their

spin relatively magnetization vector. The electrons whose spins are directed opposite

to that of magnetization B scatter more intense than electrons whose spins are

directed equally with B. Application of constant magnetic field along layers orients

magnetization vector of all layers in one direction. Conduction electrons whose spins

are directed opposite to magnetization are scattered on metal-ferromagnetic bound-

ary more strongly than electrons whose spins are oriented in the direction of mag-

netization. As both channels operate in parallel, the channel with less resistance

determines the impedance of a film.

The effect of magnetoresistance in layered materials is used in sensitive detectors

of magnetic field, and this effect is the basis for creation of new highly sensitive
FIG. 6.31

Magnetoresistance in Fe-Cr multilayered structure: (A) magnetic field applied parallel

to surface layers; (B) dependence on magnetic layer thickness.



2776.5 Nanomagnetic materials
magnetic head (capping for disk) that reads information. Until this effect discovery in

magnetic storage devices, the induction coil was used for operation with magnetic

small cells: such as in recording mode and for information reading. Giant magneto-

resistive reading head is much more sensitive than the induction one.

Compound materials, consisting of single-domain ferromagnetic nanoparticles

with randomly oriented magnetization, being placed in the nonmagnetic matrix also

show GMR. A scheme of such system is shown in Fig. 6.30B. Unlike layered struc-

tures, magnetoresistance in this system is isotropic. Magnetization vectors of ferro-

magnetic nanoparticles are oriented in the magnetic field, which reduces electrical
resistance. The influence of magnetic field on resistance increases with increase in

field strength and with decrease in size of magnetic particles. Typical measurement

results with film consisting cobalt nanoparticles in the copper matrix are shown in

Fig. 6.32A. A hybrid system, composed of metallic nanoparticles in matrix, placed

between two ferromagnetic layers (Fig. 6.30B) demonstrates similar properties.

The GMR effect is used in the heads of hard disks. On the basis of such magnetic

structures, many sensors, switches, and nonreciprocal devices are elaborated. Low

cost and low-power consumption promote high competitive ability of these devices.

Magnetic storage devices based on GMR devices can compete with conventional

semiconductor storage devices by the integration density, speed, and cost.

Some materials have even much higher magnetoresistance effect, as shown in

Fig. 6.31, and this phenomenon is called the colossal magnetoresistance. Corre-
sponding materials also have many opportunities for use, for example, in magnetic

recording heads or sensitive magnetometer elements. These materials have perov-

skite structure, such as LaMnO3, where manganese, similar to lanthanum, has a

valence of “+3.” If La3+ ions are partially replaced by bivalent ions such as Ca,

Ba, Sr, Pb, or Cd, then, in accordance to electroneutrality law, some manganese ions

should change their state from Mn3+ to Mn4+. The result is a system with mixed
FIG. 6.32

Dependence of magnetoresistance change on applied magnetic field: (A) for thin film of

cobalt nanoparticles in copper matrix; (B) for La-Ca-Mn-0 near the Curie point (250K).
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valences of Mn3+/Mn4+, in which large number of mobile charge carriers exists. It is

found that this system shows very large magnetoresistance. For example, resistance

of the La0,67C0,33MnОx system at magnetic inductance of 6T can be changed in hun-

dreds of times. The dependence of the resistivity of thin film made up of this material

on the applied magnetic field is shown in Fig. 6.32B.

Tunneling magnetoresistance is the effect of spin-dependent electron tunneling
through the nanometer layer of dielectric or semiconductor, located between two fer-

romagnets. This structure has a construction similar to that as shown in Fig. 6.30B,

but instead of the copper layer, a dielectric layer (A12O3) or semiconductor layer is

used. As in the case of giant magnetoresistance, electrons show tunneling, thus cre-

ating current from one ferromagnetic to another, if they have parallel magnetization.

Because the magnetization of ferromagnetics is antiparallel, probability of

tunneling greatly reduces, and hence current through a structure decreases sharply

owing to significant increase in resistance. At room temperature, the change in resis-

tance is around 30%, which enables to apply this effect in devices. As in the case of

giant magnetoresistance, soft and hard ferromagnetics are used. The state of magne-

tization is stored up to new magnetic switching; that is why, the switching can be

used as a transfer of bit of information in electronic memory. New computer mem-

ories are developed based on the tunnel magnetoresistance effect. Such devices use

very small currents; hence they have low power consumption. The imperfection of

these devices is that currents are directed perpendicular to layers. As a result,

decrease in the area of layers increases electrical resistance of device.

Development of spintronics significantly increases the operation speed and the

density of processed information.
6.6 SUMMARY
1. In addition to electricity, magnetism is the manifestation of electromagnetic

interaction. This interaction becomes apparent as moving electrical charges

influence each other at a distance from the magnetic field. Microscopic sources

of electrical field are electrical charges (electrons or protons). Microscopic

sources of magnetic field are orbital and spin magnetic moments of elementary

particles, atoms, and molecules. At the macroscopic scale, magnetic field is

created by electrical current or permanent magnets.

2. Classic statistical physics proclaims that electronic systems cannot have

thermodynamically stable magnetic moment, but this assertion contradicts

experiments. Quantum mechanics, which explains the stability of atom, account

for magnetism in atoms and in macroscopic bodies. In atoms and molecules,

magnetism is caused by the following:
• spin magnetic moments of electrons (spin magnetism);

• moving electrons in shells of ions and atoms (orbital magnetism);

• spin magnetism of some nucleons (nuclear magnetism).
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Nuclear magnetism is very small compared to electronic magnetism, but it is

still used in instrumentation as a method to study matter by the nuclear magnetic
resonance method and to obtain very deep cooling by the nuclear

demagnetization method.
3. All substances, but in varying degrees, respond to external magnetic fields;

hence they can be characterized by a certain magnetic susceptibility.
However, usually only those substances are called as magnetics, in which

ions or atoms without any external magnetic field influence have unpaired
electronic spins. Existence of noncompensated spin magnetic moments in

some atoms or ions is caused by partially filled 3d- or 4f-shells.

4. Interaction of orbital and spin magnetic moments in atoms with many electrons

follows from the law of space quantization; the resulting magnetic momentMj is

determined by the total angular quantum number j and equals to Mj ¼ gj [(j
+ 1)μB]

1/2, where gj is the Lande factor (factor of magnetic splitting) and μB is

the Bohr magneton—unit of magnetic moment, caused by electronic spin:

μB¼eћ2/2mec. Factor of magnetic splitting, or g-factor, describes important

magneto-mechanical ratio that shows how orbital and spin moments of

individual electrons are put together. In case of purely orbital moment g¼1,

whereas for pure spin moment g¼2.

5. Magnetic moment of atom in a crystal may differ significantly from the

magnetic moment of the same atom that is in a free state because of spin-to-spin

or spin-to-orbital interactions. These differences are particularly large for

third group of d-metals (iron group), in which 3d-shell has larger radius.
Interaction of magnetic electron in shells with their surroundings not only

affects the size of atomic magnetic moment but also causes the exchange

relationships between all magnetic atoms of a crystal. However, magnetic

moment of the rare-earth element crystals is determined by the deep-laid

4f-electrons; hence it is approximately equal to the magnetic moment of a

free atom.

6. The energy of magnetic interactions between atoms in crystals can be estimated

through the ferromagnetic Curie point or the antiferromagnetic Neel point,
above which magnetic ordering becomes thermally destroyed and the crystal

turns into a disordered paramagnetic state. Typically, these temperatures do not

exceed 1000K, and therefore magnetic interactions are much smaller than

electrical interactions in crystals.

7. According to the nature of interaction with magnetic field and the

nature of internal structure, all magnetic materials can be divided into

several types.
The disordered magnetic materials:
• diamagnetics, magnetically neutral materials (in which atoms and molecules

have no intrinsic magnetic moment); magnetic behavior of the material is

determined by law of Faraday electromagnetic induction, whereby
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molecular currents in matter vary to compensate change in magnetic flux

through matter;

• paramagnetics, in which particles have their own nonzero magnetic

moments that can be oriented along the applied magnetic field.

The substances with magnetic ordering of different types:
• ferromagnetics, in which owing to exchange interaction, the parallel

orientation of magnetic moments of atoms or molecules exists, which is

energetically favorable in macroscopic areas (domains);

• antiferromagnetics, in which exchange interaction is such that two or more

sublattices of crystal are oriented antiparallel, which in sum shows zero

magnetization;

• ferrimagnetics, which in contrast to antiferromagnetics cannot reach full

compensation of magnetic moments of sublattices; hence these materials,

generally, have nonzero spontaneous magnetization.

• substances with special magnetic ordering: spin glasses,

superparamagnetic ensembles of particles, molecular magnets and clusters,

plasma, elementary particles (in solid-state physics, magnetic properties

of plasma and elementary particles are not considered).
8. For examples of magnetically disordered structures, the electronic and nuclear

paramagnetism in crystals can be considered. Magnetic ordering of different

degrees is seen in ferro-, antiferro-, and ferrimagnetics including nanoparticles.

At sufficiently high temperatures (when thermal motion in crystals obstructs

magnetically ordered structure), any substance becomes either diamagnetic or

paramagnetic.

9. Diamagnetism is explained by the precession of electronic orbits in atoms, ions,

and molecules, and therefore it is inherent to all substances. Diamagnetic

susceptibility of materials is negative and small (æ��(10�6–10�5) and almost

independent of temperature. Most elements listed in the Periodic System of

Mendeleev have nonzero magnetic moment (e.g., atoms of sodium and

chlorine are paramagnetics). However, most crystals consist of ions or
molecules. That is why the molecular crystal Cl2 and the ionic crystal NaCl

are diamagnetics. One reason for molecule and crystal formation is that their

energy reduces through self-organization of “completely magnetically

compensated” electronic shells with zero magnetic moment. Thus in nature,

there are much more diamagnetics than it would be expected from

consideration of electronic shells of atoms in the Mendeleev Periodic System.

10. Paramagnetic susceptibility is positive (æ�+(10�6–10�1); typically, it

characterizes atoms and ions that have internal permanent magnetic moment.

This susceptibility depends strongly on temperature, usually, by Curie law:

æ �K/T. However, for most metals, their paramagnetic susceptibility is

originated by “free electronic gas,” equals approximately æ�+(10�6–10�5) and

does not depend on temperature that is explained by Pauli mechanism of

paramagnetism.
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11. In most dielectrics that practically have no conductive electrons, the magnetic

moments of electronic shells of ions, atoms, or molecules are totally

compensated (magnetic moments, sometimes, might have some nucleus, but

nuclear paramagnetism is extremely small). Therefore dielectrics usually are the

diamagnetics. Only some dielectrics whose atoms or ions have uncompensated

spins in the 3d- or 4f-electronic shells show Lanzheven-Curie paramagnetism.

12. In most metals, diamagnetism or paramagnetism dominates. Paramagnetism of

metals might have spin nature, inherent to conduction electrons (Pauli

paramagnetism). Owing to large Fermi energy of electrons in metals, the

paramagnetism of conduction electrons practically is independent on

temperature. Therefore for example, in alkali and alkaline earth metals, in which

electronic shells of ions have no magnetic moment, the paramagnetism is solely

due to conduction electrons and characterized by positive (paramagnetic)

susceptibility that is independent of temperature.

13. Electrons in metals can also show diamagnetic effect (Landau’s diamagnetism),

as the movement of electrons in magnetic field is quantized: when external

magnetic field is absent (H¼0), electrons in metal have no discrete stationary

states, but these states occur at H 6¼ 0. The fact that under the influence of

Lorentz force, moving electron revolves around H with cyclotron frequency

ωc¼eH/mec; this complicated movement can be represented by oscillator whose

frequency can take only discrete values. This effect, called Landau’s
diamagnetism, often makes small negative contribution to magnetic

susceptibility of metals.

14. Most nondoped semiconductors are diamagnetics. Paramagnetic susceptibility

of doped semiconductorsmay be caused by conduction electrons; in the simplest

case, such magnetic susceptibility exponentially depends on temperature:

æ¼AT1/2exp(�ΔE/2kBT), where A is the constant of a given substance and ΔE
is the band gap of semiconductor. However, semiconductor structure specifics

can greatly alter this general relationship. For example, at low

temperatures, semiconductors, typically, are diamagnetics, but at high

temperatures, they can manifest paramagnetism of electronic gas, which exceed

diamagnetic contribution to susceptibility.

15. Magnetic crystals and polycrystals with ordered spin and orbital magnetic

moments show “strong” magnetism—in sense that their permeability can be

large, and they can be a source of strong magnetic fields, which is widely used in

engineering. The degree of magnetization of these crystals is determined by total

magnetic moment, which is the vector sum of atomic magnetic moments. Proper

magnetic moment has atoms of transient group of periodic table of elements

because they are characterized by noncompletely filled inner electronic shells,

which are available to hold unpaired electron spin.

16. In simple ferromagnetic structures, all magnetic moments of atoms are directed

equally. Examples of such metals are the ferromagnetics Fe, Ni, Co, Gd, and Dy.
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These magnetically ordered metals behave similar to permanent magnets (in

case of single-domain structure). The simplest ordered antiferromagnetic
structures are also collinear, but their magnetic moments are directed oppositely,

and they are totally self-compensated. The axis, on which all these moments

are directed, is called antiferromagnetic axis. In collinear ferrimagnetic
structure, the neighboring atoms also show antiparallel orientation of

magnetic moments, but the total magnetic moment of elementary cell of

crystal is nonzero. Hence these structures have spontaneous magnetization,
inasmuch as magnetic moments of ions in different sublattices are

noncompensated.

17. The carriers of ferromagnetism are uncompensated electronic spins,

associated with electronic orbital moments in ions. In both cases, the electrons

have both spin and orbital moments. However, calculations show that only

spin-type magnetic interaction are not able to provide parallel orientation of

spins, which is the main characteristic of ferromagnetic at temperatures

below the Curie point. It is assumed (by Weiss) that stable orientation of

spins can be caused by amolecular field that has nonmagnetic nature. Forces that

coordinate magnetic moment orientation of ions have electrostatic nature.
They occur as a result of spin and orbital exchange interaction of electrons.

18. While cooling from high temperatures (i.e., cooling from disordered

paramagnetic phase), permeability of a ferromagnetic increases and reaches

the maximum at the Curie temperature TC. In paramagnetic phase, above the

phase transition point, Curie-Weiss law can be implemented: æ � μ¼C(T�θ),
where C is the Curie-Weiss constant and θ is the Curie-Weiss temperature

(the latter is slightly different from the phase transition temperature TC).

19. Sharp maximum of heat capacity is observed at the Curie temperature of

ferromagnetic; it is caused by excess energy necessary for magnetic

moments disordering. Moreover, in behavior of heat capacity of ferromagnetic,

another significant anomaly is seen: pronounced increase in heat capacity in

the ferromagnetic phase (differing from the smooth curve of saturation,

observed in nonmagnetic metals). Thus, the spin ordering is inherent to

ferromagnetic, and for its destruction, it is necessary to add energy

throughout the temperature range.

20. It is seen that the magnetic moment of bulk ferromagnetic materials at

temperatures below the Curie point is much lower than its theoretical

determination that can be defined for the case, when all atomic moments are

directed equally. This is due to the formation of domains: regions, in which all

magnetic moments of atoms are directed equally; hence in each domain,

magnetization corresponds to saturation, that is, it takes the maximum value.

However, in different domains of magnetic crystals (or polycrystal), vectors

of magnetization are not parallel to each other. Thus total magnetization of

ferromagnetic sample is lower than in case of complete ordering of atomic

magnetic moments. Therefore without external field, ferromagnetic crystal is
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composed of many small individual plots, magnetized to saturation—domains.

Domains are separated by layers—domain walls—in which spins gradually

change orientation, inherent in one domain, to orientation, inherent in the

neighboring domain.

21. At reversal operation (changing the direction of external field H), magnetic

moment M first increases to its maximum—to spontaneous magnetization

Ms, With decrease in external field, magnetization remains behind; hence if

magnetic field again becomes zero (H¼0), the induction is not zero, but its

value gains to residual value Mr. Phenomenon of magnetization lateness

while magnetic field changes is the magnetic hysteresis. For residual
magnetism disappearance, it is necessary to apply the counter field Hc that

can reverse magnetization of ferromagnetic. This field is the coercive field
(retentive force). Depending on the shape and area of hysteresis loop,

ferromagnetic materials are divided into the “soft” (low coercivity) and the

“hard” (high coercivity).

22. Magnetization of ferromagnetic materials is accompanied by changes in the

size and shape of magnetic sample. This phenomenon is calledmagnetostriction.
The reason for this effect (which is widely used in engineering) is large spin-

orbital coupling in ferromagnetic materials. Change in magnetic properties

in case of ferromagnetic deformation is observed experimentally, and it is

called the magnetoelastic effect. Some ferromagnetic materials are quite

sensitive to internal stresses that this property is used for strain and tension

measurement.

23. Magnetization makes essential influence on ferromagnetic deformation—the

magnetostriction. Conditioned by exchange interaction, it depends not only

on the applied magnetic field but also on temperature change (without any

external field). The thermally induced magnetostriction (sometimes called as

thermostriction) is the spontaneous effect (as it occurs when an external field

is not applied), and it is the greatest in the vicinity of the Curie point, that is,

when transition to magnetically ordered phase occurs. Some ferromagnetic

materials assume the name invar alloys: in them, negative (ferromagnetic)

deposit to thermal expansion (αf) compensates typical for all crystals positive
(anharmonic) thermal expansion coefficient (αa); hence total coefficient can be

practically zero (α¼αa +αf � 0).

24. The magnetocaloric effect involves change in material temperature during

magnetic adiabatic magnetization or demagnetization. Under adiabatic

condition (when there is no heat energy exchange with the environment), a

magnet does not absorb or return heat (dQ¼0), and therefore its entropy S does
not change: dS¼dQ/T¼ 0. Recently, the giant magnetocaloric effect was
discovered in intermetallic compounds based on rare-earth elements, for

instance, in the silicide-germanide system: Gd5(Ge-Si)4. This effect provides

application of magnetocaloric cooling. Another effect of adiabatic

demagnetization of paramagnetics is used for achieving extremely low

temperatures.
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25. The antiferromagnetic interaction occurs in case of negative sign of exchange

integral; hence antiparallel orientation of spins in lattice cells of crystal is

energetically more profitable. Spin locations are ordered, but no spontaneous

magnetization occurs because neighboring moments are directed antiparallel

and cancel each other. In such a crystal, two (or more) magnetically opposite

sublattices are interpenetrated.

26. The structure with antiparallel arrangement of spins is formed lower than the

temperature called the Neel temperature (TN), when spin interaction surpasses

chaotic thermal motion. If the crystal is heated above this temperature, the

uncompensated spins form a kind of paramagnetic system that is

characterized by a very special temperature dependence of magnetic

susceptibility: æ¼C(T +θ), where C is the Curie-Weiss constant, θ is the

characteristic temperature, which in contrast to paramagnetic phase of the

ferromagnetic is located in the negative part of Kelvin temperature scale.

27. In addition to totally magnetically compensated antiferromagnetics, there are

many crystals and polycrystals in which magnetic moments of sublattices

(although being directed opposite to each other) have significant difference

in their size—the ferrimagnetics. They have complicated structures with varying

nature of atom location that forms some uncompensated electrons in 3d- or
4f-shells. Ferrimagnetics have properties similar to those of ferromagnetic

materials because they have spontaneous magnetization owing to total magnetic

moment of sublattices is nonzero.

28. The nanophysics represents scientific direction in the field of material

sciences that at present is one of the most promising fields. It dedicates the

creation and study of structures and properties of materials, condensed in the

form of very small crystals, clusters, and fragments that have around 103–105

atoms. The main reason for differences between nanomaterials and

customary materials is that in these substances the ratio of surface to volume
is rather big. The smaller the size of nanocluster, the more the surface

properties dominate over bulk properties. In some sense, the nanostructures

transform properties of crystal surface into volumetric properties.

29. The nanotechnology is a scientific and technical direction for creation of

materials, devices, and functional structures of nanometer size. Only because

of small size of units (particles, granules, and phases), the nanomaterials

exhibit unique mechanical, optical, electrical, and magnetic properties. The

nanostructured magnetic materials can operate with a wide range of

characteristics. Moreover, nanotechnology can be used to create materials

with the prescribed type of magnetization curve—both for record magnetically

soft materials and for extremely magnetically hard materials.

30. Such magnetic materials that show great ability to magnetization and, at the

same time, the lack of hysteresis are superparamagnetics. The essence of this

term is that for temperatures below the Curie point in a wide temperature

range, they exist as if they were in the paramagnetic phase.
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31. The magnetoresistance is the effect of electrical conductivity change in solids

while placing them in the magnetic field. Multilayered structures composed of

layers of nonmagnetic material alternating between oppositely magnetized

ferromagnetic materials show significant change in their resistance when putting

them in the magnetic field. This phenomenon is called as the effect of giant
magnetoresistance (GMR). This effect can be either longitudinal, when
electrical current flows in plane of layers, or transversal, if current is
perpendicular to layers.

32. Recently, new scientific and technology direction is under developing—

magnetoelectronics, or as it is now called—spintronics, which deals with the

study and practical application of such effects in devices that use electronic spin.

Spintronics studies magnetic and magneto-optical interactions in metallic and

semiconductor structures, as well as quantum phenomena in magnetic structures

of nanometer size.

33. Electrical current, passing through magnetic crossing, under certain conditions

can be accompanied by the transfer of polarized spins, thus leading, in particular,

to switching of magnetization in layered nanoscale structures. Theoretical

examination of this phenomenon is based on the conception of exchange

interaction between electrons—carriers—and magnetic lattices in ferro-, ferri-,

or antiferromagnetics.

34. Magnetic materials are widely used in electrical engineering and electronics, but

in recent years of rapid development of information technology, they acquire

even greater importance. Magnetics are the main working bodies in

magnetoacoustic, microwave technologies, magneto-optics, and

magnetoelectronics (spintronics). Improvements in corresponding working

elements are based on the main principle of magnetism; this supported the rapid

growth of microelectronic and, particularly, nanoelectronic technologies.
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Dielectrics that include a majority of crystals, polycrystals, many amorphous mate-

rials, many liquids, and all gases might have quite different structures. The main

physical property that unites such different substances is their special behavior in

the electrical field; namely, in dielectrics the local displacement of electrical charge

occurs—polarization—and, at the same time, DC charge transference through

dielectric (electrical conductivity) is practically absent. Properties of gases, liquids,

crystals, and amorphous substances are so different that these materials are studied in

different fields of physics; therefore, it is not so easy to establish any common and

consistent approach in the physics of dielectrics. For this reason, it is necessary to

identify important features that characterize the substance as a dielectric.
7.1 MAIN FEATURES OF DIELECTRICS
It is known that physical properties of any substance can be divided into three main

classes: mechanical, thermal, and electrical (magnetic properties usually do not play

significant part in dielectrics, while their optical properties are determined by elec-

trical properties). The mechanical properties, reflecting internal bonds between

atoms, which include the elasticity, strength, and hardness, were described earlier

in Chapter 2. The thermal properties, conditioned by the internal energy of
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molecular, atomic, and electronic structures, are characterized by thermal expansion,

heat capacity, and thermal conductivity (described in Chapter 3).

The electrical properties, caused by forced movement of electrical charges, are

electrical polarization, electrical conductivity, absorption of electrical energy, and

electrical breakdown. This chapter is dedicated exclusively to the description of

the electrical properties of dielectrics.

Therefore, in physics of dielectrics, their electrical properties are positioned at the

first place. Mechanical and thermal properties in different classes of dielectrics are

considered only if they relate to electrical properties or to technical applications of

given dielectric. Regarding electrical properties of dielectrics, in addition to polar-
ization and the electrical conduction, the dielectric losses (absorption of electrical

energy) deserve an in-depth study. Next important points are physics of electrical
aging (i.e., electrical property variation over time in the increased external electric

field), as well as the nature of the electrical strength (i.e., insulating property pres-

ervation in strong electrical field), and the electrical breakdown, when insulator turns
into a conductive material.

It should be noted that besides the proper electrical properties listed, in contem-

porary physics and technology of dielectrics several phenomena are emphasized that

concern the interdependence of electrical, mechanical, and thermal properties of a

dielectric [1]. Typically, such relationship occurs in the noncentrally symmetrical

crystals and textures, as well as in the liquid crystals. For example, strong interde-

pendence of electrical and mechanical properties is most evident as piezoelectricity,
while the tie of electrical and thermal properties is manifested as pyroelectricity.
Electro-optical phenomena and photoelectric effects characterize the relationship

of electrical and optical properties of dielectrics; interdependence of electrical

and magnetic properties in certain crystals is associated with some electromagnetic

phenomena, and so on. Thus, physical phenomena in dielectrics might be quite com-

plicated and different [2].

It is possible to classify various electrical, thermal, and mechanical properties of

dielectrics as reversible and irreversible [3]. In the case of reversible properties, the
initial state of a matter can be almost completely restored after the removal of exter-

nal electric field. Electrical polarization could be mentioned as an example of revers-

ible electrical properties, while an example of thermal reversible properties is heat

capacity; in case of mechanical properties, an example of reversible property is elas-

tic deformation.

In case of irreversible phenomena, the consequence of impact remains even after

eliminating of cause. Considering electrical properties of dielectrics, the irreversible

properties are dielectric losses, electrical aging, and electrical breakdown. The irre-

versible thermal phenomena are melting or evaporation after material heating; the

mechanical irreversible phenomena include destruction of material under stretching

or compression.

In connection with the investigation of dielectric properties, it is also useful

to distinguish the transport phenomena in dielectrics, which occur when the

charge, the energy, or some part of material is transferred. For example, electrical
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conductivity is electrical charge transfer, while thermal conductivity is thermal

energy transportation. Plastic deformation is another example of irreversible

mechanical transfer of substance.

Among the wide variety of different properties of dielectrics, it is necessary to

highlight their main property that determines a special behavior of dielectrics under

both electrical field and other external influences. This property is electrical polar-
ization. For better understanding of this phenomenon, electrical polarization should

be compared with electrical conductivity, because both arise simultaneously when

external electrical field is applied.

From macroscopic representations of these phenomena, it should be noted that

during charge transfer electrical current varies in phase with applied electrical field,
and this current exists all time as long as electrical field is applied (for both alternat-

ing and direct (constant) voltage). At the same time, the charge separation (polari-

zation) results in a bias current differing in phase by π/2 from applied sinusoidal

electrical voltage. In the event that voltage is switched, the bias current exists only

at the time when electrical field is changing, and it is absent in the case of direct

voltage [4].

Continuing to discuss the differences of these two phenomena, it should be first

noted that conductivity relates to transport phenomena, while polarization (with rare

exceptions) is reversible property. It is also important to note that the internal struc-

ture of dielectrics is insignificant for free charge carrier movement. However, when

external electrical field is applied to dielectric, a small displacement of bounded elec-

tric charges prevails and symmetry of dielectric structure can be changed (due to elec-
trical polarization). At last, all particles of dielectric participate in the polarization,

changing their mutual position (usually they are shifted by a very short distance),

while manifestation of electrical conductivity is determined by only a few particles
(that are relatively free, and, therefore, capable of moving through the dielectric).

The electrical polarization (i.e., charge separation in the electrical field) is

the main property of dielectrics. To describe polarization, the vector P is introduced,

which is numerically equal to electrical moment per unit volume of dielectric, and

directed in accordance with applied field E direction and symmetry of dielectric.

In isotropic dielectric, vectors P and E are collinear, but in anisotropic dielectric,

directions of these vectors may be different.

Macroscopic electrical field, arising in dielectric between a pair of same elec-

trodes is smaller than that in vacuum, because it is determined only by the “free”

part of electrical charge located on the electrodes. This charge is partly compensated

by the polarization, which binds the part of total electric charge located on electrodes.

For this reason, the electric induction vector D needs to be introduced, which char-

acterizes the total charge on the electrodes (similar to vector Evac describing elec-

trical field in vacuum capacitor). Vectors P, D, and E are constrained by simple

relation, D¼ε0E+P, which can be obtained in macroscopic electrodynamics from

Maxwell’s equations. In case of dielectrics, these equations are simplified by the

assumption that in dielectrics relative magnetic permeability may be considered

μ¼1 as in vacuum [5].
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The polarized state of a dielectric, when it is induced by external electrical field,

can be described by several mechanisms of elastic, thermal, and space-charged polar-

izations, in which locally bound electrons, ions, or dipoles shift in the electrical field.

The quasielastic (deformation type)-induced polarization is the least-inertial

polarization; generally, it is slightly affected by temperature; so dielectrics with

this polarization are possible to use up to very high frequencies. Electronic quasie-

lastic polarization (deformation of electronic shells of atoms, molecules, or ions in

the electrical field) is a common mechanism for all dielectrics. Ionic quasielastic

polarization belongs to such dielectrics and semiconductors in which the ionic char-

acter of crystal lattice is markedly pronounced. Quasielastic dipole polarization is

observed only in case when external electrical field induces reversible change in

the direction of spontaneously oriented dipoles.

The thermally supported (relaxation) induced polarizations of solid dielectrics

are mainly caused by the structural defects, and this polarization is essential, if elec-

trons, dipoles, or ions are weakly bounded in the structure of dielectric. Remaining

localized in the nanoscale areas, these charged particles, under the influence of ther-

mal motion, make thermally activated jumps, moving at a distance of the order of

atomic dimensions. Electrical field influences the direction of this thermal hopping,

which becomes asymmetric and generates electrical moment. The inertia of ther-

mally activated polarization is much larger in comparison with the quasielastic

polarization.

The space-charge (migration) induced polarization is the additional mechanism

of polarization, which is observed in solids with heterogeneous structure. The causes

of this polarization may be a presence of layers or microregions with different con-

ductivity (e.g., the existence of semiconductor inclusions in technical dielectrics).

Conditioned by the space-charge migration polarization is the lowest-frequency

(highest inertia) mechanism.

The relative permittivity is one of the most important macroscopic characteris-

tics; static relative permittivity is always positive: ε>1. Because of anisotropy,

the value of permittivity may be different in various directions. This parameter

depends on many conditions. As different mechanisms of polarization have different

sluggishness, permittivity is dependent on frequency. In this regard, it is possible to

distinguish between dynamic and static dielectric constant as well as the difference

between permittivity of mechanically clamped dielectric and mechanically free

dielectric (in case of piezoelectric). In polar dielectrics (pyroelectrics), there is also

the difference between isothermal and adiabatic permittivity.

Thermodynamic consideration of dielectric polarization phenomenon allows cal-

culation of the free energy of polarization, as well as change in total energy, the

entropy, and other thermodynamic functions at polarization. These methods can

be used to calculate the energy function for polar dielectrics, which is of interest

when permittivity is not a constant, but depends on temperature and electrical field

intensity.

The electroconductivity (i.e., charge transfer in external electrical field) increases
energy of losses in the dielectric, and, moreover, can lead to electrical breakdown.
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Various types of moving charged particles may exist in dielectrics. Movement of

charged particles (mainly electrons and ions) over rather long distances results in

conductivity. In case of external field absence, free charge carriers (being generated

by thermal fluctuations) move chaotically. However, when electrical field (i.e., gra-

dient of electric potential) is applied, or at the presence of temperature gradient on the

random motion of free charges, the directional transfer is superimposed, leading to

electrical current [6].

Depending on the physical nature of charge carriers, the conductivity in dielec-

trics might have electronic, ionic, polaronic, or molar-ionic character. The mecha-

nisms of charge transport in electrical field can be divided into drift (electrons
and holes), hopping (for polarons and ions), and diffusion (available for electrons,

polarons, and ions). In case of ionic conductivity not only electric charge is trans-

ferred, but also a part of dielectric substance: negative charge carriers (anions) are

settled and discharged at the anode, while carriers of positive charge (cations) estab-

lish their residence and discharged at the cathode. Therefore, this is a case of not only

the charge but also the mass transfer occurs by electrical field.

The value of conductivity (σ) depends both on the concentration and on the

mobility of charge carriers. In dielectrics with increased polarizability, on the one

hand, charge carrier mobility reduces because charge carrier motion is braking

due to the fact that in solid dielectrics they are surrounded by polarized nanoregions,

while in liquids and gases free carriers may be joined to electrically neutral mole-

cules forming charged complexes. On the other hand, increased polarizability

(i.e., high permittivity) weakens the strength of Coulomb interaction between

charged particles, thereby increasing probability of charge carrier generation that

results in an increase in their concentration that, in turn, increases conductivity.

Electrical conductivity of dielectrics depends on many factors: σ(T, E, ω). With

increasing temperature, dielectric conductivity rises exponentially; the same effect

can be obtained in the strong electrical fields, because new charge carriers can be

excited by field. At relatively low frequencies (10�2–106Hz), a significant contribu-
tion to conductivity is provided by the delay of polarization, resulting in the increase

in effective conductivity with frequency rise. However, at further increase in fre-

quency (typically, in megahertz range), conductivity reduces owing to charge carrier

inertia.

Two most important electrical properties of dielectrics—polarization and

conductivity—are largely interdependent. For example, the larger the ionic conduc-
tivity in liquid dielectrics, the bigger is the polarizability (i.e., greater permittivity),

because, according to Coulomb law, large permittivity weakens the forces of charge

attraction, increasing the probability of dissociation of molecules into ions. There-

fore, polar liquids, such as water and alcohols, can be attributed to the ionic semi-

conductors rather than insulators.

A quite different relationship of conductivity and polarization is observed in

dielectric crystals that have predominantly electronic conductivity: higher polariz-

ability and lower conductivity. Low concentration of free charge carriers in dielec-

trics leads to the fact that in dielectrics the electrostatic field can exist for relatively
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long time. Besides, polarization gives rise to the fact that conduction electrons that

appear in dielectric as a result of various reasons (but in small quantities) turn into the

state of low mobility, because they polarize by its electrical field the local areas in

dielectric and can move only with those areas (polarons). The mobility of charge car-

riers in this case is reduced by tens and hundreds of times. Consequently, even the

availability of free electrons (generated in dielectric by activation of impurities)

cannot provide appreciable conductivity—for the very reason that local areas of

polarization hamper charge carrier movement [7].

In particular, phenomenon of polarization is possible because dielectric has a few

of free electrons and they have lowmobility so that they cannot shield electrical field

leading to polarization. On the contrary, in conductors the electrical field is screened

by the free charge carriers so that polarization in these conditions is usually impos-

sible: in metals, for example, screening radius is almost equal to the interatomic

distance.

Thus, in dielectrics, a relatively stable state exists with extremely low electronic

conductivity. Nevertheless, this stability can be compromised by the heating of

dielectric to high temperatures or by its external irradiation of high-intensity flows.

In both cases, charge carriers are generated in very high concentrations, so dielectric-

insulator can be transformed into a rather conductive material.

The sustainable nonconductive state of dielectric may be impaired by a very large

electrical field, when the velocity of electrons, moving under the influence of elec-

trical field, becomes so high that polarization cannot capture them into the state of

polarons. Excited by the field fast electrons cause the impact ionization, wherein con-
centration of charge carriers in dielectric grows rapidly that ultimately leads to the

breakdown—insulator turns into conductor.

It should be noted that in certain dielectrics high electrical resistance of noncon-

ductive state may be broken even in a weak electrical field and without excessive

heating or irradiation. In such substances, even a relatively small change in external

conditions—temperature, pressure, magnetic, or electrical fields—results in the

spasmodic (5 or even 10 orders of magnitude) increase in conductivity with the con-

version of insulator to conductor. This transformation, in contrast to electrical break-

down, is reversible. Such exceptional phenomena are observed experimentally, for

example, in vanadium oxides and in other transition metals oxides, as well as in

quasi-1D conductive polymeric compounds (such as TTF–TCNQ). This phenome-

non is known as phase transitions of “insulator-metal” type [8].

It should be noted also that a sharp (stepwise) increase in electronic conductivity

in dielectrics and wide-gap semiconductors sometimes is observed under increased

electrical field owing to “currents limited by space charge.” In contrast to break-

down, these phenomena are also reversible.

Under normal conditions, conductivity of dielectrics usually is less than

10�10S/m; for this reason, the electrostatic field can exist in dielectric for a long

time. At alternating electrical field, reactive current usually greatly exceeds active

current. In addition, dielectrics are the only possible medium for electromagnetic

field propagation over long distances.
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The dielectric losses (absorption of energy) represent a portion of electrical

energy that in the alternating electric field is converted into heat. Quantitative

description of dielectric losses includes several parameters: dielectric loss tangent

(tanδ), the loss factor (ε00 ¼ε0� tanδ), and the specific power of losses (p). The fre-

quency dependence of dielectric absorption is convenient to describe by a complex

permittivity: ε*¼ε0 � iε00. Frequency and temperature dependence of dielectric

losses are determined by the peculiarities of physical mechanisms that describe dis-

persion of electrical energy in dielectric. The most important of these mechanisms

are: (1) delay of migration mechanisms of polarization (below frequencies 103Hz),

(2) delay of thermally activated polarization in the frequency range of 103–108Hz,
and (3) damping of quasielastic polarization (at THz frequencies).

The delay of polarization results in the ε0(ω) decrease with frequency increase,

accompanied by the maximum of loss factor ε00(ω). In case of thermally induced

polarization, the dependence of ε*(ω) is described by Debye relaxation equation

while for quasielastic polarization ε*(ω) dependence is described by resonant

Drude-Lorentz equation. Dispersion of dielectric constant is interdependent change
with frequency of real (ε0) and imaginary (ε00) parts of complex permittivity (ε*).
The main properties of dispersion that should be satisfied by any dispersion equation

ε*(ω) are the Kramers-Kronig relations. In dielectrics, in a wide range of frequencies

and in different crystallographic directions, several areas of ε*(ω) dispersion are

usually observed that form the dielectric spectrum.
The relaxation dispersion is characterized by a gradual decrease in ε0(ω) with fre-

quency increase over the entire range of dispersion (∂ε0/∂ω<0). Blurred relaxation

spectra can be described by different empirical formulas, as well as by a model with

normally distributed relaxation oscillators. The resonant dispersion in all frequency

range is characterized by ∂ε0/∂ω<0 (with the exclusion of narrow range of reso-

nance). The expanded resonance spectrummay be due to increased damping of oscil-

lator describing dispersion, as well as by distribution of many oscillators in the

frequency range.

The electrical breakdown, typically, is the consequence of increased conductivity

in the strong electrical fields. Upon reaching a certain threshold of electrical field

(Ebr) the current, passing through the insulator, shows a dramatic increase, then,

electrical discharge occurs, which results in the mechanical destruction of dielectric.

The main physical mechanism of breakdown is the percussive ionization of dielectric

by acceleration in field electrons, which results in a sharp increase in charge carrier

concentration with electronic avalanche.

Electronic breakdown is characterized by a very rapid evolution, when dielectric
loses its electrical strength. The channels of electronic breakdown in crystals are

straight and oriented according to crystallographic axes. The value of Ebr in crystals

exhibits anisotropy. As a rule, electronic avalanche initiates a streamer that spreads

with photoionization processes. In case of small thickness of dielectric, the electronic

breakdown becomes multiavalanches.

Electrothermal breakdown occurs when dielectric loses its thermal stability,

owing to the heat generation in strong electrical field (due to conductivity or
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dielectric losses). At that, the heating occurs so intensively that it cannot be compen-

sated by the process of heat removal.

Electrochemical breakdown is conditioned by chemical reactions that stimulate

the increase of current in the dielectric. This results in irreversible changes in insu-

lating properties and significantly reduces dielectric strength and reliability. This

breakdown is caused by the electrical aging (degradation) of dielectrics. In the inor-
ganic dielectrics, the aging process occurs mainly in direct electrical field, and it is

conditioned by the formation of structural defects, contributing to electric current

increase. In polymers, the aging occurs mainly in alternating electrical fields owing
to occurrence of partial discharges in the gas inclusions that results in the erosion of

polymer surface or in the dendrite occurrence in the volume of polymeric insulation.
7.2 MACROSCOPIC DESCRIPTION OF POLARIZATION
Electrical polarization is the most important property of dielectrics. In this chapter,

only polarization induced by external electrical field is discussed. However, in the

noncentrosymmetric dielectrics polarization can be induced by mechanical action,
while in polar dielectrics by temperature change (these two kinds of polarization will
be discussed later in Chapter 9).

Electrical charges in dielectric structures are bound very tightly; therefore, con-

centration of free charge carriers that are involved in electrical conductivity is usu-

ally very small. In this connection, in further consideration of dielectric polarization,

it is assumed for simplicity a complete absence of electrical conductivity: σ¼0.

Electrically induced polarization originates under the influence of external elec-

trical field: electrically charged particles (from which dielectric is formed) are dis-

placed from their equilibrium position, creating induced electrical moment:

M¼PN
i¼1qixi, where N is number of charged particles in dielectric, qi is electrical

charge of ith particle, and xi is displacement of this charge from its equilibrium posi-

tion under influence of electrical field. The unit of measurement of electrical moment

is “Coulomb multiplied by meter” [M]¼C�m.
Electrical field, induction, and polarization. The bulk density of electrical

moment is polarization: P5M/V, where V is volume of polarized dielectric. The unit

of measure of polarization is [P]¼C/m2 that corresponds to another definition ofP as

a surface density of bound charges near electrodes of polarized dielectric capacitor

(Fig. 7.1A). Therefore, polarization quantifies the magnitude of electrical moment in

dielectric and depends on the value of electrical field, as well as on structural

characteristics (chemical composition) of a dielectric. Obviously, the higher the elec-

tric field strength, the larger the polarization. Unit of electrical field intensity is

[E]¼ V/m.

In general, the P(E) dependence may be more complicated (Fig. 7.1B), but in

majority of dielectrics, if electrical field is not very large, the relationship between

P and E can be regarded as linear:

P¼ ε0χE, (7.1)



FIG. 7.1

Macroscopic description of electrical polarization: (A) bound charges near electrodes of

polarized dielectric capacitor; (B) polarization dependence on electric field intensity;

(C) dielectric with electrodes is represented as electrical capacitor; (D) dependence of

electrical induction on electric field intensity in strong electric fields; (E) vectors E, P and

D in an electrical capacitor containing isotropic dielectric; (F) vectors E, P, and D in an

electrical capacitor containing anisotropic dielectric.

2957.2 Macroscopic description of polarization
where χ is dielectric susceptibility (dimensionless parameter). In vacuum susceptibility

is absent (χ¼0),while inmost of dielectrics it is found as χ¼0.5–10.However, in some

crystals (which, by the way, are of largest interest in electronics), χ¼100–10,000 and
even more. At that, parameter ε0¼7.854�10–12F/m is electrical constant that in SI

agrees dimensions of P and E (here [F] is farad, the unit of capacitance, [F]¼C/V).

Except polarization, there exists another important parameter to describe the

electrically induced polarized state in dielectric, namely, electrical induction:

D¼ ε0E+P: (7.2)

Induction is defined by the same unit as polarization: [D]¼C/m2 and it is also char-

acterized by a surface density of electrical charge on the electrodes (Fig. 7.1D). If

dielectric with electrodes is represented as electrical capacitor (Fig. 7.1A), the elec-

trical induction characterizes total charge on the electrodes of a capacitor: D¼ρs,
while polarization P characterizes only a portion of total charge that is related to

the opposite sign charges, close-fitting to the surface of polarized dielectric. Param-

eter ε is introduced as a proportionality factor between induction and electrical field:

D¼ εε0E: (7.3)

Dimensionless parameter ε is the relative permittivity (dielectric constant) that is
related to dielectric susceptibility χ by simple equation ε ¼1+χ.
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Dielectric constant is usually determined from electrical capacitance of capacitor.

In case of planar capacitor C with surface area S and thickness h, permittivity is

ε¼ Ch
ε0S
. Such capacitors are most often used in industry and for investigation of

dielectrics. For cylindrical capacitor (C) that has outer and inner diameters D and

d, respectively, and axial length l, the permittivity can be computed as

ε¼ C ln D=dð Þ
2πε0l

. Dielectric components of cylindrical form are, for example, coaxial

cables, piezoelectric elements, etc. If studied capacitor C has a spherical form (such

as piezoelectric elements for sonar or spherical pyroelectric element), it is character-

ized by values of outer and inner radiuses of spheres r1 and r2, and its permittivity can

be calculated as ε¼ C r2�r1ð Þ
4πε0r1r2

.

Dielectric nonlinearity. One type of possible nonlinear dependences of polariza-
tion on a field, P(E), is shown in Fig. 7.1B; it is associated with dielectric constant

dependence on electrical field, because ε¼1+P/ε0E. In principle, the ε(E) changing
should be observed in all dielectrics. However, in most of them this nonlinearity can

be considered only when the dielectric is subjected to extremely large dielectric elec-

tric field, 107–1010V/m, while the dielectric strength in solid dielectrics usually

equals Ebr¼108–109V/m.

Thus in majority of dielectrics, electrical breakdown occurs earlier than they

might show noticeable nonlinearity. However, in some dielectrics—ferroelectrics

and paraelectrics—dielectric nonlinearity can be essential even in electrical field

close to 105V/m that is much smaller than electrical breakdown field Ebr. It is nec-

essary to notice also that optical nonlinearity may be seen in any dielectric that is

exposed to powerful laser beam as light might be self-focusing in dielectric.

However, nowadays, with the advent of technologies, it is possible to obtain high-

quality thin (nanoscale) dielectric layers, in which dielectric strength is higher by two

to three orders of magnitude, so the voltage of electrical breakdown greatly

increases, and nonlinearity even in conventional dielectrics acquires significance.

Nonlinearity is determined not only by chemical composition, but also by struc-

tural features of solid dielectrics, and, particularly, nonlinearity is noticeable in the

vicinity of phase transitions. Because of huge variety of dielectric structures and their

polarization mechanisms, there is no simple way to estimate nonlinearity in all of

them, so the universal method might be applied to calculate nonlinearity in any

type of dielectric. Therefore, following analyses of dielectric nonlinearity can be

estimated only in general.
To describe functional dependence ε(E), the permittivity should be presented in a

form of rapidly convergent series [3]:

ε Eð Þ¼ ε + ε1E + ε2E
2 + ε3E

3 + ε4E
4 +⋯: (7.4)

In dielectrics with centrosymmetric structure, all coefficients with odd powers E are

equal to zero so that dependence ε(E) is even. Taking into account rapid convergence
of series (Eq. 7.4), parameter ε2 can be linked with differential nonlinearity
parameter Nε:

ε Eð Þ¼ ε + ε2E
2; Nε ¼ 1

ε

∂ε Eð Þ
∂E

; ε2 ¼ 1

2E

∂ε Eð Þ
∂E

¼ εNε

2E
: (7.5)
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In case of noncentrosymmetric dielectrics, both even and odd degrees in Eq. (7.4)

should be considered. However, in view of rapid convergence of series (Eq. 7.4),

it is enough to consider only coefficient ε1 with which it is possible to express the

differential nonlinearity parameter:

ε Eð Þ¼ ε+ ε1E; Nε ¼ 1

ε

∂ε Eð Þ
∂E

; ε1 ¼ ∂ε Eð Þ=∂E¼ εNε: (7.6)

Permittivity dependence on electrical field reflects the microscopic processes of

polarization, when dielectric polarizability depends on the intercrystalline properties

(internal Lorentz field F that is associated with field E).
Therefore the nonlinearity of electrical polarization dependence on electrical

field always takes place; in very strong electrical field, even vacuum is nonlinear.

In the vast majority of dielectrics nonlinearity can be observed only in the electric

fields, comparable (or greater) to the field of electrical breakdown. The reason for

this is that internal energy of electromagnetic interactions in atoms, molecules,

and crystals is much higher than the energy of possible nondestructive impact on

dielectric. However, there are exceptions [8]:

1. Because of low inertia of electrons, ordinary breakdown at optical frequencies

does not occur, because there is no enough time for electronic avalanche (reason

for breakdown) increase. Therefore, in strong electrical field of giant laser

pulse (when intensity of this field becomes close to internal fields of atoms),

the nonlinearity of optical polarization is sufficient for observations and

applications, that is a physical basis of the nonlinear optics.
2. Near the phase transitions in dielectrics (e.g., ferroelectric transition) the forces of

interaction between nearby atoms are almost compensated; therefore external

influences, including applied electric field, result in significant response:

permittivity is large (ε �104), while the nonlinearity Nε is proportional to ε3.
3. In connection with the achievements of nanotechnology, it is possible to obtain

high-quality thin layers of dielectrics, in which field of electrical breakdown

increases by thousands of times. This implies a possibility to obtain (and to use)

significant dielectric nonlinearity in case of usual mechanisms of polarization.

Dielectric anisotropy.Unlike most dielectrics that are simple isotropic insulating

materials and have identical properties in any direction, the noncentrosymmetric
dielectrics are usually characterized by the anisotropy of their electrical, thermal,

and mechanical characteristics. In such “active” (or “smart”) dielectrics, their elec-

trical and electromechanical parameters are quite different in various directions in

the crystals or textures.

In this context, it is important to note that electrical field E, polarization P, and

electrical induction D are the vector quantities. In conventional isotropic dielectrics,
vectors D, E, and P are collinear; Fig. 7.1E shows these vectors in an electrical

capacitor containing isotropic dielectric.

However, in the anisotropic dielectric vectors D, E, and P differ in their orien-

tation (at that, vector relation D¼ε0E+P always remains true). Furthermore, it is

considered to accept that vector P is directed from negative charge to positive.
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If dielectric is isotropic, this vector sum corresponds to sum of vector modules, as

directions of all three vectors coincide. In such isotropic dielectric, electrical field is

directed perpendicular to electrodes.

In the anisotropic dielectric-induced polarization is directed in accordance with

internal elastic bonds of the constrained electrical charges so that vector P is not par-

allel to vector E. As a result, the direction of total electrical induction vector D also

has a direction different from vector E (Fig. 7.1F), so that permittivity that charac-

terizes relation between D and E (D¼εε0E) is a parameter that differs in various

directions.

Tensor of permittivity. In contrast to scalar parameters (such as material density,

temperature, or specific heat), vectors are defined by three parameters—by their pro-

jections on coordinate axes. Accordingly, polar vectors D, E, and P can be repre-

sented without vector notation, but with the subscripts m, n¼1, 2, 3. The

transformation from one vector to another can be described as

Dm ¼ ε0εmnEn, Pm ¼ ε0χmnEn: (7.7)

It can be seen that in anisotropic media tensor-type components εmn and χmn are

shown with two indices. One of these comes from the “impact” vector (in this case

it is En), while another from the “response” vector (e.g., Pm) whose direction may not

correspond to the direction of impact. Thus, to describe electrical, mechanical, and

electromechanical properties of anisotropic crystals tensors should be used, which

are physical or mathematical quantities that are transformed by different laws as

compared to scalar quantities.

As is well known, vector algebra differs from ordinary algebra by introducing the

concepts of gradient (e.g., E¼gradφ, where φ is electrical potential), divergence
(one of Maxwell’s equations is divE¼ρ), and rotor (other Maxwell equation is

rotE¼�∂B/∂ t). In this case, all vectors are first-rank tensors, and they are recorded
with single subscript: Εn, Dm, Bj, etc. Scalar values, according to this classification,

are zero-rank tensors that are written with no lower indices and converted by ordi-

nary laws of algebra, for example, δQ ¼CVδT, that is, change in heat δQ equals to a

product of heat capacity on temperature change δT.
Permittivity εmn and susceptibility χmn, as well as the conductivity σmn, the per-

meability μmn and some other parameters of anisotropic crystals and textures are sec-
ond-rank tensors. Double letters in indices denote summation: for example,

Dm¼ε0εmnΕn means m, n¼1, 2, 3. Eq. (7.7) is shorthand for three equations. In this

case: Dm ¼ ε0
P3

n¼1εmnEn, in more detail:

D1 ¼ ε0 ε11E1 + ε12E2 + ε13E3ð Þ;
D2 ¼ ε0 ε21E1 + ε22E2 + ε23E3ð Þ;
D3 ¼ ε0 ε31E1 + ε32E2 + ε33E3ð Þ:

Parameters εmn are associated with various components of vectors Dm and En: for

example, ε13 is the material parameter that connects electrical displacement compo-

nent D1 induced in the anisotropic crystal by component E3 of externally applied
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electrical field. In isotropic dielectric, obviously, ε13 ¼0 and ε12¼0, while ε11, ε22,
and ε33 are the only nonzero values, all of which are identical, and, therefore, can be
written as scalar quantity: εmn ¼ε.

Components of permittivity tensor εmn might be presented in the form of matrix

εmn ¼
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

2
4

3
5: (7.8)

In case of isotropic dielectric (glass, amber, plastic, nonpolarized ceramics, etc.), this

matrix contains only components of main diagonal εmn ¼ε. However, ferroelectric
ceramics, for example, after prolonged application of strong electrical field become

polarized in one direction: domains are oriented by external field so that the preferred

direction exists—the polar axis z. For such a case of polarized ferroelectric that is turned
into a texture with highlighting axis z (usually z¼3). Along this axis, permittivity is

ε33 while perpendicular to it is ε11¼ε22. Corresponding matrices have the form:

εmn isotropic diel ¼
ε 0 0

0 ε 0

0 0 ε

2
4

3
5; εmn polarized ceramics ¼

ε11 0 0

0 ε22 0

0 0 ε33

2
4

3
5:

In the low-symmetry crystals (with a small number of symmetry elements) and in the

case of arbitrary orientation of electrical field vector (not along principal axes of

crystal), the permittivity tensor can have all six components (this is their maximum).

From matrix (7.8) formally follows that the number of εmn components must be nine,

but εmn is the symmetric tensor (as well as conductivity tensor σmn); this means

εmn¼εnm (as well as σmn¼σnm). The matrix (7.8) is the symmetric matrix as to

the main diagonal. Such matrices can always be transformed to diagonal form, when

all components of tensor εmn, except for the diagonal components, equal zero.

It is known from analytical geometry that the main (diagonal) components of

matrix can be represented by the axes of ellipsoid. In this case, it is the ellipsoid
of permittivity:

x2

ε11
+
y2

ε22
+

z2

ε33
¼ 1:

In isotropic dielectric ε11¼ε22¼ε33 and dielectric ellipsoid becomes a sphere. In
tetragonal, hexagonal, and trigonal crystals, as well as in polarized ferroelectric (tex-

ture) components ε11¼ε22, but they differ from the ε33 so that dielectric ellipsoid

becomes the ellipsoid of rotation. For this type of dielectric, there are two main

values of permittivity, ε33 and ε11, which can be experimentally determined as the

permittivity along the crystal main axis and perpendicular to it. Fig. 7.2 shows

geometric representation of different material tensors; dielectric ellipsoid is shown

in Fig. 7.2C [4].

As an example, hexagonal piezoelectric crystal quartz has ε11¼4.5 and ε33¼4.7,

tetragonal crystal barium titanate (ferroelectric) has permittivity ε11¼4000 and

ε33¼200 (at 300K), while potassium dihydrogen phosphate (KDP) at 300K has

ε11¼42 and ε33¼27.



FIG. 7.2

Images of material tensors of various ranks: (A) zero¼rank tensor (scalar); (B) first-rank

tensor (pyroelectric coefficient); (C) second-rank tensor (dielectric constant); (D) second-

rank tensor (coefficient of thermal expansion), (E) third-rank tensor (piezoelectric modulus);

(F) projection of fourth-rank tensor (elastic compliance).
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Crystals of low symmetry (triclinic, monoclinic, and rhombic) are characterized

by dielectric ellipsoid of general form, and have three main values of εmn. For exam-

ple, ferroelectric Rochelle salt is characterized by ε11¼2000, ε22 ¼7.5, and

ε33¼7.5. At that, the permittivity of cubic crystals (highest symmetry) looks like

scalar, such is the crystal NaCl with ε ¼5.6.

For description of induced polarization (arising in dielectrics in external electric

field), tensor εmn is used in such cases, if exposure (intensity) parameter is the

electrical field En, while induction Dm is the response (extensive parameter).

In the opposite case, a tensor of inverse permittivity can be introduced: βmn¼εmn
�1.

Dimensionless physical quantity βmn is the dielectric impenetrability. This parameter

is used, for instance, in the equations of piezoelectric effect, which will be discussed

in Chapter 9, because in some cases it is not enough to consider only the tensor εmn.
In case of piezoelectric, the permittivity is strongly dependent on mechanical

conditions, in which crystal or texture is studied or used. When electrical field

can freely deform piezoelectric, its seeming dielectric constant will be higher than

when mechanical strains are restricted. This important effect is because piezoelectric

is an electromechanical transducer; hence, electrical energy that is applied to
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piezoelectric is responsible not only for electrical displacement of electrons, ions, or

dipoles, but also for macroscopic elastic deformation of piezoelectric as a whole.

In this connection, it is necessary to distinguish the εX (permittivity of free crystal,

in which there is no mechanical stress, X¼0) and the εx (permittivity of clamped

crystal, in which piezoelectric strain is absent, x¼0), so only microscopic polariza-

tion mechanisms are possible. For the piezoelectric, the inequality εX>εx is always
true, because the εX contains additional mechanism of reversible energy storage—the

elastic displacement of crystal as a whole.

Piezoelectric contribution to permittivity may be quite different. For example,

accurate measurements of quartz show ε11
X ¼4.52 and ε11

x ¼4.43, ε33
X ¼4.70

and ε33
x ¼4.64; therefore in this crystal piezoelectric contribution is small:

ε11
X �ε11

x ¼0.09 and ε33
X �ε33

x ¼0.06. However, in barium titanate crystal at 300K

components of permittivity are ε11
X ¼4000 and ε11

x ¼2000, ε33
X ¼200 and ε33

x ¼90;

hence piezoelectric contribution to permittivity in this crystal is essential:

ε11
X �ε11

x ¼2000 while ε33
X �ε33

x ¼110. Therefore the electromechanical contribution

to barium titanate permittivity shows large anisotropy, and it equals approximately

half of the total value of dielectric constant.
7.3 DIFFERENT MECHANISMS OF POLARIZATION
The microscopic conception of polarization mechanisms can be reduced to a few rel-

atively simple models of electrical moment appearance in the electrical field. As the

quantum-mechanical calculations of atomic electron shell interaction with nuclei are

difficult even for some simple molecules, then, to describe electrical polarization in

solids, consisting of a set of atoms, ions, or molecules, it would suffice to consider the

simplest models of electrical moment arising based on classical concepts.
When electrical field is applied to a solid dielectric, the closely connected charges

of structural units are displaced relatively to each other, whereby dielectric becomes

polarized. External electrical field induces in a dielectric the elementary electrical
moments p¼qx, where q is a charge of constrained units and x is their mutual

displacement.

Field-induced electrical moment may get contribution from:

• electrons displaced from their equilibrium positions in atoms;

• ions deviating from equilibrium state in crystal lattice;

• dipoles (polar molecules) changing their orientation in electrical field;

• macrodipoles (electrically charged radicals or complexes in the inhomogeneous

structures).

Electrons, ions, and dipoles (including macrodipoles) can acquire their electrical
moment (i.e., polarized state) through various mechanisms.

If particles are tightly connected in a structure, the external electrical field (or

other impact) leads only to very small (compared with atomic dimensions) deviations

from the nonpolarized equilibrium state. However, as in the process of polarization
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all particles of dielectric are involved, even these small displacements of charges

cause significant integral effect—the polarization. Such a mechanism is called the

quasielastic polarization.
The main mechanisms of quasielastic polarization are shown schematically in

Fig. 7.3A and B [4]. In the nonpolarized state (E¼0) electron shells of atoms are

located symmetric with respect to nuclei (Fig. 7.3A, left-hand fragment) so that

the effective center of negative charge of electron shell coincides with positively

charged nucleus. Accordingly, the elemental dipole moment is zero (p¼0), because

it is determined by a product qx¼p but relative displacement of charges q+ and q� is

absent: x¼0.
FIG. 7.3

Microscopic mechanisms of polarization: (A, B) three mechanisms of quasielastic

polarization: fragments of dielectric in the absence of electric field E and when it is applied;

(C, D) three mechanisms of thermally activated polarization: fragments of dielectric in

the absence of electric field E and when it is applied.
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If electrical field is applied (Fig. 7.3B), it influences each atom, molecule, or ion,

and their electron shells distort and displace with respect to nuclei, whereby the cen-

ter of negative charge shifts relatively to the positively charged nucleus so that ele-

mentary polar moment appears: p¼qx >0. This is the mechanism of electronic
quasielastic polarization.

In the ionic crystal, in the absence of externally applied electric field (see

Fig. 7.3A, central fragment), crystal lattice sites are balanced by cations and anions.

This system of charges is electrically neutral, and it does not show any electrical

moment (polarization). However, in the applied external electric field (Fig. 7.3B),

cations and anions displace, forming the polarized lattice of q+—q�with elementary

electrical moment p¼qx >0. By this way, the ionic quasielastic polarization arises,
which, in the ionic crystals, has great importance.

The energy characteristics of quasielastic polarization process are shown in

Fig. 7.4A. Elastic energy of bound particles (ions in crystal, electrons in atom, dipole
FIG. 7.4

Explanation of different polarization mechanisms: (A) energy that characterized

quasielastic polarization mechanism; (B) energy diagram of thermally activated (relaxation)

polarization mechanism; (C) frequency dependences of dielectric contributions from

migratory, thermally activated, and fundamental (lattice) crystal polarization.
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in lattice) can be given by equation U¼½ cx2, where c is quasielastic coupling coef-
ficient and x is elastic displacement from equilibrium position. In the absence of

external influences, x¼0 and the charged particle is localized in the bottom of a par-

abolic potential well. Under the influence of electric field particle acquires extra

energy U ¼½ cx2�qxE. This energy is added to elastic energy; therefore the min-

imum of energy shifts to a new position x>0 (Fig. 7.4A), in which particles already

have elementary electrical momentum p¼qx and contribute to polarization. Switch-
ing off the electrical field leads to rapid establishment of former equilibrium posi-

tion, when x¼0 and elastic polarization disappears.

On the right-hand fragments of Fig. 7.3A and B, the third quasielastic mechanism

of polarization is shown, namely, the elastic rotation of constrained dipoles. It is pos-
sible only when the intrinsic polarity exists in dielectric (in the absence of external

electrical field), which is observed in the noncentrosymmetric dielectrics. Ordering

of dipoles in such polar lattice is conditioned by their internal interaction (usually it
is due to mixed ionic-covalent polar bond); therefore dipoles are oriented spontane-

ously. External electrical field alters orientation of all dipoles, and thereby electrical
field changes local electrical moment of a structure, that is, all dipoles obtain new

orientation, induced by the field (Fig. 7.3B, right-hand fragments). This is the mech-

anism of dipole elastic polarization.

By switching off the externally applied field, all three previously mentioned

mechanisms of polarization disappear very rapidly: dielectric returns to its equilib-

rium (nonpolarized) state. At that, electrons occupy their electrically symmetric

position relatively to nuclei due to Coulomb forces of attraction; cations and anions

will return to their stable (equilibrium) position in the crystal lattice sites by forces of

electron shell repulsion. Coordinated dipoles return to their initial orientation (in

which energy of oriented dipoles in given crystal is minimal). However,

sometimes—in the ferroelectrics—there are some large areas, called as domains,
which can remain in the new rotated state.

Besides the quasielastic (deformation type) polarization, the electrons, ions, and

dipoles (or macrodipoles) may also participate in the mechanisms of thermally
induced and migratory polarization.

In case of weak bonding in a structure, some electrons, ions, and dipoles can be

greatly influenced by thermal (chaotic) motion of particles, and their motion may

have influence on polarization (Fig. 7.3C and D). These figures show that such par-

ticles (usually they are impurities) are isolated in the local (nanoscale) areas; hence,

they are not main structural elements of dielectric. However, these electrically

charged impurities are loosely bound in the crystal lattice and they can change their

position, remaining yet in the vicinity of structural defects in dielectric.

Being localized in their nanoareas these particles under the influence of thermal

movement make thermally activated jumps, moving over a distance in the order of

atomic dimensions. At that, their abrupt displacement exceeds 104–106 times the

value of small quasielastic displacements of main structural units of a crystal (which

produce quasielastic polarization). For this reason, thermally activated jumps of

weakly bounded charged particles can have a significant effect on the permittivity.
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The electronic thermally activated polarization is conditioned by weakly

bounded electrons, for example, electrons that compensate charged structural

defects. These defects, for example, might be anion vacancies (lack of negative ions),

as shown in Fig. 7.3C, left-hand fragment. Charge compensation occurs, because

crystal lattice always should be electrically neutral: that is, the number of negative

charges in a lattice should be equal to the number of positive charges.

The electron whose charge compensates the charge of missing anion is localized

near surrounding cations; at that, the orbit of this electron becomes large and

deformed: it is stretched in the direction of anion vacancy to compensate the absent

charge (Fig. 7.3C, left hand). This leads to local electrical moment formation:

p0¼ql0, where l0 is close to lattice constant (�3nm). The magnitude of this moment

is not determined by external electric field; this “permanent” dipole moment p0 is
thousands of times higher than possible electrical moment induced by external field

during elastic polarization (p¼qx, where x is induced elastic displacement, has the

order of 10�5nm).

Weakly bonded electron (localized near the anion vacancy) even at the absence of

external field, from time to time, under thermal chaotic motion jumps from one of

neighboring cation to another, overcoming energy barrierU0 (Fig. 7.4B). At that, the

direction of inserted dipole moment p0 should be changed. Despite the fact that the

quantity of these defective places in real dielectric is not large (1014–1020cm�3, as

compared with concentration of basic structural units of crystal �1023cm�3), mac-

roscopic polarization in crystal does not arise because all “permanent” dipoles are

oriented randomly at any time.

Externally applied electrical field reduces the potential barrier (Fig. 7.4B) that

results in the excessive orientation of “electron–cation” dipoles in accordance with

applied field direction (Fig. 7.3D, left-hand fragment). Such is, in general terms, the

mechanism of electronic thermally activated polarization. This polarization is called
as “thermal” because jumps of electron between surrounding cations are conditioned

by thermal energy of crystal. Electrical field that has relatively low impact energy

ΔU <kBT (Fig. 7.4B) leads only to a certain redistribution in the local electrical

moments p0 orientations.
The ionic thermally activated polarizationmechanism (Fig. 7.3C and D, the mid-

dle fragments) is largely similar to the electronic thermal polarization mechanism. It

is assumed that in crystal lattice some impurity (embedded) ions are present that usu-

ally have smaller ionic radius (e.g., positive ions). This model is close to common

ionic crystals, doped by very small lithium ions (one of experimental example). It

is assumed that impurity cations are located in the interstices of a structure, and their

charge compensation is carried out due to increased charge of one of neighboring

anions. In the vicinity of such anion, the impurity ion makes thermally

induced jumps.

These jumps are hampered by potential barrier (Fig. 7.4B), because in order to

change its localization the impurity ions need to overcome repulsive forces of elec-

tron shells of neighboring ions. Dipole moment p0 is created between jumping impu-

rity ion and fixed charge-compensating anion (that has a larger radius).
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When the ion of impurity makes hopping in the vicinity of its localization, it

changes the direction of electrical moment with neighboring ions. In the absence

of external field, a set of such polar defects are reoriented chaotically that usually

does not result in integral polar moment—polarization. (However, there are some

uncommon examples, when the interaction between such polar defects leads to spon-
taneous polarization—artificial ferroelectricity.)

In the externally applied electrical field E (Fig. 7.4D), along ion hopping, a direc-

tion of asymmetry appears, and thereby macroscopic polarization arises (in this case,

thermally activated ionic polarization). After electrical field switching off, due to the
disorienting effect of thermal chaotic motion, electrically induced thermal polariza-

tion gradually disappears.

Energy barrier U0 that should be overcome by impurity ion (Fig. 7.4B) is much

greater than energy of thermal motion of particles in dielectric: U0≫kBT. However,
the probability of thermal hopping of ions (as well as likelihood of thermal reorienta-

tion of dipoles) increases with increasing temperature. These thermally activated

jumps occur on average distance δ that is defined by crystal structure, but does
not depend on external field E (as opposed to the elastic polarization, when the size

of elastic displacement is determined by a field: x �E). In case of thermally activated

polarization, the external field only changes the probability of particle hopping over
barrier. One of the potential wells, as compared to the other, becomes deeper on

ΔU≪U0, while another becomes shallow. Their difference depends on applied field:

ΔU ¼qδE, that is, the contribution of added electrical energy on a distance of ther-

mal hopping.

The dipoles thermally activated polarization in crystals and textures can be

approximately characterized by a model, shown in the right-hand part of

Fig. 7.3C and D. In the absence of external field, the permanent dipoles already exist,

but they are distributed randomly. Externally applied electrical field results in pref-

erential orientation of dipoles; as a result, the electrical moment appears. In practice,

realization of thermal dipole polarization in dielectrics is limited by a certain number

of stable orientations of permanent dipoles (in accordance with symmetry of crystal

or polar texture). In the absence of external field, these dipoles are oriented uniformly

in all permitted directions, but after electrical field switching, the likelihood of ori-

entation of dipoles in the favorable direction increases.

It is obvious that all thermal polarization mechanisms are much slower in com-

parison with elastic polarization. In case of elastic polarization, externally polarized

system of elastically bounded charges after electric field removal returns to its equi-

librium (nonpolarized) state very fast (at time 10�12–10�16 s). On the contrary, in

case of thermally activated polarization, thermally stimulated electrodiffusion takes

place by the jumps of “semifree” electrons (or ions) through potential barriers. It is

obvious that such a process is relatively slow, and it needs a time of about 10�2–
10�9 s. At that, the time of thermal relaxation is strongly dependent on temperature

that characterizes the intensity of thermal movement.

The migratory polarization that is peculiar for certain active (smart) dielectrics

(polarized textures) is the slowest polarization mechanism (Fig. 7.4C). When it
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occurs, some of free charges can move at rather great (almost macroscopic) distance.

In this case, the accumulation of electrical charges takes place at the boundaries of

structural irregularities (between-crystallite layers, interstices, large-scale defects)

that determines the space-charged polarization. This mechanism significantly

increases low-frequency capacitance of electrical capacitor, containing heteroge-

neous dielectric. The migratory (or space-charged) polarization cannot be attributed

to the microscopic mechanisms of polarization and, therefore, their “permittivity”

depends on dimension of studied capacitor; in case of migratory polarization, the per-

mittivity is called as the “effective,” εef.
In piezoelectric and pyroelectric textures (ceramics), the large dipole groups are

involved in migratory polarization (by orientations of different sizes domains),

which also should be described by the εef.
In frequency dependence of permittivity, the contribution of migratory polariza-

tion (εef¼εmigr), as well as contribution of thermally activated (relaxation) polariza-

tion (ε¼εtherm) are shown in Fig. 7.4C. In case of high concentration of charged

structural defects, these dielectric contributions may be much larger than the permit-

tivity of pure (ideal) crystal εcryst. However, at higher frequencies (starting from the

acoustic frequency range), the space charge has no time to be accumulated and dis-

sipated; as a result, the migratory polarization is late, that is, the εmigr shows fre-

quency dispersion. In the frequency range of dielectric constant dispersion, the

maximum of dielectric losses (tanδ) is also observed.

Microscopic structural defects resulting in the thermally activated polarization

εtherm demonstrate dielectric contribution at frequencies below 105–109Hz, depend-
ing on temperature and type of structural microscopic defects. Dispersion (frequency

dependence) of εtherm is also accompanied by the maximum of dielectric loss.

Different inertia of various mechanisms of electrically induced polarization

allows the experimental selection of their dielectric contributions, when properties

of dielectrics are studied in a wide range of frequencies. This method of dielectric
spectroscopy is suitable not only for the detection of main contributions to εmigr

(space-charge polarization or domain reorientation in textures and composites),

but also for studying crystals with perfect structure, where impurities, defects, and

space charges do not affect the ε-value. In this case, the ε-variance is determined only

by the “fundamental” mechanisms of polarization (Fig. 7.5).

Investigation of dielectrics in a wide frequency range (10�3–1016Hz) makes it

possible to separate different mechanisms of polarization and to find correspondent

“dielectric contributions”Δε (Fig. 7.5). Quasielastic displacement of electrons (elec-

tron shell deformation in atoms, ions, or molecules) is the most high-frequency polar-

ization mechanism, which has enough time to respond even at visible optical

frequencies (about 1015Hz). For this reason, electron shell displacement determines

optical contribution to permittivity εopt (Fig. 7.5A). Only at ultraviolet frequencies,

optical contribution to permittivity disappears with several resonances.

The ionic quasielastic polarization (relative shift of cationic and anionic sub-

lattices in crystals) entirely responds to the microwaves, but this polarization

shows resonant ε-dispersion in the far-IR frequency range (Fig. 7.5B). The ionic



FIG. 7.5

Dielectric spectra of different dielectrics and contributions to permittivity from different

polarization mechanisms: (A) optical polarization; (B) ionic polarization; (C) dipole orientation

thermal polarization; (D) electromechanical and electrocaloric dielectric contributions in

dielectric permittivity; εopt—electron displacement; εion—ion displacement; εdip—thermally

activated orientation of dipoles; εEM—electromechanical polarization; εEC—electrocaloric

polarization.
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polarization determines the dielectric contribution εion that may be measured at

microwave frequencies.

The thermally activated orientation of dipoles is a specific polarization mecha-

nism for polar dielectrics. As against electronic and ionic polarization (that need
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no thermal activation), the dipoles, as a rule, can be oriented by the electrical field

with the support of chaotic thermal movement in a dielectric. For this reason, dipole

orientation is a relatively low-frequency polarization mechanism with the contribu-

tion εdip that leads to relaxation dispersion, usually below frequency of 108Hz

(Fig. 7.5C). In principle, only these three mechanisms of polarization entirely

correspond to the microscopic Lorentz model.
Most of comparatively low-frequency and radiofrequency measurements of

permittivity are provided by the capacitance measurements of electrical capacitor

prepared from the studied material. The capacitance is calculated from the value

of reactive electrical current that occurs due to “displacement” of electrical charges

under alternating voltage.

However, in the accepted definition of ε (from capacitance measurements), some

uncertainties may occur:

1. Under electrical field influence on the noncentrosymmetric dielectric

(piezoelectric), a part of “reactive” (returned) energy can be stored in the

mechanical form (in the elastic deformation of piezoactive dielectric). It should

be noted that methods of ε-determining by the capacitance measuring cannot

separate the reactive current given by piezomechanical deformation from the

reactive current conditioned by microscopic mechanisms of polarization. That is

why a concept of the electromechanical dielectric contribution εEM should be

introduced, as shown in Fig. 7.5D.

2. In the polar dielectrics (pyroelectrics or ferroelectrics), the energy can be

partially reserved in the form of heat (electrocaloric effect). In case of low-

frequency measurements of pyroelectric capacitors, it might be impossible to

distinguish the contribution from the pyroaccumulated energy from reactive

energy stored by other mechanisms of polarization, and this is the electrocaloric
dielectric contribution εEC, shown in Fig. 7.5D.

It is obvious that both of these effects, being measured through a value of reactive

current, are not consistent with the classic definition of Lorentz dielectric permittivity
as a parameter for physically infinitesimal volume. Dielectric contributions εEM and

εEC, obtained at the same frequency but using tested samples of different sizes, might

be quite different. The point is that the manifestation of piezoelectric or pyroelectric

effects is dependent on the shape and size of the test sample and from sample envi-

ronment: these effects are significantly determined by mechanical and thermal con-

ditions, at which the capacitor of piezoelectric or pyroelectric material is studied [5].

3. Many materials that are widely used in electronics consist of ordered or

disordered mixtures of different dielectrics, as well as dielectrics with dispersed

semiconductors or conductors. Measured electrical capacitance of the samples

made of such mixture might be many times larger; this, again, is attributed to

increase in capacitance due to “seeming permittivity.” In some cases, this is

additional electrical polarization (Maxwell-Wagner mechanism in mixtures) that

is caused by space-charge accumulation at the boundaries of components of a

mixture or space charge in the near-electrode regions.
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For describing dielectric properties of inhomogeneous materials, the concept of

“effective” dielectric constant is commonly used. The value of εmigr¼εef in case

of macroscopic Maxwell-Wagner polarization does not qualify for the definition

of ε given as a microscopic Lorentz parameter. The εmigr usually is characterized

by relaxation type of dispersion, located in the frequency interval of 10�3–103Hz
(in Fig. 7.5, the frequency dependence of εmigr is not shown).

4. In the nonlinear dielectrics (ferroelectrics and paraelectrics), the direct

proportionality of reactive current to applied voltage might be violated. For

example, at spontaneous polarization switching in ferroelectrics, the value of

apparent permittivity varies many times reaching values of �105 (depending on

instantaneous values of the alternating electrical field). In this case, it is also

possible to use the term “effective” (non-Lorentz type) dielectric permittivity.

All these cases are shown in Fig. 7.6, where various dielectric contributions from

different polarization mechanisms are divided into two classes. Dielectric permittiv-

ity conditioned by “classical” mechanisms of polarization that satisfies the definition

of Lorentz is called the actual (true) permittivity, in order to distinguish it from the

conventional term of “effective” permittivity. In case of capacitance description in

an electrical capacitor that contains heterogeneous mixtures, only effective param-

eter εef should be used. Similarly, nonlinear polarization of ferroelectric material that

is characterized by the average permittivity might be also described by effective

parameter εef.
FIG. 7.6

Possible classification of dielectric contributions from various polarization mechanisms.
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As it follows from dielectric spectra shown in Fig. 7.5 and from classifications

given in Fig. 7.6, in the high-frequency (microwave) dielectrics only two polariza-

tion mechanisms are actual: electron shells and ionic sublattices electrically induced

displacements [3]. Other polarization mechanisms are too slow to have any influence

on the εmic (but they can add to microwave dielectric losses).

In the homeopolar (atomic) crystals with the structure of diamond (C, Ge, Si),

as well as in centrosymmetric molecular crystals (with has no structural dipoles),

permittivity is defined only by the electronic quasielastic polarization. This mech-

anism of polarization is practically noninertial, and its contribution εel¼εopt can be

measured at optical frequencies; therefore, in the entire frequency range used in

electronics, permittivity of such crystals is not frequency dependent.

Molecular crystals have dipole-like structures, but without electron shell polar-

ization; the low-frequency polarization is added as a contribution from the thermally

activated polarization of dipoles (Fig. 7.5B). In this case, the dipoles are not consid-
ered as impurities, but they belong to basic structure (e.g., in the ice crystal). During

frequency dispersion of permittivity, the contribution of this polarization εdip grad-
ually decreases. This character of the dispersion is called relaxation.

In ionic crystals the ionic quasielastic polarization is added to always existing

electronic (optical) polarization. This mechanism of polarization is also a high-

frequency one, and the ε-variance is observed only in the IR frequency range

(�1013 Hz, Fig. 7.5C). For this reason, the contribution of ionic polarization is indi-

cated as εion¼εIR. Dielectric dispersion in this case, as opposed to relaxation disper-
sion, shows εion resonance when measurement frequency approaches to natural

frequency of ionic lattice vibrations; parameter ε(ν) first increases and then reaches

maximum, after it drops sharply, sometimes to the negative values. The nature res-
onant dispersion will be explained later in Section 7.4.

In Fig. 7.5 the theoretical frequency dependences of ε(ν) are depicted, but Fig. 7.7
illustrates experimental frequency characteristics of two well-studied crystals—

barium titanate (BaTiO3) in the ferroelectric phase and potassium dihydrogen

phosphate (KDP) near the ferroelectric Curie point [5]. In single crystals of barium

titanate at temperature 300K electromechanical contribution εEM is approximately

equal to contributions from other mechanisms: at low frequencies εX�4000 but after

piezoresonances the lattice contribution is εx¼2000. In KDP crystals at temperature

125K piezoelectric contribution εX almost is 100 times greater than contribution of

all other mechanisms (dipole and optical).
7.4 OPTICAL AND FAR-INFRARED POLARIZATIONS
Electronic quasielastic polarization is a general mechanism of electrical polariza-

tion. In the external electrical field, electron shells of atoms (molecules or ions)

shift relatively to positively charged nuclei (cores). As the mass of nucleus exceeds

104–105 times the mass of electron, this polarization actually is determined by the

shift of electrons. At that, the main contribution to the induced electrical moment



FIG. 7.7

Examples of dielectric spectroscopy method application for analysis of various dielectric

contributions: in single-domain crystal of barium titanate the piezoelectric resonant

dispersion occurs at a frequency of about 1MHz, and lattice dispersion takes place in IR

region (about 1012Hz); potassium dihydrogen phosphate also has piezodispersion, and

dipole relaxation in microwaves as well near in 1011Hz.
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is given by weakly bounded electrons of the outer shells of atoms or ions, especially

by the valence electrons. They are displaced in the electrical field to a much greater

extent than more strongly bounded core electrons of atom or ion.

In case of quasielastic electronic polarization, the most important are the follow-

ing two features. First, this is the universal mechanism of polarization, as the

deformation of electron shells of atoms or ions in the electrical field occurs in all

matters. Second, this is the least inertial polarization mechanism, as the mass of
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electron is much smaller than the mass of other particles (atoms, ions, or molecules),

involved in the processes of polarization. Very fast reaction allows select electronic

polarization experimentally, using its contribution to permittivity at optical frequen-

cies: εe¼εopt. Therefore this contribution can be determined from optical refractive

index: using Maxwell equations n¼ (εμ)1/2; however, at optical frequencies μ¼1, so

εopt¼n2.
Response time of electronic elastic polarization is τ¼10�16–10�17 s. The visible

optical frequency range is close to value of 1015Hz; therefore the delay of electronic

polarization (that determines frequency dispersion of εopt) should occur at higher

frequencies than the visible optical range.

To simplify calculations, only elemental polarization mechanism will be consid-

ered. For this reason, electronic shell polarizability αe is exemplified for hydrogen

atom with the simplest Bohr’s model (Fig. 7.8B). Under the action of local (micro-

scopic) electrical field F (descending later from externally applied macroscopic field

E), the electron shell of atom is displaced, so the geometric center of negative charge

moves on a distance x from center of positive charge (Fig. 7.8B). Correspondingly,

the electrical moment p¼qx is induced that is proportional to the applied local field,
p¼αeF¼qx, where αe is electronic polarizability which must be calculated.

From the model under calculation, it follows that αe¼4πε0re
3, where re is

Bohr electronic radius and factor 4πε0 is required to record polarizability in SI;

so the dimension of polarizability is [α]¼F�m3.
FIG. 7.8

Simplified model of electronic (optical) polarization: (A) model consisting of one electron and

nucleus; (B) orbital deformation in local field F; (C) frequency dependence of electronic

permittivity; (D) temperature dependence of electronic permittivity (shaded areas show the

ranges of technical interest in electronics).
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It is known that the Bohr model is significant approximation: in fact, electronic

cloud is not localized on a sphere with radius re, but constitutes the diffuse cloud

around proton. Exact quantum-mechanical calculation yields the value of polariz-

ability αe ¼18πε0re
3 that is 4.5 times more than the calculation, obtained from a sim-

ple model. This discrepancy can be explained by the fact that the quantum-

mechanical model represents electronic cloud as rather “extended.” However, in

the CGSM system α0e¼ re
3 [5].

To evaluate nonlinearity of electronic polarizability in strong electrical fields,

using α0e frommore simple Gauss system, its dependence on effective electrical field

F can be represented as series

α0e Fð Þ¼ α0 + α1F+ α2F
2 + α3F

3 +⋯,

that coefficients can be found from expressions qF¼cx and cx¼q2x(r2+x2)�3/2, but

under the condition of smallness x as compared to electronic orbit radius. As a result,

the coefficients in this equation have following values:

α0 ¼ r3, α1 ¼ 0, α2 ¼ 3

2

r7

q2
, α3 ¼ 0, α4 ¼ 1

8

r9

q4
, α5 ¼ 0:

For estimation, it is sufficient to find the first nonzero coefficient (after main value

α0), as the nonlinearity is noticeable only in very strong fields. All coefficients at odd
degrees of F are equal to zero (this result is expected in the symmetric model); there-

fore the nearest nonzero coefficient is positive: α2 >0. It signifies that in strong

electrical fields polarizability αe(F) increases.
The nonlinearity occurs because the force that returns a system to the nonpolar-

ized state (this force is electron attraction to nucleus) becomes reduced according to

law (r2+x2)�1, while the dependence of acting electrical field on distance is linear.

The orbit of electron stretches, and, therefore, polarizability αe increases with elec-

trical field growth. In this case, the change of electrical field direction, due to sym-

metry of selected model (Fig. 7.8), has no influence on polarizability. The increase in

polarizability when electrical field increases leads to an increase of εopt¼εe and,
hence, refractive index n increases in a strong electrical field even at light frequen-

cies. This lens effect is seen experimentally and used in nonlinear optics for high-

power laser radiation focusing on the dielectric.

In case of the negative ions (that accept electrons into their outer shell), the polar-
izability should be larger than in the positive ions (that give away their valence elec-

trons). Furthermore, the polarizability of positively charged ions is less than in

neutral atoms with similar electron shells. Thus, among the series О2�, F�, Ne,
Na+, Mg2+, A13+, and Si4+, the value of αe decreases. In all of these ions, the outer

electron shell is similar to the shell of the inert gas neon and has structure s2p6. How-
ever, the radius of the electron shell decreases systematically as nuclear charge is

incremented by one, resulting in an increase of attraction of electrons to their

nucleus. Therefore αe in aforementioned series differs by more than an order of mag-

nitude: from value of 7.4�10�30 m3 for ion O2� down to value of 0.16�10�30 m3 for

ion Si4+.
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Permittivity is determined not only by polarizability but also by the concentration

of ions or atoms in unit volume of dielectric. Therefore the objective assessment of

electrical moment per unit volume of dielectric is not parameter αe, but the ratio αe/
r3. This ratio equals “1” only in the simplest model of hydrogen atom; however, in

the majority of atoms and ions, this ratio differs from one. For some ions, such as Li+,

Na+, Mg2+, and Al3+, the ratio αe/r
3 <1, and for the majority of ions this ratio is very

close to one, but for ions О2�, Ti4+, Pb2+, and Ce4+ the value of αe/r
3 >1.

The ability to control the value of refraction coefficient n¼εe
½ by introducing

ions into the dielectric with higher αel/r
3 is used in the integrated circuit technology.

For example, to produce planar light guides, with the aim of refractive index increas-

ing, in surface layer of glass or crystal the ionic diffusion of Ti4+ is carried out.

Dielectrics, in which electronic polarization dominates (solid dielectrics with

covalent and molecular bonding), are characterized by small dependence of dielec-

tric constant on temperature (Fig. 7.8D), and by extremely low value of dielectric

loss, even at high frequencies, because εel¼εopt does not depend on frequency up

to the optical range. For this reason, these dielectrics also have very small absorption

not only in the optical range but also in all range. As shown in Fig. 7.8C, dielectric

constant, conditioned by electronic (optical) polarization, does not depend on fre-

quency up to optical frequencies, where εopt gradually starts to increase (in the ultra-
violet, electronic polarization shows a resonant dispersion). In most cases, electronic

contribution to permittivity somewhat decreases with temperature due to thermal

expansion of a crystal (Fig. 7.3D). For this reason, the temperature coefficient of per-

mittivity is very small and negative (TCε<10�5 K–1, i.e., less than 10ppm/K).

The semiconductors of diamond structure, such as high-resistive silicon, very

often are used as microwave dielectrics at millimeter waves. Because microwave-

integrated electronic circuits need dielectric substrates (where electromagnetic

waves can propagate), dielectric properties of semiconductors should be considered.

The nature of permittivity in the atomic crystals of semiconductors (Ge, Si, and C) is

purely electronic. Hence the frequency change of ε in these crystals is possible only
at optical frequencies (above 1015Hz). As a result, microwave electronic polariza-
tion does not contribute to microwave losses (defined only by the conductivity).
Therefore microwave absorption is seen only in at beginning of the microwave

range. Owing to absence of inertia of electronic polarization, the permittivity of

semiconductors does not change with frequency (Fig. 7.9).

To avoid the influence of conductivity, temperature measurements of dielectric
parameters in semiconductors are possible only at frequencies above 300GHz, and

these experiments show an increase to some extent in ε with temperature.

According to energy band theory, when energy gap reduces, the permittivity

should be greater. As temperature rises, the bandgap of semiconductors decreases,

and correspondingly, with rising temperature ε increases (Fig. 7.10). However, in

gallium arsenide some influence on dielectric properties can also be provided by

ionic (far IR) polarization.

Ionic (far IR) polarization. Ions in molecules or in crystal lattice are electrically

charged particles; therefore, like electrons, ions are shifted by external electrical field



FIG. 7.10

Temperature dependence of dielectric constant of silicon in comparison with gallium

arsenide on millimeter waves.

FIG. 7.9

High-frequency dependence of dielectric constant of silicon in comparison with gallium

arsenide.
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from their equilibrium position, which gives rise to induced electrical moment.

When ions shift from their equilibrium position, the quasielastic returning force

occurs, which, after switching off the external field quickly, returns the system of

ions in the undisturbed (nonpolarized) state.

Ionic quasielastic polarization has the following features. First of all, this type of

polarization is not universal for all dielectrics (such as electronic polarization), and it is
a characteristic found in only those dielectrics in which the ionic character of bonds is

expressed in themolecules or in crystal lattice. Typical representatives of dielectrics, in

which ionic polarization plays a decisive role, are alkali-halide crystals (AHCs; such as

NaCl). The quasielastic ionic polarization is also present in the AIIIBV-type semicon-

ductors (e.g., GaAs) as well as in AIIBVI- type crystals (e.g., CdS). However, in the

“pure covalent” semiconductors (such as Si), ionic polarization is absent (where the

mechanism of quasielastic displacement of electron shells of atoms dominates).

In many active dielectrics—piezoelectrics, pyroelectrics, and ferroelectrics—ionic

polarization is the main mechanism of electrical response to the applied field.



FIG. 7.11

Ionic polarization: (A) a simple model consisting of one positive and one negative ion;

(B) deformation x in local field F; (C) frequency dependence of ionic permittivity; (D) ionic

permittivity temperature dependence (shaded areas show range of technical interest).
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Another important feature of ionic polarization is the much greater response time

than settling time of electronic polarization. This is conditioned by the large mass

of ions as compared with that of electrons. However, the reaction time of ionic

polarization (�1013 s) is still much smaller than characteristic times of thermal

polarization (�10–6 s) and, even more, relaxation time of space-charge polarization

(�10–1 s). As mentioned previously, using this it is possible to experimentally find

the contribution of ionic polarization to permittivity while investigating permittivity

frequency dependence ε(ν) (Fig. 7.5B and Fig. 7.11C).

Dielectric dispersion of ionic polarization occurs in the IR frequency range.
Therefore, even in the microwave range (MW, 109–1011Hz), complete ionic polar-

ization can occur, while thermally induced and space-charge polarizations do not

occur even in a much lower frequency range.

To calculate the polarizability of ionic quasielastic polarization αi, a simple

model, shown in Fig. 7.11A, might be used [4]. The model has two ions, and these

ions may represent two sublattices—cationic and anionic—inserted one inside the

other, thus forming an ionic crystal.

This model takes into account the Coulomb attraction of ions, as well as the repul-

sive force, arising from partial interpenetration of electron shells. It is assumed that

charges � q are concentrated in the centers of ions; therefore, r¼ r1+ r2 is the dis-
tance between centers of ions. It is obvious from Coulomb law that energy of mutual

attraction of ions decreases proportionally to distance between them: q2/4πε0r. The
repulsive energy of electron shells fast increases only in case of strong convergence

of ions that is described by approximation with power function d/rn, where parameter

n�8–12 depends on properties of particular pair of ions in crystal lattice. Coefficient
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d can be determined from other parameters of this same model: d¼ q2an�1

4πnε0
. Thus inter-

action energy of ions is determined by the following expression:

U rð Þ¼ q2an�1

4πnrnε0
� q2

4πrε0

The final result for ionic polarizability calculation is:

αi ¼ 4πa3ε0
n�1

� 4π r+ + r�ð Þ3ε0
n�1

where r+ and r� are ionic radii while parameter n �10 describes electron shell repul-

sion (factor 4πε0 is required to record polarizability in SI). As the overlap of electron
shells is small, the distance between centers of ions is almost equal to the sum of radii

of two ions. Thus, from this model, it follows that polarizability αi is close to the

polarizability of electronic elastic polarization (αe¼4πε0re
3, where re is the radius

of electron orbital of ion).

As shown in Fig. 7.11C, permittivity, conditioned by ionic polarization, does not

depend on frequency up to the far-IR range, where εi¼εir gradually starts to increase
(in far-IR range, ionic polarization shows the resonant dispersion). In most cases,

contribution to permittivity from ionic (lattice) somewhat increases with temperature

due to thermal expansion of crystal (Fig. 7.11D). The point is that at higher temper-

atures the distance between ions increases, so their reciprocal elastic shift in

electrical field (elementary polarization) becomes larger. Due to this, the thermal

coefficient of permittivity in ionic crystals is positive TCε<+10�4 K�1

(�100ppm/K).

The nonlinearity of ionic polarization can be estimated using the samemethod, as

in the case of electronic polarization. In the nonlinear case, it cannot be considered

that relief of ionic potential is described by simple parabolic function and restoring

force is proportional to strain. For the first two coefficients of series that describes

nonlinear properties of ionic polarization mechanism, it can be assumed

αi Fð Þ¼ α0 + α1F+ α2F
2 +⋯

where

α0 ¼ a3

n�1
; α1 ¼ a5 n+ 4ð Þ

q n�1ð Þ2⋯

While comparing this result with the nonlinear electronic polarization, it should be

noted that in this model already odd coefficients (α1) is nonzero; therefore, there is no
necessity to take into account the next even coefficient (α2 and more). This also

means that potential well, which characterizes this model, is asymmetric [8].

Next, the question is how ionic elastic polarization becomes apparent in a variety

of dielectrics. The important experimental evidence of ionic polarization presence in

dielectrics and semiconductors is the far-IR dispersion of permittivity. It becomes

apparent that εir first increases (as far as measurements are close to the frequency

of dispersion) and then decreases sharply (Fig. 7.5A). In the IR region strong
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absorption is also observed that is very large in the “purely ionic” crystals and notice-

able in ionic semiconductors with mixed ionic-covalent bonding.

In the lattice spectrum of AIIIBV semiconductors, optically active modes in IR

range are expected. In these compounds, the degree of ionicity and IR absorption

is much higher than that in semiconductors of diamond structure. However, in

crystals of AIIIBV type the contribution of ionic polarization to permittivity is much

smaller than that in AHCs. In semiconductors of this class, the degree of ionicity is

characterized by dielectric contributionΔεion; the greater this contribution, the wider
the bandgap. For example, in the InSb crystal bandgap is 0.17eV and Δεion¼1.4,

while in the InP bandgap is 1.3eV and Δεion¼3.7. The value of Δεion is determined

according to microwave and optical measurements: Δεion¼εmicrowave�εopt.
These data about IR polarization of semiconductors once again suggest that in

these crystals the mixed bonding between atoms always has a place. Strictly speak-

ing, all these types of bonding (molecular, covalent, ionic, hydrogen, metallic) are

the idealized models of real phenomena, occurring in the material. Moreover,

so-called ionic polarization, in fact, is mainly due to the shift of outer electron shells

of ions. To obtain high dielectric constant, it is important to use dielectrics with more

mobile and easily deformable outer electron shells.
7.5 THERMALLY ACTIVATED POLARIZATIONS
The electrons, ions, and dipoles, in addition to quasielastic polarization, may be

involved in the quite different polarization mechanisms, namely, the thermally acti-

vated (relaxation) polarization. Thermal movement of particles in a dielectric may

have strong influence on the polarization processes, when dipoles, ions, or electrons

are weakly bounded in a structure of dielectric. Remaining localized in the surround-

ing nanovolumes, these particles, under the influence of thermal motion, can

make thermally activated hopping, moving on a distance of the order of atomic

dimensions.

Dipole thermal polarization mechanismwas first proposed by P. Debye (1912)

to explain high dielectric constant of water and other polar liquid dielectrics. At nor-

mal conditions and relatively low frequencies, dielectric constant of water equals

ε¼80, while at optical frequencies εоpt ¼n2¼1.77. Such a difference in water ε-
value at low and very high frequencies is explained by the delay in polar molecule

orientation in a fast-changing electrical field.

When external electrical field is absent (E¼0), the dipoles are oriented ran-

domly, and total electrical moment per unit volume is zero. If electrical field is

applied (E >0), then, in the process of thermal chaotic motion, a part of dipoles
becomes oriented along the field with the result that a new equilibrium state

arises—polarized. At that, the thermodynamic equilibrium is settled: due to thermal

motions (vibrations, rotations) of dipoles that acquire orientation, favorable for the

field. However, thermal fluctuations prevent full and stable orientation of all dipoles

in the electrical field so that, on average, only the small part of dipoles becomes
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oriented. The higher the electrical field strength (F), the greater the quantity of ori-

ented dipoles per unit volume, and the bigger is thermally activated dipole polariza-

tion. Middle electrical moment, calculated per one molecule, is proportional to

acting local electrical field F (if this field is not too large): <p>¼αdtF, where
αdt is correspondent polarizability [9].

In polar gases, rotation of dipoles occurs freely. In polar liquids, the interaction of
dipoles with surrounding molecules prevents free reorientation process: it manifests

as a “friction” (or viscosity). In the polar crystals, the possibility of dipole reorienta-
tion is quite limited: usually, dipoles have only a certain number of possible stable

orientations, separated by potential barriers (as shown in Fig. 7.4B). In this case,

when an electrical field is absent, all dipoles are oriented uniformly in all permissible

directions, but when an electrical field is applied, there is an increase in the proba-
bility of dipole orientation in the favorable direction. Also, it is not correct to assume

dipole reorientation in a form of “mechanical rotation” of dumbbell-like polar

molecules—in fact, this orientation (especially in solid dielectrics) means, for exam-

ple, the redistribution in electronic density in molecules, or proton hopping between
potential minima along hydrogen bonds, and so on.

The relaxation time of thermally activated polarization depends exponentially on

temperature, decreasing very rapidly during dielectric heating. Under normal condi-

tions (300K), in dielectrics that exhibit thermally activated dipole polarization,

relaxation time may be of 10�5–10�7 s. This means that frequency dispersion of ther-

mal polarization takes place in the range of radio frequencies. Therefore, in dielec-

trics, in which this polarization mechanism becomes apparent, in radiofrequencies

dielectric losses increase.

With the purpose of calculation of dipole polarization polarizability αdt, it should
be noted that previously (Section 7.4) elastic polarizabilities αe and αi calculation
were considered in elementary models of polarization (one atom, one pair of ions,

or one dipole); next, obtained results were generalized as sum of polarizabilities.

However, in case of thermally activated mechanisms of polarization, it is necessary
to consider statistical models, because only a few dipoles (or electrons, or ions) actu-

ally change their orientation (or they are redistributed in a volume of solid dielectric).

Thermally activated dipole polarizability αdt primarily depends on relative con-

centration of dipoles that dynamically change their position (similarly, electronic

thermal polarizability αet depends on a fraction of actually oriented weakly bounded
electrons, or ionic αit depends on a certain proportion of weakly bounded hopping

ions). In the case of thermal polarization, in order to calculate polarizability, which

refers to a single dipole, it is necessary to find full dipole moment and divide it by the

amount of dipoles.

In the Debye model, the reorientation of statistical ensemble of dipoles is consid-
ered, in which probability of given dipole orientation depends on the electrical field

strength; by this way the average value of oriented dipoles is determined. As a stud-

ied model the spherical volume of dielectric is examined, which contains N dipoles

(Fig. 7.12A). The sphere is chosen to simplify calculations, but this option does not

limit the generality of calculation result. Dipoles have permanent electrical moment



FIG. 7.12

Thermally activated polarization of dipoles (Debye mechanism): (A) dipole moment

calculation, (B) Langevin graph.
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p0, and they are reoriented independently under the influence of random thermal

motion. Acting on dipoles by local electrical field F changes this random orientation

of dipoles into partially oriented state (in accordance with applied field), thus leading
to induced polarization: P¼N<p>¼NαdtF, where <p> is average induced

moment that appears in field F.
To find the<p>, one needs to calculate the definite integral in spherical volume

(shown in Fig. 7.12A): <p>¼Jdp/JdN. Here dN is number of dipoles, oriented at

the angle θ to arbitrary direction (denoted as axis z), that is, number of dipoles, that,

being symbolically placed in the center of a sphere are oriented to “ring” between

angle θ and angle θ+dθ. Electrical moment produced by these dipoles is designated

as dp.

ph i¼

ð
dp

ð
dN

¼

ðπ

0

Ccosθ sinθdθ

ðπ

0

Csinθdθ

¼ 0

These integrals cover the entire volume of a sphere, that is, the angle θ varies from 0

to π. As it might be expected, in the absence of external electrical field the moment

<p>¼0; therefore any polarized state does not occur (P¼0), because dipoles are

oriented randomly.

Next it should be assumed that an external electrical field is applied (F>0), being

directed along the axis z. Potential energy of a dipole that has own moment p0 and is
in local field F equals U ¼�p0F ¼�p0Fcosθ. According to law of Boltzmann dis-

tribution, the probability of dipole orientation “in the ring” (angle between θ and

(θ+dθ)) is defined as:

exp � U

kT

� �
¼ exp

p0F

kT
cosθ:
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The number of dipoles, oriented in angle θ, in the electrical field changes: dN¼C exp

[(p0F/kT) cosθ]sinθ dθ, while electrical moment, produced by these dipoles, is

dp¼C exp [(p0F/kT) cosθ] p0 cosθ dN. Next, it is necessary to calculate the ratio

<p>/p0, using the obtained dp and dN expressions, introducing notations p0F
kT ¼ a

and cosθ¼x.

ph i
p0

¼

ð+1

�1

eaxxdx

ð+1

�1

eaxdx

¼ ea + ea

ea�ea
�1

a
,

or:

ph i
p0

¼ ctha�1

a
¼ L að Þ

The resulting expression is known as the Langevin function L(a) that was first intro-
duced in theory of paramagnetic susceptibility; graph of Langevin function is shown

in Fig. 7.12B. In these calculations, no assumptions were made about the field value.

Therefore the resulting solution is common—both in weak and in strong electrical

fields, that is, similar for linear and nonlinear cases. Without assuming that effective

field F is small, the expression obtained looks rather complicated. However, Lange-

vin function can be expanded in a series in parameter a:

L að Þ¼ a

3
� a3

45
+⋯

In case of relatively small values of F, that is, at the condition p0F≪kBT (a≪1), it is

possible to use only the first term of the expansion.

Thus dipole polarizability, caused by thermal motion and electrical field, is given

by the formula

αdt ¼ p20
3kT

This expression, which was first obtained by Debye, plays an important role in the

theory of dielectrics. Unlike previous results (Section 7.4), the polarizability of

thermally activated polarization explicitly includes temperature, wherein polariz-

ability decreases with increasing temperature, because chaotic thermal movement

prevents dipoles to get a fixed orientation in the external field.

The nonlinearity of thermally induced dipole polarization can be obtained on the

basis of expansion:

αdt Fð Þ¼ α0 + α1F+ α2F
2 + α2F

3 +⋯

α0 ¼ p20
3kT

; α1 ¼ 0; α2 ¼� p40
45k3T3

; α3 ¼ 0:
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As shown in these relations, the polarizability and, consequently, permittivity in

dielectrics with thermally activated polarization in strong electrical fields decrease,
because α2<0. In most dielectrics that are characterized by thermal polarization

mechanisms, this nonlinear effect is experimentally noticeable, but it appears at

the field strength that is close to electrical breakdown. This means that the inequality

p0F≪kBT is satisfactory only for a strong electrical field (�109V/m).

Significant nonlinearity in the acceptable fields (104–105V/m) is a peculiar prop-

erty of paraelectrics at temperatures close to phase transition of order-disorder type.

However, in such paraelectrics, the mechanism of polarization is only to some extent

reminiscent of the discussed thermally activated dipole polarization, as in the Debye

model the interaction between dipoles is not taken into account. At the same time, in

the partially ordered dipole-type paraelectrics, this interaction plays a decisive

role [8].

Thermally activated ionic polarization is caused by thermal hopping of loosely

coupled ions (usually, impurity ions) in the local areas of crystal lattice. Therefore
such polarization is the characteristic of solid dielectrics with a large concentration of

defects in their structure. Such are, for example, glasses, ceramics, and glass

ceramics. In fact, these dielectrics have a high concentration of structural defects:

glasses are generally characterized by short-range ordering in ion arrangement;

ceramics have disordered boundaries between crystallites, while in pyrocerams

the regular ordering in ions arrangement is broken.

However, thermally activated ionic polarization can be observed in the single

crystals as well—in the vicinity of structural defects. The ions, located in the inter-

stices, as well as the ionic vacancies (voids in a regular structure) may locally change

their place under the influence of chaotic thermal fluctuations. During these move-

ments that are limited by structural defects (e.g., dislocations), the ions overcome

potential barriers and stay for a while in their new positions, representing electrical

dipoles. However, in the absence of an external electrical field, this locally limited

movement of charged particles is disordered, random, and usually cannot lead to a

macroscopic polarization.

The external electrical field changes the distribution of ions near lattice defect

sites with the result that electrically induced polarization arises. Response time of

this kind of polarization (relaxation time τ) depends on temperature, peculiarities

of crystal structure, and type of defects (or impurities). Typically, at ordinary tem-

perature (�300 K) relaxation time equals τ¼10�4–10�8 s. Delay of polarization

always leads to electrical energy absorption increase. Therefore thermally activated

polarization may be the cause of dielectric losses at the radiofrequencies for com-

monly used dielectrics such as ceramics, glasses, and glass ceramics [6].

To calculate thermally activated ionic polarizability αit (with a purpose of relax-
ation polarization mechanism analysis), it is also necessary to use a statistical model.

Thermally activated local hopping is possible only for weakly bounded ions that are

localized in the vicinity of structural defects. Suppose that n0 is concentration of such
ions per unit volume: it equals 1018–1020cm�3 that is much less than the total con-

centration n of ions in dielectrics (about 1023cm�3).



FIG. 7.13

Calculation of ionic thermally induced polarizability: (A) small positive ion of impurity is

localized nearby one (1) of four possible negative ions, and it has an ability to jump in position

(2); (B) in the absence of external field positions 1 and 2 are equally likely; (C) external

electrical field stimulates jumps 1 ! 2.
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However, at every moment, only a part of these n0 ions is involved in the mech-

anism of thermal polarization. At thermal chaotic motion loosely ions overcome

some average potential barrier U, separating two (or more) possible locations of

these ions. Obviously, the temporal localization of hopping ions can be maintained

only in case of low temperatures: U≫kBT.
Along any particular direction in a dielectric, for example, along the x-axis

(Fig. 7.13), on average, only n0/3 of weakly bounded ions moves. The middle dis-

tance, separating the probable position of these ions localization, has the order of

lattice constant (δ � 10�6cm). Traditionally, parameter δ is called as the length of

“free path.”

In Fig. 7.13, the equiprobable positions of ions in the potential minima are

denoted as 1 and 2. The probability for moveable ion to acquire required energy

is exp(�U/kBT) that should be greater or equal to the height of barrier U (probability

of ion hopping between the equilibrium position 1 and 2 at temperature T). In this

case, the ion overcomes potential barrier and jumps, for example, from position 1

to position 2 (or vice versa). If the frequency of ion thermal vibrations in a lattice

(Debye frequency) is ν Hz, from position 1 to position 2 (and meet) per one second

next number of ions that jumps over is

n12 ¼ n21 ¼ n0
6
νexp � U

kT

� �

It is obvious that in case of such counterdiffusion electrical polarization cannot

appear. If a dielectric is exposed to an electrical field F directed along the selected

axis x, the probability of weakly bounded ion transition from position 1 to position 2

increases (Fig. 7.13B), while the probability of colliding transitions decreases. The

fact is the height of potential barrier that ions must overcome in the first position is

reduced by value ΔU, while in the second position it is increased by the same ΔU
(which is the energy obtained by ion when it moves in an electrical field F on a

distance δ/2, i.e., ΔU¼qFδ/2).
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Thus electrical field disturbs uniform symmetry in the distribution of defect ions.

At some time after the electrical field is applied, it turns out that n2>n1:

n1 ¼ n0=6�Δn, and n2 ¼ n0=6 +Δn:

Such electrostimulated local diffusion of ions leads to polarization. AsΔn represents
excess concentration of ions, turned to 2 position, it is clear that electrically induced

moment per unit volume of dielectric (polarization) is P¼Δnqδ.
In this model of thermally activated polarization, from total number of weakly

bounded ions (n0) only some of them (Δn) are actually jumped over the potential

barrier. To determine a part of any single impurity ion in thermally induced polar-

ization P¼Δnqδ, it is necessary to calculate the average elementary polarizability αit
when P ¼n0αitF. Thus the polarizability of thermal ionic polarization is

αiT ¼Δn
n0

qδ

F

Through further calculations, it is possible to find the value Δn that depends on elec-
trical field intensity. Moreover one can also find the time required for thermal ionic

polarization settling; therefore while attempting to solve this problem, it is necessary

to take into account dependence Δn on time. It is obvious that
d Δnð Þ
dt ¼�dn1

dt . As a

result, polarizability of ionic thermal polarization is

αiT ¼ q2δ2

12kT
1�e�

1
τ

� �

where relaxation time τ¼ (1/2νD) exp(U/kBT). It can be seen that τ is exponentially
dependent on temperature (increases very rapidly with decreasing temperature). If

the electrical field is applied for quite a long time (t!∞), the thermal ionic polar-

ization can be established as

αiT ¼ q2δ2

12kT
:

As can be seen, polarizability of ionic thermal polarization depends on temperature

(decreasing with increasing temperature) because the intensity of thermal vibrations

prevents the ordering of impurity ions in traps.

Nonlinearity of ionic thermal polarization. In the sufficiently strong

electrical fields, the nonlinear properties of any polarization mechanism should be

observed. Ionic thermally activated polarization, in this sense, is no exception.

The nonlinearity should arise when a strong electrical field causes the ions to flip

over through the potential barrier (in weak fields, jumps of ions are carried out by

the fluctuations of thermal vibrations, and electrical field changes only their

probability).

Nonlinearity might be calculated in the traditional way (as in case of elastic elec-

tronic polarization). When polarization has time to setting (t!∞),

αiT Fð Þ¼ qδ

6F
th
ΔU
kT
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passing to series expansion, αiT(F)¼α0+α1 F +α2 F2+α3F
3 +⋯), the hyperbolic

tangent series ΔU/kT is: thΔU
kT ¼ ΔU

kT � 1
3

ΔU
kT

� �3

+⋯. Thus, for evaluation of thermal

ionic polarization nonlinearity, we get:

α0 ¼ qδð Þ2
12kT

; α1 ¼ 0; α2 ¼� qδð Þ4
144 kTð Þ2 ; α3 ¼ 0:

This means that in a strong electrical field, the so-called saturation of polarization is
observed, and thus, dielectric constant decreases.

Relaxation time is also dependent on the electrical field:

τ Fð Þ¼ τ0ch
�1ΔU

kT
¼ τ0 1�1

8

q2δ2F2

k2T2

� �

As it follows from this formula, in a strong electrical field (when forced barrier trans-

fer by impurity ions takes place), thermally induced (hopping) polarization becomes

quicker. Thus relaxation time of polarization as well as polarizability decreases in a

strong field [8].

With rare exceptions, nonlinearity of thermal ionic polarization is observed only

in very strong fields comparable with electrical field breakdown. However, given

this consideration, nonlinearity of ionic thermal polarization mechanism has some

theoretical interest. If crystal has increased permittivity, it is possible to obtain cer-

tain correlations in impurity ion orientations and, finally, to create artificial ferro-

electric (an example is solid solution (K1� xLixTaO3), where x ¼0.1–0.2 is Li

concentration).

Thermally activated electronic polarization is possible only in solid dielec-

trics. Suppose that in the neighborhood of certain type of structural defects in dielec-

tric there are weakly bounded electrons (or electronic holes) that might be localized

in two or more equivalent positions, separated by the potential barriers. Usually these

electrons are captured by the crystal defects or impurity ions. These centers represent

the places of irregularity in the electric charge distribution in a crystal lattice.

Captured by vacancies, electrons (holes) can lead to thermally induced polariza-

tion only when the ground state of electrons is degenerated; therefore the combina-

tion of correspondent wave functions can create dipole moments. In the absence of an

electrical field but under the influence of thermal fluctuations, electron or hole suc-

cessively passes from one place of location to another. Obviously, the chaoticmove-

ment of charges does not lead to polarization, if the external electrical field is absent.

Field application stimulates unipolarity of electronic transitions and leads to being

induced by a field electrical moment, that is, creates polarization.

Relaxation time of thermally activated electronic polarization is relatively long:

10�2–10�6 s. This polarization is essential in many technically important dielectrics,

such as rutile (TiO2), perovskite (CaTiO3), and similar complex oxides of titanium,

zirconium, niobium, tantalum, lead, cerium, and bismuth. In these substances, espe-

cially in their polycrystalline state, a high concentration of defects in the crystal



FIG. 7.14

Electronic thermal polarization in rutile: planar lattice model of titanium dioxide with oxygen

anion vacancy.
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structure is observed. During ceramic synthesis from the mixture of oxides (or while

crystal growth), a very high temperature is used, and, therefore, the appearance of

oxygen defects—anionic vacancies—is very likely. Electrical compensation of these

defects occurs by the valence lowering of cations, located near anion vacancy. Thus

appropriate conditions of electronic exchange between the neighboring cations

appear that lead to polarization.

Fig. 7.14 shows one of possible cases of electronic thermal polarization in the

rutile. In the selected section of crystal TiO2, there are three titanium ions as the

neighbors to anion vacancy (in 3D crystal, there are five of such neighbors). Due

to charge compensation, the oxygen vacancy is surrounded by two adjacent trivalent
titanium ions, with each of them containing one “weakly bounded” electron in the

outer shell. This model assumes that two electrons can overcome potential barriers

and jump (redistribute) between five titanium ions, adjacent to oxygen vacancy.

If the electrical field is not applied, these transitions of electrons occur under the

influence of chaotic thermal lattice vibrations; therefore these polar centers are ori-

ented randomly that does not lead to total polarization. After electrical field appli-

cation, the electrons around anionic vacancies are distributed asymmetrically that

lead to induced polarization. In this manner, it is possible to describe electronic ther-

mal polarization of rutile.

It should be noted that the concentration of defects in a crystal cannot be large;

nevertheless, the contribution of such polarization mechanism to permittivity can be

large enough, due to very high polarizability of greatly enhanced electronic orbits

located near defects. Wave function of these “semifree” electrons is “smeared” in

the large-enough area in the vicinity of vacancy. To estimate the reason for such high

polarizability, it should be recalled that in case of electronic elastic polarization the

value of polarizability αe� re
3, where re is electronic orbit radius.

The model, presented in Fig. 7.14, in some respects is equivalent to the mecha-

nism of ionic thermal polarization. It can be argued that results of the statistical
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model, obtained for ionic polarization, can be applied to the mechanism of electronic

thermal (relaxation) polarization. Then, the polarizability of electronic thermal

polarization is

αet ¼ e2δ2

12kT

where δ is distance between equilibrium states of electron and e is charge of electron.
In ceramic rutile (TiO2) at ambient temperature, permittivity at frequency 10GHz

equals εmic � 100: this value is conditioned by fast electronic and ionic elastic polar-

izations [2]. However, at low frequencies (about 10kHz), depending on the concen-

tration of anionic defects, due to electronic thermal relaxation permittivity may rise

up to ε � 2000.

A more convenient model for theoretical study as well as comparison with exper-

iment would be ionic crystals with a simple structure: AHCs or AIIBVI semiconduc-

tors, such as ZnS. The appearance of electronic relaxation polarization is associated

with the excitation of color centers (F-centers). They are structural defects that arise
as a result of electron localization near vacant anion sites in simple cubic crystal lat-

tice. However, in the alkali-halide crystals with normal (low) concentration of

F-centers, it is difficult to obtain reliable experimental data about contribution of

electronic thermal polarization due to smallness of effect. It should be noted that

color centers, such as F-centers, occur also in other crystals, such as quartz (model

in Fig. 7.14 resembles F-center). Color centers are usually activated by hard radia-

tion. It has been experimentally shown that in irradiated crystals of “smoky” quartz,

relaxation polarization is observed due to defects in the vicinity of captured electrons

or holes. In crystals of zinc sulfide or cadmium sulfide, thermally induced electronic

polarization occurs after crystal photoactivation by ultraviolet radiation. At that,

observed dielectric spectra are specific for the relaxation mechanism of polarization

with temperature maximum of dielectric losses. In these experiments, it can be found

that relaxation time depends on temperature according to relation τ¼ τ0 exp(U/kBT).
However, thermally activated electronic polarization in ZnS and CdS crystals with

impurities can be seen only after (or during) illumination of these crystals. Therefore

the observed effect of dielectric constant increase is the photodielectric effect.
Thus thermally activated electronic polarization is related to quite a wide range of

processes occurring in solid dielectrics: the photodielectric effect in the crystals of

wideband luminescent semiconductor, the dielectric relaxation in ionic crystals due

to color centers presence, the dielectric relaxation of electrons trapped in donor cen-

ters of oxide semiconductors, and, finally, the significant increase in low-frequency

permittivity in polycrystalline materials of perovskite type and rutile.

Migratory polarization is always supported by thermal movement of charged

particles. Except microscopic mechanisms of polarization, in the inhomogeneous

dielectrics, electrical moment per unit volume might be originated by the macro-
scopic mechanisms of charge accumulation in areas of inhomogeneities. In some

cases, this polarization plays a significant role, with respect to need for specific

changes in dielectric properties and for electrical reliability control.
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The migratory (space-charge) polarization is manifested only at low frequencies

and causes considerable dissipation of electrical power (losses). The reason for this

polarization might be the layers of different conductivity, or the presence of metallic

or semiconductor particles in technical dielectrics, and so on. Migratory polarization

mechanism can arise, for example, when the inhomogeneous material is placed in the

electrical field: free electrons and ions of conductive and semiconductor inclusions

move within each inclusion that becomes polarized region. In the same way, at the

border and near-electrode layers, slowly moving ions are accumulated that also has

the effect of migratory polarization. In case of migratory polarization, the movement

of weakly bounded electrons or ions occurs at distances, which are much greater than

crystal lattice constant.

As migratory polarization is a macroscopicmechanism, correspondent modeling

and analysis should be carried out using equivalent electrical circuits. The simplest

equivalent circuit of space-charge polarization in inhomogeneous dielectric is shown

in Fig. 7.15.

Space-charge polarization is possible only at low frequencies. Therefore rela-

tively rapid processes of thermal and elastic polarization are reflected in the equiv-

alent circuit by capacitor C(∞), referring to sufficiently high frequency (ω ! ∞),

when slow polarization processes cannot appear. In addition, resistor R takes into

account electrical conductivity in dielectric, while migratory polarization itself is

represented in Fig. 7.15A by serial chain r�Ca.

To get parameters of dielectric in case of migratory polarization, it is necessary

to go from equivalent circuit parameters C(∞), Ca, r, and R to ε and tanδ, which
allow describing the contribution of migratory polarization into effective permit-

tivity, as well as describing ε and tanδ frequency dependence and temperature

dependence.

If electrical conductivity can be neglected (R ! ∞), the analysis of equivalent

circuit of migratory polarization essentially simplifies. The transition process for cir-

cuit r�Ca (when voltageUa on capacitor Ca decreases with time if chain is closed) is

described by equation

rCa
dUa

dt
+Ua ¼ 0,
Ca Ca1 Ca2

C(¥) C(¥)
R

(A) (B)

Rr r1 r2

FIG. 7.15

Equivalent circuits of inhomogeneous dielectric space-charge (migratory) polarization in the

case of one (A) and two (B) relaxation times.
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whose solution isUa¼U0 exp (� t/τa) where τa¼ rCa. Complex conductivity (admit-

tance) for simplified (R ! ∞) scheme shown in Fig. 7.15A equals

Y∗ ¼ iω C ∞ð Þ+ Ca

1 + iωτa

� �

Since the discussed model has both active and reactive conductivity, total conduc-

tivity is a complex value. Sharing its real and imaginary parts, it is possible to have

Y∗ ¼ω2τa
Ca

1 +ω2τ2a
+ iω C ∞ð Þ+ Ca

1 +ω2τ2a

� �
(7.9)

Eq. (7.9) should be compared with known expression for capacitor conductivity.

After this comparison, next formulas for migration polarization effective parameters

can be obtained:

ε0 ¼C ∞ð Þ
C0

+
Ca

C0

1

1 +ω2τ2a
, ε00 ¼C ∞ð Þ

C0

ωτa
1 +ω2τ2a

(7.10)

Thus it is possible to designate low-frequency dielectric constant as ε(0) (before
frequency dispersion, at ω!0) and high-frequency dielectric constant ε(∞) (after

frequency dispersion):

ε 0ð Þ¼C ∞ð Þ+Ca

C0

, ε ∞ð Þ¼C ∞ð Þ
C0

Dielectric contribution of migratory polarization equals ε(0)�ε(∞). Further consid-

eration should be given for general scheme (Fig. 7.15A), without neglecting conduc-

tivity. Taking into account rCa¼ τa, it can be found

Y∗ ¼ 1

R
+ iω C ∞ð Þ + Ca

1 +ωτa

� �
:

After separation of real and imaginary parts of this expression and using simple

transformation, we get

ε0 ¼C ∞ð Þ
C0

+
Ca

C0

1

1 +ω2τ2a
,

ε00 ¼C ∞ð Þ
C0

ωτa
1 +ω2τ2a

+
σ

ε0ω
,

(7.11)

where σ is conductivity taken into account in equivalent circuit by parameter R. Thus
the model of an inhomogeneous dielectric, shown in Fig. 7.15, can be considered as

sufficiently universal. When compared with the experiment, it may be that the relax-

ation spectrum of dispersion is more blurred than it follows from Eqs. (7.10) and

(7.11). This circumstance may be corrected by inclusion in equivalent circuit several

units riCai, describing space charge accumulation of in inhomogeneous dielectric

with several relaxation times (Fig. 7.15B). Thanks to this method, the blurred depen-

dence of ε(ω) over a wide frequency range can be explained.
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7.6 CLAUSIUS-MOSOTTI-LORENTZ EQUATION
A major problem in physics of dielectrics is macroscopic parameter calculation,

namely, the permittivity ε derived from the foregoing expressions for various mech-

anism polarizabilities (αe, αi, αd, αet, αit, αdt) that are expressed through the molecular

constants of dielectric. The ratio obtained in Section 7.1, in principle, allows calcu-

lating dielectric constant when total dielectric polarization P is known:

ε¼ 1 +
P

ε0E
(7.12)

Obviously, if the dielectric shows several (k) noninteracting polarization mecha-

nisms, electrical moment per unit volume of dielectric can be found from the follow-

ing expression:

P¼
X

nkαk
� �

F, (7.13)

where F is acting on particles electrical field, αk is polarizability of kth mechanism,

and nk is particle concentration actual for kth polarization mechanism. From these

models of elementary mechanisms of elastic and thermal polarization, k ¼1, 2,…, 6.

Local (acting) electrical field in dielectric. It would seem that the expressions

(7.12) and (7.13) can completely solve the problem of permittivity calculated

through known molecular constants of dielectric—by polarizabilities. However, in

order to use this expression, it is necessary to find the relationship between average

macroscopic field E and acting on particles (local) field F.
Only in case of gases where molecules are spaced from each other at large dis-

tance, it can be assumed that F � E, and local field is E¼ (D�P)/ε0. In the liquid

and solid dielectrics, the local (acting) field is significantly different from the field E;
generally

F�E +Γ, (7.14)

where Г is the resulting field, taking into account the impact on all other polarized

particles on a given particle in a dielectric [3].

The general problem of field F determination, excluding specific structural fea-

tures of dielectric, is very challenging. G. Lorentz proposed a very important simpli-

fied solution to this problem, when local field ELor can be found for dielectrics that

have no polar molecules in their structure. At this condition, it appears that

F¼ELor ¼E +E1, ELor ¼ ε+ 2

3
E>E

� �
: (7.15)

Field E1¼P/3ε0 is conditioned by the action of all remote polarized particles on a

given particle. Lorentz has proved that in nonpolar dielectrics, the influence of

closely spaced particles cancels each other and can be ignored.

Using Eq. (7.15), that is good approximation for nonpolar dielectrics, it is pos-

sible to obtain a common relation between permittivity and polarizability. This ratio

is named after Clausius-Mosotti, who first established the total between ε and αk for
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optical properties of dielectrics (i.e., only for special case of quasielastic electronic

polarization). Later this relation was generalized by Lorentz for other mechanisms of

polarization. However, in case of polar (liquid or solid) dielectrics, the Clausius-

Mosotti-Lorentz formula cannot be applied (this is the “polarization catastrophe”).

As Lorentz approximation appears to be a very successful solution of the prob-

lem, relation (7.15) is possible to generalize for polar dielectrics as well. In the case

for weak electrical fields (i.e., for linear dielectrics), the following expression can be

proposed:

F¼E +E1 +E2 (7.16)

The field E1 in this equation is the Lorentz correction, while the field E2 takes into

account the impact on polarized particles, located close to the concerned one (as

already noted, for nonpolar dielectrics it can be considered E2¼0). The fields in

expression (7.16) are shown in Fig. 7.16, and, respectively:

E¼ D�Pð Þ=ε0; E1 ¼P=3ε0; E +E1 ¼E ε + 2ð Þ=3:
The field E2, in a general case, is projection of the internal field B on the direction of

external field E (Fig. 7.16B); it takes into account the effect of polarized molecules

adjacent to the considered particle. Local field calculations for polar dielectrics were

conducted by many researchers. Solutions, obtained in some cases, are in good

agreement with experimental results for individual polar dielectrics, but are not

universal.

The most reliable solutions of this problem were obtained by L. Onsager,

J. Kirkwood, and G. Frohlich [9]. Calculation of local fields in low-symmetry and

dipole-structured dielectrics is considered one of the most difficult problems in

the theory of dielectrics. It should be noted that quite a simple and, at the same time,

important example of Lorentz theory application to the properties of dielectrics is the

ionic crystal description of polarization. Developed by M. Born, the dynamic model

allows not only to correctly explain far-IR polarization and electromagnetic absorp-

tion of ionic crystals, but also to establish a number of important relationships that
–e0
–1 P0 e0

–1 D

FEE1

E2

B

(A)

(B)

FIG. 7.16

Electrical fields in the dielectric: (A) average macroscopic field E¼¼D/ε0�P/ε0, (B) local
field acting on each particle, F¼E+E1+E2.
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include the ratio of Liddeyn-Sachse-Teller who have obtained the equation that con-

nects dielectric constant, optical refractive index, and frequency of transverse and

longitudinal optical phonons (see Chapter 4). Born’s dynamic theory explains also

specific properties of ionic crystals with very high dielectric constant.

Dielectric permittivity of gas. In gases the only elastic electronic polarization αe
and thermally activated dipole polarization αdt should be considered. As interaction

of molecules in gases may be ignored, it is natural to assume that the local field (act-

ing on the molecule) differs only a little from the average macroscopic field (F � E),
and static permittivity is not much greater than one. Using these relations and taking

into account the foregoing assumption, the following formula can be derived for

permittivity of gas:

ε¼ 1 +

X
nkαk

ε0
¼ 1 +

neαe + ndαdt
ε0

, αe ¼ 4πε0r
3, αdt ¼ p20=3kT:

In the nonpolar gases, permittivity is determined by optical refractive index only:

εel¼εopt¼n2¼1+neαe/ε0, αe ¼4πε0r
3. Assuming αe � re

3 � 10�30 m3, and taking

into account that at normal conditions concentration of molecules in gas is

ne¼7.7�1025m–3, it is possible to estimate permittivity: εel¼1.0004. Experiments

show that this value is equal to 1.00055 for oxygen, 1.00027 for hydrogen,

1.00058 for nitrogen, but quite low for helium: εel He¼1.00007.

This is due to helium’s nuclear (not molecular) structure. Therefore calculated εel
in nonpolar gases is completely consistent with results of optical measurements of

refractive index.

In the polar gases containing dipole molecules, such as steam H2O, vapors of

HCl, CO, NH3, and others, it is possible to divide dielectric contributions of elec-

tronic and dipole polarization by comparing optical refractive index n with the value
of gas permittivity εlf measured at low frequency:

εlf �n2
� 	

ε0 ¼Ndp
2
0

3kT
,

where p0 is dipole moment and Nd is polar molecule concentration. Correspondent

measurement technique is used for experimental determination of dipole moments of
different molecules. Data on the value of dipole moment of complex organic mol-

ecules may be used for both deciphering of molecular structure and construction

of correct models of these molecules.

Thus the theory of dielectric polarization of gases seems to be quite perfect.

Calculation of permittivity by known molecular parameters has no fundamental

difficulties, and the data obtained are in good agreement with measurements.

Lorentz model for local field calculation. A simplified method for local field

calculation in homogeneous nonpolar dielectrics will be discussed later. For each

polarized particle (ion, atom, molecule) surrounding them, dielectric is considered

as a continuous medium that is characterized by certain macroscopic parameters.

In fact, each particle is surrounded by adjacent particles and is influenced by the

microscopic field of their neighbors. In gases, due to large distances between
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molecules, the influence of these microscopic molecular fields can be neglected.

However, in the condensed phases (liquid and solid dielectrics), as well as in highly

compressed gases, such assumption is unacceptable.

For microscopic field calculation, Lorentz introduced a conception of physically
infinitesimal volume that gathers around this molecule and forms a sphere of radius r.
The assumption about spherical form is not critical and selected solely for simplifi-

cation of calculations. The radius of Lorentz sphere is such that it is possible to take

into account the influence of those particles that are located within sphere. Thus it is

assumed that exclusively the influence of molecules, located in outside area, should

be taken into account as polarized continuous medium. Accordingly, in the calcula-

tion, a sum of fields is used, F¼E+E1+E2, where E is average macroscopic elec-

trical field, field E1 describes the influence of distant molecules (located outside

Lorentz sphere), and field E2 characterizes the microscopic field of closest to the

given molecule environment.

Themacroscopic fieldE is generated by electric charges that are located outside the

sphere and by polarization P and can be determined from Eq. (7.12): E¼ P
ε0 ε�1ð Þ. To

calculate Lorentz correctionE1 (field of polarized sphere), it should be assumed that all

molecules inside Lorentz sphere are removed. Then the problem is limited to the cal-

culation of electrical field, created inside the polarized dielectric sphere. The presence
of associated electric charge on the surface of a sphere should be assumed—this rep-

resentation is equivalent to polarization of empty sphere in dielectric (Fig. 7.17).

Electrical charge located on elementary surface dS is denoted by dq. As the inte-
gration relief, the elementary surface is selected: a ring on sphere, located at angle θ
to the external electric field direction. Elementary charge dq creates the field in cen-

ter of sphere: dE1 ¼ dqcosθ
4πε0r2

. The value of elementary charge, located on considered

ring, is proportional to charge density and to ring surface: dq¼ρsdS. The density

of electrical charge depends not only on dielectric polarization value, but also on

the angle of the elementary area (shown in Fig. 7.17B) that forms with macroscopic

polarization direction, that is, ρs¼P cosθ.
FIG. 7.17

Approximations to calculate Lorentz local field: (A) allocation of Lorentz sphere in dielectric;

(B) calculation of polarized sphere field.
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Surface of ring is determined by the parameters chosen in this task:

dS¼2πr2sinθ�dθ. This expression should be substituted into formula for dE1, and

after integration over entire surface of a sphere, the following can be obtained:

E1 ¼ P

2ε0

ðπ

0

cos2θsinθdθ¼ P

3ε0

Thus polarized dielectric medium that is located beyond Lorentz sphere creates in the

center of sphere an electrical field E1 ¼P/3ε0. In Lorentz approximation, the local

field is determined by a sum F¼E+E1:

F¼FLor ¼ P

ε0 ε�1ð Þ +
P

3ε0
¼ ε+ 2

ε�1

P

3ε0
¼ ε+ 2

3
E (7.17)

It follows that Lorentz field exceeds the average macroscopic field in (ε+2)/3 times.

Obviously, dense polarized media in liquid or solid dielectrics increases local field
acting on a particle. However, in gases ε¼1 and FLor¼E, so the Lorentz model

confirms previous calculations made for gases.

Now it is necessary to evaluate E2 that is a field of polarized particles located

inside a spherical cavity. In case of polar molecules (so-called hard, or permanent
dipoles), the molecule concerned is affected by strong internal electrical fields

induced by these dipoles, and these influences depend on a random thermal move-

ment in the polar dielectric. In such cases, it is impossible to ignore field E2. How-

ever, in the nonpolar dielectrics these local fields are created only by the induced in

external electrical field dipoles (“soft” dipoles), and in most cases the influence of

their fields is totally compensated.
Lorentz approximation just meant a case of total compensation of local field,

caused by the particles inside a sphere. This assumption, as already noted, is true

for most of dielectrics. The point is that for each of polarized particles, located inside

a cavity, it is always possible to find a particle whose action compensates the action

of first particle. Such compensation is possible in case of disordered arrangement of

atoms (or molecules) in the dielectric, that is, in case of nonpolar liquids. Note that

during chaotic thermal molecular motions, some violations (fluctuations) are possi-

ble, but on average yet it is possible to assume field E2¼0.

A similar result can be obtained for solid isotropic dielectrics, for example, for

many nonpolar solid-amorphous dielectrics in which E2¼0 can also be considered.

However, in crystals compensation of inside-sphere local field is possible only for

highly symmetric (simple) structures, and this is confirmed by calculations.

Lorentz approximation provides a relatively simple expression for permittiv-

ity calculation in the nonpolar and highly symmetric dielectrics, using known

molecular parameters. From general expression (7.2), which binds polarization

and dielectric constant, formula (7.17), in which effective field is expressed

through a polarization, makes possible to obtain the Clausius-Mosotti-Lorentz

equation:

ε+ 2

ε�1
¼
X

nkαk

3ε0
(7.18)
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The equation that is used to calculate dielectric constant of gases (when value of ε
differs a little from unity) can be obtained from Eq. (7.18) as a special case, if

(ε+2)¼3. With some approximation, Eq. (7.18) describes dielectric properties of

nonpolar and weakly polar liquids and solid dielectrics with mainly electronic polar-

ization: ε+ 2
ε�1

¼ neαe
3ε0

. Such dielectrics have ε value of �2–7, which is close to the

squared optical refractive index; they are nonpolar solid dielectrics (in which

ε � n2), including paraffin, polystyrene, Teflon, rubber, and so on. Dependence of

dielectric constant on temperature for such dielectrics is negligible; nonlinearity

of these dielectrics is practically invisible.

Temperature parameter TCε¼ε�1dε/dT, important for many applications, can be

determined with the assumption that polarizability αe is independent of temperature.

By differentiating both sides of coerced equation with respect to temperature, and

after some transformations, the following can be obtained:

T0Cε¼� ε�1ð Þ ε + 2ð ÞβV
3ε

(7.19)

where βV is volumetric coefficient of thermal expansion. Indeed, in these dielectrics,

temperature dependence of ε is due almost entirely to the thermal expansion. Result-

ing ratio indicates that parameter TCε is negative for the nonpolar liquid and solid

dielectrics, as in all of these substances βV>0 [6].

Thermally activated ionic and electronic polarizations, unlike the Debye dipole

orientation mechanism, are possible mainly in solid dielectrics having imperfect

structure. As a rule, structural defects are located sufficiently far from each other;

therefore at high temperatures their interaction might be neglected.

Thus the Clausius-Mosotti-Lorentz equation can be considered as the basic rela-

tion that allows permittivity calculation from known molecular constants for most

dielectrics.
7.7 DYNAMICS OF ELECTRICAL POLARIZATION
Electrons, ions, and dipoles create induced electrical moment in external electrical

field (polarized status) through various mechanisms. If these particles are con-

strained in a relatively rigid but elastic structure, the influence of electrical field

results in very rapid shifts of charged particles from their equilibrium state, and this

is the quasielastic (deformation) polarization. On the contrary, when polarization

establishes in time with a participation of thermal movement of particles (electrons,

ions, or dipoles), the settling of polarization is a relatively slow process that is

described by other dynamics (relaxation). Therefore, to analyze contributions of dif-
ferent mechanisms to a total electrical polarization, one has to distinguish between

“fast” and relatively “slow” polarization processes, as well as consider electrical

conductivity.
Suppose that dielectric at a certain time t0 is exposed to electrical field E0, which

then remains unchanged. When the field is turned on, the electrical current j arises in



FIG. 7.18

Current density on time dependence after electric field switching on.

3377.7 Dynamics of electrical polarization
dielectric: its change with a time is shown in Fig. 7.18. In general, the j(t) dependence
can be divided into three characteristic regions. At the time of applying voltage E, the
sharp and quick jump of electric current is observed due to establishment of “fast”

types of polarization as well as the “geometrical capacity” charging. This peak of

current takes a very short time and corresponds to a region 1 on the curve j(t). Then,
in the circuit containing the dielectric, characterized by the thermally induced polar-

ization, a gradual decrease in current with a time occurs (region 2), which indicates

the settling of “slow”-type polarization.

At that, the “fast” polarization processes correspond to different types of elastic

(deformation) polarizations, while the “slow” decrease of polarization corresponds

to the mechanisms of thermal (relaxation) polarization.

After some time the current, flowing through a dielectric, is reduced to a constant

value: the saturation current. Corresponding plot 3 in Fig. 7.18 represents electrical
conductivity that is usually very small in dielectrics, but it always has a finite value.

Dependence of j(t) that describes the decrease in current density after momentary

application of a direct voltage can be used to calculate frequency dependence of per-
mittivity and dielectric losses in the alternating voltage.

Polarization that is caused by particle thermal movement establishes relatively

slowly. Its relaxation time τ depends on temperature, and at normal conditions (at

300K) equals τ¼10�3–10�9 s. Remember that dielectrics are used in electronics

in the frequency range of 50–1011Hz, the frequencies of thermally activated molec-

ular processes. Therefore, in many applications of dielectrics, any changes in the per-

mittivity and losses (caused mainly by thermally activated electrical polarization) are

quite undesirable. The space-charge polarization (i.e., an even more slow mecha-

nism, τ¼103–10�3 s) also leads to the increase of losses on both infralow and

low-frequency intervals.

On the contrary, elastic (deformation-type) mechanisms of polarization in the

previously mentioned frequency range are set in time almost instantaneously; there-

fore these polarization mechanisms have no influence on losses in a large frequency

range of 50–1011Hz.
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Dynamic properties of relaxation polarization. Heat-induced jumps and reor-

ientation of charged structural units in crystals, ceramics, or polymers (relaxation

polarization) are caused by various polar groups—weakly bounded electrons (αet)
or ions (αit) and by thermally stimulated reorientation of dipoles (αdt). This relatively
“slow” polarization process corresponds to the region 2 in Fig. 7.18. For these mech-

anisms, dielectric dispersion has a relaxation character: with increasing frequency, a
gradual decrease in ε(ω) is observed that can be described by the Debye relaxation

model, discussed later.

Further, the region 2 of general dependence j(t) is considered, in which connec-

tion conductivity (region 3) is neglected, while “fast” polarization processes 1 in

Fig. 7.18 are added as the contribution of high-frequency permittivity: ε(∞). If direct

electrical field E0 is applied to dielectric at time t0, the change of polarization over a
time can be described by the expression

P tð Þ¼ n0αtE0 1�e�
t
τ

h i
,

where αt is polarizability of thermally activated polarizations, while n0 is concentration
of particles, involved in the given polarization process. Since in capacitor model polar-

izationP is surface charge density ρp, electric current is the change of this charge in time:

j2 ¼
dρp
dt

¼ dP

dt
¼ n0αT

τ
e�

t
τE0 (7.20)

Index 2 in formula (7.20) indicates that dependence of j(t) is considered only in the

region 2 of Fig. 7.18, while other processes are not examined. From expression (7.18)

the change in current density over time can be obtained as a result of “slow” pro-

cesses of polarization: j tð Þ¼ n0αt
τ e�

t
τE, where n0 is concentration of particles involved

in this polarization (dipoles, ions, electrons) and αt is their polarizability. Taking into
account rapid processes of polarization that dielectric contribution is referred as

ε(∞), it is possible to obtain a general formula, known in literature as Debye disper-
sion formula:

ε∗ ωð Þ¼ ε0 � iε00 ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ
1 + iωτ

(7.21)

where ε(0) is “quasistatic” dielectric constant (when ω ! 0), while the difference

[ε(0)�ε(∞)] represents contribution to permittivity of relaxation polarization.

Eq. (7.21) can be justified as follows. Suppose that static electrical fieldE0 is turned

on for a long time (enough to full settling of permanent polarization P0). If the field is

turned off at time t¼ t0, the polarization, caused by thermal activation, gradually

decreases (Fig. 7.19A). It is believed that the rate of polarization lowering after elec-

trical field removal (i.e., the derivative dP/dt) is proportional tomagnitude ofP(t). This
assumption is based on a well-known principle of thermodynamics: the rate of system

approach to the equilibrium state is proportional to the deviation from the equilibrium

state. Thus the change P(t) can be described by the following equation:

dP

dt
¼�1

τ
P,



FIG. 7.19

Changing the thermal polarization with time: (A) when electric field is turned off, (B) in case of

periodic field.
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where 1/τ is coefficient that depends on properties of dielectric and on temperature.

The solution of this differential equation is P¼P0 exp(� t/τ). From this result the

meaning of τ could be found: it is a time, during which polarization is reduced by

a factor of e in comparison with initial value P0. Parameter τ is the relaxation time,
which describes a rate of polarization decrease after electrical field turning off (or,

alternatively, τ defines the speed of P(t) setting after electrical field switching on).

If a dielectric is exposed to alternating electrical field, E(t)¼E0 exp(iωt),
Fig. 7.19B, the change of polarization over time can be described by the inhomoge-

neous differential equation of the first order:

dP=dt+ 1=τð ÞP¼ gE0e
iωt

where P¼ (
P

ntαt)E is thermally activated polarization (of electrons, ions, or

dipoles), αt is polarizability, and nt is concentrations. Parameter g¼ntαt/τ, by its

dimension, characterizes the conduction, arising due to the reactive current.
Stationary solution of this equation with assumption t ! ∞ and taking into

account that ε¼1+P/ε0E makes it possible to obtain the formula for frequency

dependence of permittivity:

ε∗ ωð Þ¼ 1 +
gt

ε0 1 + iωτð Þ :

It is necessary to add contribution from fast mechanisms of elastic polarization that is

designated ε(∞). As a result, it is possible to obtain the Debye equation (7.19) that

describes frequency dispersion of dielectric contribution from thermally activated

(relaxation) polarization.

As it might be expected, dielectric permittivity is a complex value. By separating
real and imaginary parts of dielectric constant in Eq. (7.21), it is possible to obtain:

ε∗ ωð Þ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ
1 +ω2τ2

; (7.22)



FIG. 7.20

Dispersion of permittivity for thermal (relaxation) mechanisms of polarization: (A) real part of

dielectric permittivity; (B) imaginary part of dielectric permittivity (loss factor).
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ε00 ωð Þ¼ ε 0ð Þ� ε ∞ð Þ½ �ωτ
1 +ω2τ2

: (7.23)

Eqs. (7.22) and (7.23) describe frequency dependence of real and imaginary parts of

permittivity. At low frequencies ε0 ¼ε(0), while at high frequencies ε0 ¼ε(∞), in

which connection at frequency ω¼1/τ the dielectric contribution of thermal polar-

ization decreases exactly twice: [ε(0)�ε(∞)]/2.

From formula (7.23) for ε00(ω) it follows that dielectric loss factor ε00 reduces at
lower frequencies (when thermal polarization has enough time to settling) and at

higher frequencies (when polarization mechanism is completely retarded). At this,

the ε00(ω) has a maximum at frequency ω¼1/τ, which corresponds to a frequency

when the dielectric contribution reduces in two steps with frequency increase

(Fig. 7.20B).

Dynamic properties of optical polarization, as well as far-IR polarization,

should be described using the model of harmonic oscillator (Fig. 7.21A). In this

model, the particle of mass m and charge q is elastically connected with a “fixed

base,” because the outer electronic shell shifts relatively easily as to the fixed core

of atom (the core is nucleus with deep electronic shells).

In case of forced displacement of particle from its equilibrium position on dis-

tance +x or �x with overcoming elastic “spring,” a restoring force arises, which

is proportional to displacement x and is directed oppositely: f¼�cx. Parameter c
is coefficient of elasticity of a bonding; in this case, it is the elastic connection of

outer electrons with the core of an atom. The displacement force f balances the force
of inertia m(d2x/dt2):

m
d2x

dt2
¼�cx (7.24)

The energy of corresponding oscillator is U¼ Ð
cxdx¼cx2/2. This expression

describes parabolic potential well (see Fig. 7.4A). The solution of Eq. (7.24) is vibra-

tions of oscillator: x¼x0cosω0t (or x¼x0 sinω0t); the general solution should be

presented in the form x¼x0e
iω0t, where x0 is amplitude and ω0 is intrinsic frequency

of oscillator.



FIG. 7.21

Oscillator model and electromagnetic wave dispersion: (A) oscillator; (B) ε-resonance in

oscillator dispersion system; (C) dispersion n of electromagnetic waves in vacuum and in

dielectric.

3417.7 Dynamics of electrical polarization
Corresponding permittivity can be found by analyzing oscillations arising

at influence of periodical electrical field, by solving the equation

m
d2x

dt2
+ cx¼ q0Fe

iωt (7.25)

where right-hand side of equation is electrical force, acting on charges. At that, field

F is different from applied field E: F¼E+P/(3ε0), where P is polarization (Lorentz

approximation).

Without considering transient processes, particular solution of Eq. (7.25) for

forced oscillations (of N oscillators per unit volume) can be found, using P(t)¼
P0e

iωt:

d2x

dt2
+
cx

m
¼ q

m
E0 +

P

3ε0

� �
eiωt,



342 CHAPTER 7 Dielectrics
where P¼Nqx;

d2P

dt2
+

c

m
� Nq2

3ε0m

� �
P¼Nq2

m
E0e

iωt; P tð Þ¼Nq2

m

E0e
iωt

ω2
0�ω2

,

where ω2
0 ¼ c

m� Nq2

3ε0m
. Thus it is possible to describe frequency dependence of permit-

tivity that characterizes elastic polarization at resonant dispersion:

ε ωð Þ¼ 1 +
Δε

1� ω

ω0

� �2
; Δε¼ Nq2

ε0mω2
0

(7.26)

At low frequencies the dielectric contribution of oscillators is Δε¼εоpt (Fig. 7.21B)
that gradually increases as frequency approaches to the resonant value ω0. Above

resonant frequency, the dielectric contribution decreases stepwise and becomes

negative; next it again increases, crosses zero value, and at frequency ω≫ω0

reaches one.

Experimental dependences of ε(ω) in the range of resonant dispersion are more

smooth, than theoretical curve (shown in Fig. 7.21B) and calculated according to

formula (7.26), where attenuation of oscillator is not taken into account (but it

always observed in experiment).

If oscillator (7.24) describes elastic electronic polarization, then dielectric con-

stant is εоpt¼1+εel. In accordance with magnitude εоpt, light velocity inside crystal

decreases: υcryst ¼ c=
ffiffiffiffiffiffiffi
εopt

p
(where c is light velocity in vacuum).

Dependence of photon frequency on wave vector is compared in vacuum and in

crystal (Fig. 7.21C). In vacuum, there is no dispersion of a light: ω¼ck. In dielectric
at frequencies ω<ω0 relationship ω¼ ck=

ffiffiffiffiffiffiffi
εopt

p
is true, while in the vicinity of

ω�ω0 dielectric dispersion occurs: phase velocity of light first decreases, because

εоpt rises with frequency, but then (in ultraviolet part of spectrum) the optical (elec-

tronic) polarization is delayed. At higher frequencies (at x-rays and gamma rays),

electromagnetic waves that propagate in a crystal have velocity of light in vacuum,

as any polarization mechanism at such high frequencies is absent.

Dynamic model of far-IR (ionic lattice) polarization was discussed previously

in connection with phonons in solids (Section 4.3). Ionic crystals are a large and

important class of dielectrics. In addition to quasielastic displacement of electron

shells, the main polarization mechanism in these crystals is electrically induced qua-
sielastic displacements of ions—charged particles bound in a crystal lattice.

Assuming that the oscillator model, described by expression (7.24), characterizes

elastic ionic polarization (that has a much lower intrinsic frequency as compared

with electronic polarization), in Eq. (7.26) it is necessary to replace Δε¼εir, as ionic
polarization undergoes dispersion that occurs in the far-IR frequency range. In addi-

tion, the ε(ω) also contains fast contribution of more high-frequency electronic polar-

ization εopt (optical contribution):

ε ωð Þ¼ εopt +
Nq2= ε0mω2

TO

� 	

1� ω=ωTOð Þ2 (7.27)
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Here N is volumetric concentration of ions, q is ion charge, and m is reduced mass.

The frequencyωTO represents one of intrinsic frequencies of crystal lattice: transver-

sal optical lattice vibration frequency.

The ionic polarization mechanism to a great extent determines ionic crystal per-

mittivity. Below resonant frequency (ω<ωTО) permittivity is determined by two

contributions: ε(0)¼εоpt+εir. Above frequency ωTO ionic polarization is delayed,

and permittivity dispersion can be seen in the frequency range of 1012–1014Hz.
Therefore, at higher frequencies, only optical (electronic) polarization is possible.

The frequency ωTO has a decisive influence on ionic crystal permittivity

(Fig. 7.22). As an example, some crystals were chosen in such a way that the differ-

ence in the εir constitutes about one order of magnitude. It is obvious that the less

the frequency ωTО the larger the dielectric constant.

Quasielastic lattice polarization in ionic crystals leads to the resonant dependence

of permittivity on frequency that can be described using a dynamic model of crystal

lattice. In this model, it is supposed that potential hole of each ion is well described

by parabolic potential; hence ion vibrations are characterized by the harmonic

oscillator model.

The simple model of “one-dimensional” crystal was considered previously in

Section 4.3. In contrast to previously discussed oscillator with “fixed bearing”

(Fig. 7.22A), in this model (Fig. 4.5A and Fig. 7.7) the displacement of each atom

will affect the displacement of neighboring atoms such that elastic displacement will

spread through the entire one-dimensional chain as elastic wave. Polarization, as

usual, can be expressed in terms of induced dipole density N and dipole moment

p¼qx, so P¼Nqx. As a result, oscillator equation takes the form

m
d2x

dt2
+ c�Nq2

3ε0

� �
x¼ 0

where intrinsic frequency of oscillator corresponds to frequency of transverse optical
phonons

ω2
TO ¼ 1

m
c�Nq2

3ε0

� �
(7.28)

Thus, Lorentz field F reduces elastic constraint and, accordingly, decreases oscilla-
tor frequency ω0¼ (c/m)1/2 to the frequency of transverse optical phonons, that is,

promotes “softening” of vibrations (reducing frequency ω0 of oscillator: ωTО < ω0).

In case of longitudinal oscillations, local Lorentz field becomes significantly

different, as electrical field E is directly opposite to polarization P: ε0 E¼�P.
The intrinsic frequency of such an oscillator that corresponds to the longitudinal

vibrations is

ω2
LO ¼ 1

m
c+

2Nq2

3ε0

� �
(7.29)

Therefore the frequency of an oscillator that characterizes longitudinal optical vibra-

tions in the polarizable medium is higher than the frequency of an isolated oscillator



FIG. 7.22

Dielectric dispersion of infrared contribution εir (A) and phonon spectrum (B) for some ionic

crystals.
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(ω0¼ (c/m)1/2). Results, obtained in Eqs. (7.28) and (7.29), explain the locations of

optical phonon branches: LO lies over TO; it is obvious thatωLO in the ionic crystal is

larger than ωTO (see Fig. 3.5D).

The permittivity of ionic crystals depends on a difference in frequencies of lon-

gitudinal and transverse optical vibrations ωLO and ωTO in the center of Brillouin
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zone. The equation, which describes IR polarization of ionic crystals, maintains the

frequency of transverse optical phonons in the long-wave limit:

ε ωð Þ¼ ε ∞ð Þ + ε 0ð Þ� ε ∞ð Þ

1� ω

ωTO

� �2
, where ε 0ð Þ� ε ∞ð Þ¼ Nq2

ε0mω2
TO

¼ Nq2

c�Nq2

3ε0

(7.30)

This equation implies that the stronger the ionic polarization, the higher the ionic

charge q and the lesser the elastic coupling coefficient c. Expression (7.30) allows

quantitative calculation of IR contribution to permittivity. Indeed, ion concentration

N can be found according to density of crystal, m is reduced mass of vibrating ions, q
is ionic charge, andωTO is frequency of “residual” rays that can be determined exper-

imentally by multiple reflections of IR waves from the surface of the studied crystal.

Coefficient c that describes elastic coupling of ions can be calculated from the mac-

roscopic elastic properties.

In most ionic crystals, permittivity εmic, measured in microwaves, is not large:

εmic¼εоpt+εir¼6–12. Among two ion crystals (e.g., AHCs), there are no crystals

with high permittivity that might be promising materials for applications in micro-

electronics. A comparison of electronic and ionic contributions to εmic for some

oxides is shown in Fig. 7.23.

The more the density of crystal, the more the refractive index n2¼εоpt and the

higher the polarization of ionic lattice, which is characterized by the difference in

microwave and optical permittivity: εmic�εоpt [10]. Eq. (7.28) allows another

way to write dispersion equation describing ε frequency dependence in the far-IR

region. By eliminating parameter εir, it is possible to obtain
FIG. 7.23

Correlation between density ξ (g/cm3) and microwave εmic (1) as well as optical εopt (2)
permittivity for some important electronic oxides.
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ε ωð Þ¼ εopt
ω2
LO�ω2

� 	

ω2
TO�ω2

� 	 (7.31)

The obtained equation describes frequency dependence of permittivity ε(ω) that
increases within all spectrum, except for the area of lattice resonance (Fig. 7.22).

As it follows from previous considerations, resonant frequency equals transverse

optical frequency ωTO, while permittivity at longitudinal frequency equals zero: ε-
(ωLO)¼0. By analyzing Eq. (7.30) with this assumption, we can obtain

0¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ

1� ωLO

ωTO

� �2
,

and, after simple transformations, it follows

ε 0ð Þ
ε ∞ð Þ¼

ω2
LO

ω2
TO

(7.32)

This is a very important relationship (that is referred to as Liddein-Sachs-Teller ratio)

that describes the connection between total dielectric constant ε(0)¼εir +εopt and fre-
quencies of longitudinal and transverse modes. As always, ε(0)>ε(∞), the fre-

quency ratio is ωTО<ωLO. However, in the covalent crystals of diamond type in

the center of Brillouin zone ωTО � ωLO, so IR (ionic) contribution to permittivity

is absent (such crystals are diamond, silicon, and germanium).

Electromagnetic waves that have frequency ω<ωTО extend in ionic crystal with

velocity in (εir +εopt)
1/2 times less than in vacuum, where electromagnetic waves

have light velocity: c¼k/ω. Therefore, in ionic crystal, the velocity of electromag-

netic waves is reduced. At that, in the frequency interval between ωTО and ωLO ionic

crystal-insulator reflects electromagnetic waves like metal; hence in this frequency

range ionic crystal is not transparent (opaque). Its transparency is recovered at fre-

quencies ω>ωLO, but velocity of electromagnetic waves in ionic crystal is still less

than light velocity in (εopt)
1/2 times because it is slowed down by optical dielectric

constant.

Obtained formulas (7.28) and (7.29) also allow to clarify the nature of permittiv-

ity temperature dependence in the ionic crystals. Because of thermal expansion,

crystal decreases its density. On the magnitude of electronic part of permittivity

ε(∞)¼εоpt thermal expansion is affected by εоpt reduction with temperature increase

(because of which TCεоpt is negative). In contrast, essential increase in the

εir ¼ε(0)�ε(∞) should be expected when temperature rises. Indeed, due to thermal

expansion of crystal, the distance between ions increases and, therefore, their inter-

action weakens. Consequently, elastic coupling of ions (c) decreases. As c is located
in the denominator of formula (7.28), if it decreases, dielectric contribution εir
increases. In most ionic crystals, contribution εir exceeds εоpt; therefore in micro-

waves εmic¼εir +εоpt increases with temperature, so TCεmic>0.

Different temperature dependence of permittivity. The contributions to

permittivity of various polarization mechanisms are compared in Fig. 7.24.



FIG. 7.24

Typical temperature dependence of permittivity for different dielectrics 1—optical

(electronic) polarization; 2—optical and infrared (ionic) polarization; 3—single-domain

ferroelectric; 4—“hard” type paraelectrics (CaTiO3); 5—crystal TTF-TCNQ; 6—“soft” type

paraelectric (SrTiO3); 7—typical ferroelectric in paraelectric phase: (Ba, Sr)TiO7.
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Optical (electronic) polarization, with less inertia, can provide extremely low

microwave loss and high thermal stability: thermal coefficient of permittivity

TCεopt<�10ppm/K (Fig. 7.24, curve 1).

The far-IR (ionic) polarization mechanism is possible only in crystals with ionic

bonding and it is seen not only in alkali-halides but also in large classes of metal-

oxides and chalcogenides. Semiconductors of the AIIIBV and AIIBVI classes are also

partially ionic crystals. In addition to electronic polarization, far-IR polarization pro-

duces dielectric contribution εir with low microwave loss and, sometimes, it shows

acceptable thermal stability of εmic (curve 2 in Fig. 7.24). In this case, the contribu-

tion of optical polarization εopt (that is described by small but negative temperature

coefficient TCεopt) partially compensates positive thermal coefficient TCεir.
In most of ionic crystals, permittivity (εmic¼6–12) is not sufficient for many

microwave electronic applications (resonators, filters, etc.). Indeed, the majority

of alkali-halides have ε<10 that slightly increases with rise in temperature

(Fig. 7.24, curve 2) (however, among alkali-halides, there are exceptions, namely,

thallium-halides, in which εmic � 30 and decreases with increasing temperature)

[11]. Different values of microwave permittivity may be observed in oxides and chal-

cogenides: in them εmic ¼εopt+εir¼5–15. Note, that in some oxides, such as Al2O3

(where εmic �12), thermal stability is good (TCε�10�5 K�1). Due to low losses and

high thermal conductivity polycrystalline Al2O3 (polycor) and single crystal Al2O3

(sapphire) are widely used in microwave technology in spite of not very high εmic.

Other ionic compositions. Displacement-type paraelectrics, as well as antiferro-

electrics and ferroelectrics, are strictly the materials with a very high and no-inertia
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ionic-type polarization. As regards ferroelectrics, the only single-domain crystals

with very high Curie temperature are capable of providing at microwaves

εmic¼30–100 (as in LiNbO3 or LiTaO3). Single-domain crystals of “hard”

displacement-type ferroelectrics (ferroelectrics with very high Curie temperature)

do not show large microwave losses (tanδ<10�3) and have positive TCε
(Fig. 7.24, curve 3). On the contrary, “soft” displacement-type ferroelectric crystals,

such as BaTiO3, have increased microwave losses and they are not thermally stable.

As regards displacement-type antiferroelectrics (like NaNbO3 and PbZrO3), they

also have high permittivity and relatively low dielectric losses at microwaves,

because they show absence of εmic dispersion. Moreover, they have rather large

and positive TCε: in principle, these antiferroelectrics might be used for thermal sta-

bilization of microwave paraelectrics, in which the TCε is also large, but negative

(curves 4, 6, and 7 in Fig. 7.10).

As shown in Fig. 7.24, curve 5, there is a theoretical possibility to obtain thermal

stable dielectrics with high εmic but at very low temperatures. These materials are

based on the fast-response electronic-phonon mechanism of polarization in dielec-

trics with unstable electron spectrum (quasi-1D crystals of TTF-NCNQ type). Insu-

lating phase with the value εmic�2000 is formed in these crystals below the

conductor-insulator phase transition temperature. Due to the electronic nature of this

polarization ε-dispersion in TTF-NCNQ-type crystals is absent up to a frequency of

300GHz.

Nevertheless, most crystals are too expensive for use in mass technical applica-

tions in microwave technology. In practice, only ceramics are widespread in an over-
whelming majority of microwave devices.

The semiconductors of AIIIBV and AIIBVI (as well as some other types) are par-

tially ionic crystals. For this reason, except electronic polarization εopt, they have the
far-IR (ionic) contribution εir to microwave permittivity. This polarization mecha-

nism can be described by Lorentz equation and it takes place in the far-IR frequency

range. Thus total permittivity εmic of semiconductors is practically independent in all

radiofrequency range. As an example, in Fig. 7.10microwave permittivity of GaAs is

shown: it is frequency-independent up to 1000GHz.

Similar studies are conducted with gallium phosphide (ε¼7.5), indium antimo-

nide (ε¼17.5), zinc selenide (ε¼7.1), zinc sulfide (ε¼7.3), and crystalline selenium

(ε¼10.4). Measurements were carried out at a frequency of about 10GHz at temper-

ature of 300K [11]. Permittivity of all these semiconductors does not vary with fre-

quency as in silicon (Fig. 7.10A). Microwave losses in the wide-gap semiconductors

at room temperature are very small. However, at increased temperature their micro-

wave losses become considerable.

However, permittivity of semiconductors at microwaves shows perceptible

change with temperature that is possible to observe at millimeter waves: in accor-

dance with the theory of semiconductors, permittivity increases with increasing

temperature: the greater the ε value the smaller the bandgap. As temperature rises,

the bandgap of semiconductors decreases, so their permittivity increases with

temperature rise (Fig. 7.10B).



Table 7.1 Thin Film Dielectric Constant for Gate Layers of Field-Effect
Transistors

Simple Oxides ε Complex Oxides ε

A12O3 9–11.5 HfO2-SiO2 10–13

BaO 31–37 La2O3-SiO2 16–20

CeO2 18–26 Y2O3-SiO2 10–11

HfO2 20–22 ZrO2-SiO2 10–13

La2O3 25–30 HfO2-ZrO2 20–25

Ta2O5 25–45 HfO2-Al2O3 14–17

TiO2 80–95 LaAlO3 �25

Y2O3 11–14 SrZrO3 �25

ZrO2 22–25 SrTiО3 ε � 250

(Ba,Sr)TiO3 ε 	 400

3497.8 Dielectric losses and dielectric spectroscopy
Integrated dielectric films. Further progress in the miniaturization of microelec-

tronic devices depends on the magnitude of the dielectric-gate permittivity in high-

frequency transistors, as well as the dielectrics with increased ε could be used as

storage capacitors for dynamic computer memory (DRAM) devices. Currently, these

devices already work in the microwave region. Prospective materials are listed in

Table 7.1.

Replacement of thin films made of silicon dioxide (ε�3.7) or silicon nitride

(ε�6) by dielectrics with permittivity ε¼20–400 reduces the size of microelectronic

devices many times. In these films, only materials with electronic (optical) and ionic

(far IR) polarization can be used: both these polarization mechanisms determine

microwave dielectric constant εmic.
7.8 DIELECTRIC LOSSES AND DIELECTRIC SPECTROSCOPY
Dielectric losses, describing electrical energy transformation into heat, are important

electrophysical parameters of a dielectric. The magnitude of losses and their depen-

dence on frequency and on temperature are conditioned by the mechanisms of polar-

ization. Dielectrics are usually studied and estimated in the alternating electrical

fields. Therefore it is very important to study absorption of electromagnetic energy

at various frequencies for different mechanisms of polarization and conductivity.

Dynamic properties of quasielastic and thermally activated polarization are highly

different (Fig. 7.25); hence the mechanisms of dielectric losses are quite various.

In case of quasielastic polarization, the variance of ε*(ω) has a resonant character
with maximum and minimum in the ε0(ω) dependence. In case of thermal polariza-

tion, ε*(ω) dependence shows the relaxation nature and characterized by a gradual

decrease of ε0(ω) with frequency. In both cases, in the frequency range of dielectric

dispersion the maximum of loss factor ε00(ω) is obviously observed [4].



FIG. 7.25

Classification of dielectric loss mechanisms.
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The equations that describe dielectric loss frequency dependence were presented

in the previous discussions; they are summarized in Fig. 7.26. Dielectric relaxation at

thermal and migration polarization that is described by the Debye equations (7.21)

are repeated in this table wherein formulas for all basic mechanisms of losses are

listed. Analysis of these formulas enables to describe the frequency dependence

of parameters ε0, ε00, and tanδ.
The simplest mechanism of losses is charge carrier scattering in a matter; in other

words, this is electrical conductivity. Such losses, in one way or another, can be seen

in all dielectrics—in gases, liquids, and crystals. Dispersion of charge carriers is due

to their collisionswith atoms and molecules (in disordered media), as well as to their

scattering by lattice vibrations and structural defects (in crystals). Conductivity is the
most important mechanism of electrical energy conversion into heat in the

semiconductors.

A specific mechanism of energy absorption is losses, originated by polarization.

In an alternating electrical field, the polarization of dielectric is always accompanied

by electrical energy dissipation (any nonstationary process in real material is always

more or less thermodynamically irreversible). At some frequencies, however, polar-

ization losses can be very small, but they obviously are present.

Dielectric losses to a large extent depend on the presence of various impurities in

a dielectric. In solid dielectrics, depending on the concentration of impurities or

structural defects, the value of dielectric losses may vary by tens and hundreds of

times, while, conditioned by defects, change of permittivity might be rather small.

For this reason, dielectric losses are most sensitive indicators of structural defects
in dielectric. Therefore the study of dielectric losses and their dependence on struc-

tural defects as well as on various factors (temperature, voltage, frequency) has con-

siderable interest for physics and application of dielectrics.



FIG. 7.26

Basic formulas describing the various mechanisms of losses [4].
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Mechanisms of dielectric losses, arising in an alternating electrical field, can be

specified only by the study of dynamic properties of electrical response. It is neces-

sary also to consider kinetic properties of molecules and atoms in a dielectric.

Dielectric loss tangent. In electrical engineering and electronics, the dielectric

losses are characterized by the loss tangent: tanδ. However, the most general

physical characteristic of losses, particularly for description of frequency depen-

dences, is the complex dielectric constant:

ε∗ ωð Þ¼ ε0 ωð Þ� ε00 ωð Þ, tanδ¼ ε00=ε0

where ε0 ¼ε and ε00 is loss factor. In electrical engineering, to determine loss of

electricity, parameter cosφ is commonly used, where φ is the angle between vectors

of electrical field and current (Fig. 7.27).



FIG. 7.27

Determination of loss tangent and its frequency dependence for different equivalent circuits

that describe dielectric losses: (A) simplest representation; (B) more complicated cases.
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However, to describe losses in dielectrics, this characteristic is inconvenient, as

angle φ usually is a very little different from π/2. Thus, it is more comfortable to use

the angle δ that supplements angle φ to π/2. Parameter tanδ is numerically equal to

ratio of active (conduction) current ja to reactive (bias) current jr. Parameter tanδ is
the macroscopic characteristic of dielectric as well as permittivity. Loss tangent

dependence on temperature, frequency, electrical field, and other influences are sim-

ilarly important characteristics of dielectrics as appropriate dependence of permittiv-

ity. It should be noted that tanδ introduction as a characteristic of dielectric has

physical meaning only in case of alternating sinusoidal electrical field.
In electronic circuits (where dielectric is very often used as electrical capacitor) to

describe dielectric losses of real capacitor is very convenient by representing it as a

combination of ideal capacitor and ideal resistor that simulates dielectric losses. Sev-

eral equivalent circuits for dielectric loss description are shown in Fig. 7.27A and B.

A parallel connection circuit, when real dielectric is replaced by equivalent com-

ponents (left-hand side in Fig. 7.27A), characterizes properties of such dielectric, in

which tanδ decreases with increasing frequency. Generally, this case refers to the

losses, conditioned by conductivity.

On the contrary, when capacitor and resistor are in series connection, frequency
dependence of tanδ corresponds to polarization losses (right-hand side of

Fig. 7.27A). All dependences of tanδ(ω) are shown in semilogarithmic scale that

is usually used to describe frequency characteristics.

Thus, one or another equivalent circuit, necessary to describe real dielectric with

losses, might be selected from frequency characteristics. Sometimes, it needs to use

more complicated circuits that are shown with correspondent frequency dependences

of tanδ in Fig. 7.27B. In these cases, by combining various connections of capacitors

and resistors, the almost complete matching of equivalent circuits with real charac-

teristic of dielectric can be obtained. Fig. 7.27B shows equivalent circuits, corre-

sponding to both a frequency maximum and a frequency minimum of tanδ.
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Dielectric losses conditioned by conductivity can be described by a rather simple

mechanism. While directed movement of charge carriers (their drift or diffusion in

the external field), the carriers at their free path get energy from the electrical field.

Acquired energy is spent in “collisions” that are, actually, the interactions of charge

carriers with molecules and atoms, which are in a state of thermal motion. Returning

acquired energy during collision, charge carriers increase the intensity of chaotic

motion of particles of matter; therefore temperature of dielectric increases. For this

reason, the electrical conductivity increases dielectric loss factor ε", parameter tanδ,
and specific power p (energy dissipation per unit volume).

In this case, all these parameters depend only on the density of active current,
flowing through the dielectric. Corresponding formulas are shown in Fig. 7.26. From

them it follows that conductivity determines the magnitudes of ε00 and tanδmainly at

low frequencies: both these parameters decrease with frequency as 1/ω. However,
the specific power p in this case does not depend on frequency, because it is equal

to the product of frequency-independent conductivity and squared electrical field

(p¼σE2). Thus, reducing ε00 and tanδ with increasing frequency does not mean spe-

cific power p reduction in the dielectric with increasing frequency, as parameter p
does not depend on frequency.

Frequency characteristics of considered parameters are shown in Fig. 7.28A.

When no absorption mechanisms exist other than electrical conductivity, the permit-

tivity is determined only by fast polarization processes: ε(ω)¼ε(∞), and it is inde-

pendent of frequency. Temperature dependence of loss parameters, when the

predominant mechanism is electrical conductivity, is shown in Fig. 7.28B. All of

them, except ε(ω)¼ε(∞), show exponential increase with temperature, because,

by this law, conductivity varies with temperature. It can also be seen that electrical

conductivity contributes significantly to tanδ and ε00 at high temperatures and at low
frequencies. At very low temperatures and at very high frequencies, contribution of

conductivity to dielectric losses usually is so small that it can be neglected.
FIG. 7.28

Frequency (A) and temperature (B) dependence of basic parameters of dielectric, in which

conductivity losses dominate.
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In present-day electronics, dielectrics and semiconductors are widely used in the

microwave technique.Usually their permittivity (ε¼ε0) is independent of frequency.
In the losses of semiconductors, the conductivity dominates; at that, conductivity is

independent of frequency, including terahertz range due to high mobility of elec-

trons. The loss coefficient ε00 ¼σ/(ε0ω) and tanδ¼σ/(ε0ε0ω) decrease with frequency
(Fig. 7.28A) because active component of current ja is frequency independent, while
reactive component jr linearly increases with frequency and tanδ¼ ja/jr.

If in the specified frequency range, the dielectric has no relaxation or resonant

ε-dispersions, parameter ε0ω) remains constant, while ε00(ω) depends on conductivity
σ and decreases with increasing frequency:

ε∗ ωð Þ¼ ε0 � i
σ

ωε0
,

This equation is not one of dispersion, inasmuch as describes only the ε00(ω) depen-
dence that is not concerned with ε0 ¼const. When σ is independent of frequency, con-
ductivity does not contribute to the real part of permittivity.

Dielectric losses conditioned by thermally activated polarization. Relaxation
polarization is caused by the local electrodiffusion process, at which weakly bounded

charges are accumulated in definite localized states (or dipoles are directionally ori-

ented). Being supported by thermal movement, this type of polarization is settled

relatively slowly. Relaxation time of this polarization varies with temperature but

lies in the range of 10�3–10�9 s. Thus, the distinguishing frequency of molecular

relaxation processes in such dielectrics may be located in such a frequency range,

where dielectrics are used in electrical engineering and electronics (50Hz–100GHz).
Dielectric relaxation at thermal and migration polarization is described by the

Debye equations that are repeated in Fig. 7.26, where formulas of all basic mecha-

nisms of losses are listed, including parameters that characterize relaxation losses.

These formulas allow describing the frequency and temperature dependence of ε0,
ε00, p, and tanδ. At low frequencies (ω! 0) permittivity is denoted as ε0 ¼ε(0), while
at high frequencies (ω!∞) permittivity is ε0 ¼ε(∞). While frequency is reduced, at

frequency ω¼1/τ, dielectric contribution decreases exactly twofold (Fig. 7.29A).

If conductivity is absent, loss factor vanishes (ε00 ! 0), at very low frequencies (when

ω! 0) and at very high frequencies (when ω!∞). It is easy to show that ε00(ω) has
a maximum at the frequency of ω¼1/τ when dielectric contribution to the permit-

tivity is halved.

Frequency dependence of loss tangent also is characterized by maximum:

tanδmax ¼ ε 0ð Þ�ε ∞ð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε 0ð Þ � ε ∞ð Þp , ω tanδmax ¼ 1

τ

ffiffiffiffiffiffiffiffiffiffiffi
ε 0ð Þ
ε ∞ð Þ

s

It is obvious that this maximum is observed at higher frequency than maximum of the

loss factor ε00(ω).
From loss power density p (formula shown in Fig. 7.26) follows that at low fre-

quencies (when relaxation polarization is totally settled in time) specific loss power

is very small (Fig. 7.29B). In the center of dispersion (when ω¼1/τ), density of loss



FIG. 7.29

Frequency dependence of permittivity (A), absorbed energy (B), loss coefficient (C), and loss

tangent (D) for dielectrics, in which thermal polarization mechanism dominates.
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power is p¼0.5gE2, where parameter g ¼αTτε0 is the reactive conductivity. At high
frequencies, specific loss power p reaches its saturation gE2 and next becomes inde-

pendent of frequency (Fig. 7.29B).

Thus, although relaxation polarization is delayed and no longer gives any dielec-

tric contribution, specific power of losses in case of relaxation process is maximal.

Therefore, for example, while high-frequency dielectrics are developing, the impu-

rities and structural defects (that give low-frequency relaxation) are highly undesir-

able, because they do not appreciably affect ε-magnitude, but significantly increase

losses.

Temperature dependences of both ε and tanδ at relaxation polarization are char-

acterized by highs. Temperature dependences of ε0(T) and tanδ(T) are conditioned by
temperature change of relaxation time τ¼ (2νD)

�1exp(U/kBT). Here U is potential

barrier (that charged particles need to be overcome at their thermal jumps), νD is

Debye frequency (particles oscillation in crystal lattice), and kB is Boltzmann

constant.

Contribution to permittivity from thermally activated polarization is dependent

on temperature

ε 0ð Þ� ε ∞ð Þ¼ K

kBT
, (7.33)

where K is Curie constant (in analogue with paramagnetic). Temperature-frequency

dependence of main parameters of dielectrics in which not only thermal polarization

but also electrical conductivity is clearly shown (Fig. 7.30).



FIG. 7.30

Permittivity and loss dependence on temperature and frequency in dielectrics with

conductivity and thermally activated polarization.
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Temperature change in permittivity in case of this type of polarization is charac-

terized by the asymmetric maximum. Loss temperature dependence shows also

maximum that is almost symmetric. Conductivity has no influence on the ε0(T) char-
acteristics; however, losses conditioned by conductivity are superimposed on relax-

ation loss maximum. Loss tangent that is conditioned by conductivity increases with

temperature but decreases with frequency.

Experimental dependences of tanδ(T) and ε(T) are the basic data for determining

the height of potential barrier U. For U calculation, it is sufficient to experimentally

determine two temperatures T1 and T2 that correspond to two values of frequency ω1

and ω2 where peaks of losses are observed:

e
U
kT1

e
U
kT2

¼ω2

ω1

from this it follows that

U¼ kT1T2
T2�T1

ln
ω2

ω1

(7.34)

Theory of relaxation polarization is confirmed by many experiments.

Dielectric losses, conditioned by quasielastic polarization. Quasielastic dis-

placement of electron shells in atoms, ionic sublattices in crystal, or rigidly con-

nected dipoles creates a polarization. At that, restoring force is proportional to the

displacement of particles from their equilibrium position. Particles that deviate from

their equilibrium position can oscillate around the new equilibrium state. Therefore

dynamic properties of quasielastic polarization can be described by the equation of

harmonic oscillator, in which dielectric losses are taken into account by introducing
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damping coefficient Г . Dielectric dispersion in case of quasielastic polarization is

characterized by Lorentz formula

ε∗ ωð Þ¼ ε0 � iε00 ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ
1� ω=ω0ð Þ2 + iΓ ω=ω0ð Þ , (7.35)

where ω0 ¼
ffiffiffiffiffiffiffiffiffi
c=m

p
is intrinsic frequency of oscillator, c is elastic constant, and m is

oscillating mass; εosc¼ε(0)�ε(∞)¼nq2/ε0c is dielectric contribution of n oscilla-

tors; Г¼λ/ω0 is relative attenuation (λ is constant of “friction” that occurs from scat-

tering mechanisms, listed in Fig. 7.26). The calculation formulas that permit

dielectric absorption description by oscillator are listed in Fig. 7.26. Fig. 7.31 shows

typical frequency dependences of ε0 and ε00 for a damped oscillator.

Loss factor ε00(ω) always is positive, while value of ε0(ω) might be both positive

and negative. At low frequencies (when ω≪ω0) both ε0 and ε00 increase with rising

frequency, while in vicinity of ω � ω0 both of them have maximums. At further fre-

quency increase, the dependences of ε0 and ε00 are quite different. The real part of

permittivity ε0(ω) drops sharply, and at frequency ω¼ω2 reaches its minimal value

(Fig. 7.31A). Then ε0(ω) again increases with frequency and at sufficiently high fre-
quencies (ω ! ∞) reaches saturation: ε0(ω) ! ε(∞). For quasielastic ionic
FIG. 7.31

Frequency dependence of permittivity (A, B) and loss factor (C) for resonant polarization

at different parameters of equivalent oscillator.
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polarization of crystals value ε(∞)¼εоpt, that is, this is optical (electronic) polariza-
tion contribution.

Frequencies that define positions of ε0(ω) maximum and minimum can be

obtained as ω1,2 ¼ω0

ffiffiffiffiffiffiffiffiffiffiffi
1�Γ

p
. When damping is small (Г≪1), approximation

ω1,2¼ω0(1 � Г /2) is fair. Maximum and minimum values of permittivity are

observed at frequencies ω1 and ω2, and equal

εmax ¼ ε ∞ð Þ + ε 0ð Þ� ε ∞ð Þ
2�Γð Þ �Γ , εmin ¼ ε ∞ð Þ� ε 0ð Þ� ε ∞ð Þ

2 +Γð Þ �Γ ,

respectively.

Dielectric contribution from quasielastic polarization [ε(0)�ε(∞)] vanishes,

when frequency is equal to ω0 (intrinsic frequency of oscillator). In Fig. 7.31, this

frequency is indicated as ω3¼ω0. It may be that in a certain frequency range

ω4 < ω < ω5 the value of ε0(ω) becomes negative; this corresponds to high dielectric

strength of oscillator and its low damping. Frequency dependence of losses (ε00) in the
range of dispersion is characterized by maximum at frequency ω¼ω6. If damping is

small, in the vicinity of resonant frequency it is possible to assign ω6 � ω0 � ω3.

Experimental spectral studies usually give the loss factor frequency dependence:

ε00(ω). The half-width of absorption line is defined by difference in frequencies at level
of ε00/2. At small damping factor Г , the maximum of loss is εmax � [ε(0) � ε(∞)]/Г ,
while spectral half-width is determined asΔω/ω ¼ Г . The frequencyω6 (at which this

maximum occurs) and half-width of curve ε00(ω) enable to determine main parameters

of oscillator model. However, all these relations are valid only at Г≪1.

In case of resonant polarization, a loss tangent is not a convenient feature, as it

changes its sign in accordance with ε0(ω) (Fig. 7.31A) at the points of zeros of this
function tanδ becomes infinite. Thus dielectric absorption at resonant dispersion usu-

ally is described by loss factor ε00(ω). However, when dielectric losses are studied far
away from resonance dispersion (when ω≪ω0), parameter tanδ still may be conve-

nient to describe losses.

Dielectric spectroscopy. Permittivity dispersion means its dependence on electri-

cal field frequency: ε¼ε(ω). This term is borrowed from optics, where frequency

dependence of refractive index n ¼n(ω) is called as a dispersion. In solid-state physics,
the term “dispersion” is used for quasiparticle energy (W ¼ℏω) dependence on qua-

simomentum (p¼ℏk). At that, in optical and IR spectra the dependence of W(p) is
reduced to the dependence of frequency onwave vector:ω(k) that expresses the depen-
dence of wave phase velocity on its frequency; finally, this corresponds to the ε(ω, k).

An important property of dielectric dispersion should be considered as the fulfill-

ment of Kramers-Kronig relations, linking frequency dependence of real and imag-

inary parts of complex permittivity [ε*(ω) ¼ ε0(ω)� iε00(ω)]:

ε0 ωð Þ� ε∞ ¼ 2

π

ð∞

0

ε00 Ωð Þ
ω2�Ω2

ΩdΩ;

ε00 ωð Þ� ε∞ ¼ 2

π

ð∞

0

ε0 Ωð Þ� ε∞ð Þω
Ω2�ω2

ωdΩ:

(7.36)
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These relationships allow calculating frequency dependence of absorption ε00(Ω)

from known frequency dependence of dielectric constant ε0(ω). In contrast, using fre-
quency dependence of ε0(Ω) by analytics (or by numerical methods with computer),

it is possible to determine frequency dependence of loss coefficient ε00(Ω).

The Kramers-Kronig relations are universal to describe the phenomenon of

ε-dispersion and are used not only to control experimental results, but also to obtain

important forecasts as regards dielectric losses. For example, using Eq. (7.36) it is

possible to calculate static permittivity

ε 0ð Þ¼ ε0 0ð Þ¼ ε∞ +
2

π

ð
ε00 Ωð Þ
ω2�Ω2

ΩdΩ

Other complex parameters such as optical refractive index or complex coefficient of

electromagnetic waves propagation can be also expressed in terms of complex value

ε*(ω) [4].
In low-symmetry crystals along main crystallographic directions, one can find

quite different dependences for components of tensor εkl*(ω) that form the dielectric
spectrum. Dielectric spectra investigation is one of the important methods of study-

ing the physical properties of dielectrics. Frequency dependence of εkl*(ω) enables to
make qualitative judgments about the physical nature of dielectric polarization and

losses in a particular matter. In addition, it is possible to obtain quantitative data on

characteristic frequencies (Ωk) and dielectric contributions Δεkl¼ [ε(0)�ε(∞)]kl of

correspondent mechanisms of polarization.

When dielectric spectra are studied in a temperature range, that is, experimental

characteristics of ε*(ω, T) are obtained, it enables to get temperature dependences of

specific frequencies (relaxation times) and other parameters of various polarization

mechanisms. In some cases, there is considerable interest on the electrical field influ-

ence on properties of dielectrics, so rather complicated dependence ε*(ω, T, E) might

be established.

For a detailed study of the dielectric spectrum, it is necessary to perform dielec-

tric measurements over a very wide frequency range. This range includes not only

low-frequency interval (10�3–108Hz), but also the microwave (3�108–1011Hz), the
submillimeter (1011–1012Hz), and the far-IR (1012–1014 Hz) frequency ranges. As

permittivity is the second-rank tensor, frequency dependence of permittivity’s com-

ponents can be very complex, especially for ferroelectrics and other polar crystals of

order-disorder type, with the reason being large anisotropy of permittivity: main

components of tensor ε1, ε2, and ε3 might be quite different, and they vary by hun-

dreds of times. In addition, the contributions to permittivity tensor can be produced

by many different mechanisms of polarization.

As an example, theRochelle salt dielectric spectrum is shown in Fig. 7.32. In this

type of ferroelectrics, there are two main frequency intervals of permittivity disper-

sion: domain wall relaxation in polar phase and dipole relaxations in all phases.

Rochelle salt is characterized by two Curie points, where at low frequencies ε1
has temperature highs of about 5000 (�18°C and +24°C), but these highs at micro-

waves decrease only to ε1max � 200.



FIG. 7.32

Rochelle salt microwave study: (A) ε01 and ε001 frequency dependence at 18°C; (B) ε01
temperature dependence at frequencies (in GHz): 1—0.8; 2—5.1; 3—7.4; 4—10.2;

5—20.5; 6—27; and 7—250.
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Sharp maximums of ε10(ν) in Fig. 7.32A in the frequency interval of 104–105Hz
mean piezoelectric resonances, which are accompanied by a fluent ε10-decrease near
frequency of 106Hz. This decrease is explained by the domain relaxation process that

follows electromechanical resonances. At microwaves, Rochelle salt shows

ε10-dispersion that is accompanied by ε001 broad maximum; this dispersion character-

izes structural dipole relaxation that can be described by the Debye equation. In two

other main crystallographic directions (for ε2 and ε3), any ferroelectricity in Rochelle
salt is absent and no temperature anomalies for ε2 and ε3 exist [5].

Dielectric dispersion is characterized by various parameters that are determined

from experimental data. Dispersion frequency is called a frequency at which max-

imum of ε00(ω) is observed. The width of spectrum is determined by the difference

between frequencies, at which this maximum is reduced by a half. As depth of
dispersion is a relative contribution from given polarization mechanism to the

ε(0)-value, that is, this is [ε(0)�ε(∞)]/ε(0) where ε(∞) is high-frequency dielectric

constant.

Therefore the main purpose of dielectric spectroscopy is experimental detection

of different mechanisms of polarization and separation of their deposits to the

permittivity.
7.9 ELECTROCONDUCTIVITY IN DIELECTRICS
Charge transfer in dielectrics occurs mainly in the external electrical field (current

caused by temperature gradient or due to difference in free charge concentration in

dielectrics usually is very small). Whereas polarization is the total shift of all charges
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under electrical field influence, only a very small portion of charges (free carriers)

can contribute to conductivity. Furthermore, during polarization, charge exchange

between dielectric and metallic electrodes does not occur, whereas in case of the

“pass-through” conductivity such an exchange is required. Therefore dielectric con-

ductivity is highly dependent on the material of electrodes, whereas charge separa-

tion in dielectric (polarization) is practically independent of properties of electrodes

(if electromotive force, EMF, is absent).

Nevertheless, a clear distinction between electrical conduction and polarization is

possible to determine only in a static electrical field. In alternating electrical field, the

difference between these processes becomes conditional.

Basic relations, describing charge transfer, are discussed in Section 7.7. In short,

current density j, that is, electrical charge, flowing per unit time through unit area that

is perpendicular to field direction is equal to: j¼nqυ, where υ is the velocity of

orderly movement of charge carriers due to action of electric field (drift velocity).
This velocity, typically, is much less than the velocity of chaotic charge carrier

motion in material. According to Ohm’s law, failing small values of E, current den-
sity is proportional to field: j¼σE¼E/ρ, where σ (its dimension is [S/m]) is specific

electrical conductivity, while ρ [Ohm�m] is specific electrical resistivity. Conductiv-

ity (or resistivity) determines current density in direct electrical field; both these

parameters are the quantitative characteristics of charge transport in a matter.

Electrical field acts on free charge carriers by the force qE; therefore they would
have to move with acceleration, increasing its kinetic energy. However, the path and

the time of charge carrier free movement in a material are limited by charge carrier

“collisions” with atoms (molecules or ions), that is, by the interaction of charge car-

riers with particles of matter. In crystalline dielectrics, these collisions are the inter-

action with phonons (lattice vibrations) or with charged impurities, as well as with

other electrically active structural defects. Therefore, accelerating movement of

charge carriers is interrupted, and acquired in electrical field energy is dissipated.

Average time of electron free acceleration and collision is the relaxation time (τ),
as during this time electron returns to the state of thermodynamic equilibrium with

matter. The equation of motion of charge carrier with mass m under action of elec-

trical force qE is as follows: dυdt ¼ qE
m , where dυ/dt is acceleration. By separating vari-

ables and next integrating from 0 � t � τ, drift velocity is υ¼ qτ
m E¼ uE, where

u¼qτ/m is the proportionality coefficient between charge carrier velocity and elec-

trical field, called as mobility of charge carriers. Mobility u¼qτ/m is proportional to

charge carrier relaxation time, and inversely proportional to its mass; it characterizes

directed by charge transfer in the electrical field. Thus, not acceleration (as in

Newton’s second law for a free body in a space), but the drift velocity of charge car-
riers is proportional to force acting on them in the condition of disordered (thermal)

motion of charge carriers in a material.

Conductivity σ and mobility u of charge carriers are constrained by a simple rela-

tion: σ¼nqu. With temperature change and depending on electrical field strength,

the mobility changes dozens of times. Only in metals free charge carrier concentra-

tion is independent of temperature, but in dielectrics (and in semiconductors)
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parameter n increases exponentially with temperature increase and it is highly

dependent on impurities. Parameter σ (or ρ¼σ�1) determines the degree of scatter-

ing (losses) of electrical power in a matter. According to the differential form of

Joule law, density of exudated heat p [W/m3] is electrical energy that is converted

into a heat per unit time and per unit volume of substance: p¼E2/ρ¼σE2. From this

equation, it is possible to move on to formulas for conductance G [S], resistance R
[Ohm], and dissipated power P [W] in the body of any size and shape. If the sample

consists of a homogeneous isotropic material and applied voltage is U, then

G¼ σΞ¼Ξ=ρ; R¼ ρ=Ξ¼ σΞð Þ�1
; (7.37)

where Ξ is the geometrical parameter of a sample (dimension Ξ [m] is the reduced

length). In the event of a sample that has cross section S and length l (e.g., for plane
dielectric capacitor), the geometrical parameter is Ξ¼S/l. In case of a hollow cylin-

der having outer diameterD, inner diameter d, and axial length l, geometrical param-

eter is determined as Ξ¼2πl/ln(D/d): such a structure has a cylindrical capacitor or

section of coaxial cable. In the event of hollow spherical dielectric capacitor with

inner radius r1 and outer radius r2, the geometrical parameter is Ξ¼4πr1r2/(r2 � r1):
piezoelectric ultrasonic emitter and receiver often have this shape.

Conductivity of various solid substances at normal conditions (at 300K) covers

25 orders of magnitude: from σ�108S/m for good metallic conductors (copper, sil-

ver, aluminum) down to σ�10–17S/m for best insulators (polymers).

Charge carrier classification. The various types of charged particles with differ-
ent mechanisms of their generation (excitation) can be distinguished. Besides, there

are different mechanisms of charge movement; so electrical current in dielectrics

might be a complicated physical phenomenon.

The classification of dielectric conduction starts from the nature of charge car-

riers; in this case, there are several possible contributions to conductivity that are

listed in Fig. 7.33.

In the event of electronic conduction, electrical current may consist of negatively

charged electrons and positively charged electronic vacancies—holes. In dielectrics

and in some semiconductors, polaron-type charge carriers are also possible, when

electrons or holes are more or less bounded in crystal lattice, and, therefore, they

have low mobility. The ionic charge transfer is typical for dielectrics. This mecha-

nism of conduction is defined by the flow of positively charged cations or negatively

charged anions, as well as by charged ionic vacancies of opposite polarity. In direct

electrical field, the ionic conduction represents not only the charge transfer but also

the matter transfer—electrolysis. Liquid dielectrics, except electronic and ionic con-
ductivity, can also have the “molionic” conductivity, at which charge carriers con-

stitute charged atomic groups or charged molecules—relatively large particles

(electrophoresis). In case of the positive charge, this electromigration results in

the cataphoresis, while in case of their negative charge leads to the anophoresis.
Previously, because of predominance of ionic conduction, and to emphasize this

fact, in early literature dielectrics were even called as electrolytes. It should be noted
that in solid electrolytes conductivity changes in time, especially in the direct



FIG. 7.33

Classification of charge carriers in dielectrics.
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voltage, because of “exhaustion” of free charge carriers: the quantity of free ions in

dielectrics is limited, so in case of DC these charge carriers migrate gradually to elec-

trodes and accumulate there. In this regard, the ionic conduction is one of the causes

of electrical insulator aging (dielectric properties change with time under the influ-

ence of electrical field). However, in the alternating electrical field ions have no time

to be accumulated at electrodes; therefore in alternating field ionic conduction of

dielectrics resembles a time-constant (stationary) process.

Electronic conductivity, as confirmed by recent studies, also plays a very impor-

tant role in electrical charge transfer in dielectrics. Electronic charge transfer (in con-

trast to ionic and molionic mechanisms) is a stationary process not only in

alternating but also in direct electric fields: between dielectric and electrodes, there

is the interchange by charge carriers of same physical nature—electrons.

Two important properties of dielectrics—polarization and very low conduction—

are largely interdependent. Electrons or holes, appearing in dielectrics as a result

of various activation processes, may become less active, because they polarize by

their field the nanoscale size surrounding area of dielectric, so charge carriers are

forced to move altogether with these polarized nanoregions (polarons). Conse-

quently, even a small amount of free electrons that occur in the dielectric due

to thermal activation and impurities may not cause any appreciable charge transfer

just because of local polarization around charge carrier that reduces its mobility in

the electrical field.

In turn, low concentration of charge carriers and their low mobility are respon-

sible for a long-time existence of electrostatic field in the dielectrics. In conductors,

the electrical field is screened by free charge carriers (in metals, e.g., screening radius

is approximately equal to interatomic distance).

Thus, electrical polarization contributes to emergence and existence in dielectrics

a relatively stable state with extremely low electronic conduction. However, this sta-
bility may be broken in a dielectric by heating using high-intensity irradiation, par-

ticularly, using coherent optical (laser) radiation. Then charge carriers are generated

to a very high concentration and they shield electrical field; therefore the dielectric is

converted into a conductive medium.

Stability of nonconducting state of dielectrics may be also compromised by a

strong electrical field that accelerates the unfettered electrons (or holes) up to the

energy at which they can no longer be “captured” by polarization of surroundings
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and acquire a “slow-moving” state. These fast electrons cause percussive ionization
in dielectric, due to which the increase in number of free electrons is seen that ulti-

mately gives rise to electrical breakdown, and insulator transfers into a conductor.

In some special cases, the stability of nonconducting state of dielectrics may be

broken even in a weak electrical field and without their strong heating or irradiation.

The reason for this is the spontaneous change in structure, associated with mutual

interaction of particles, and, hence, the change in the symmetry of a crystal. In such

peculiar cases, even a small change in external conditions (pressure, temperature,

magnetic field, or electrical field) can lead to a spasmodic increase in conductivity

(103–109 times), that is, the insulator turns into conductive state.

Such interruption in conductivity might be the result of phase transition, wherein

because of changes in the external conditions (field, temperature, pressure) some

electrons become free from their polarized surroundings and, in turn, shield the elec-

trical field. For example, such phase transitions are observed in the oxides of tran-

sition 3d-metals, as well as in low-dimension systems and in “superionic”

conductors. Unlike the irreversible effect of electrical breakdown, these phase tran-

sitions from the insulating to the conducting state are reversible, because the dielec-
tric does not undergo destruction, as it occurs in case of electrical breakdown.

A sharp increase in conductivity at strong electrical fields is also observed during

injection processes in connection with space charge limited current (SCLC). As in

the case of phase transitions of “insulator-metal” type, the unstable conductivity

appears on account of charge injection that is the reversible process (unlike electrical

breakdown).

Charge carrier generation. Electrical conductivity of dielectrics and semicon-

ductors is always conditioned by activation processes; at that, charge carriers arise
because different mechanisms cause their appearance (Fig. 7.34).

Most universal and, therefore, very important process is thermal activation—
permanent mechanism of charge carrier appearance in dielectrics and semiconduc-

tors. At normal and elevated temperatures, thermal generation of charge carriers in

dielectrics gives a major contribution to their conductivity; at that, not only thermal

generation of electrons and holes are important, but also generation of mobile ions
activated by thermal chaotic movement.

In addition to the process of thermal generation of mobile electrons and ions,

there exists and constantly ongoing process of recombination, at which electron
FIG. 7.34

Mechanisms of charge generation in dielectrics.
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and hole (or ion and ionic vacancy) combine in the neutral structure when two types

of carriers “compensate each other.” In the dielectrics (as in semiconductors)

between heat generation and recombination of charge carriers, the dynamic equilib-
rium is established, which depends on the energy levels in dielectric and on temper-

ature. Charge carriers, produced by thermal activation, are the equilibrium charge

carriers. It is important to note that only those charge carriers can be balanced, which

are formed by thermal excitation and relaxation, while other mechanisms of charge

carrier generation, listed in Fig. 7.34, result in only nonequilibrium charge carriers.

The injection of electrons or holes in a dielectric (or semiconductor) occurs from

metal electrodes; those charge carriers that are inculcated into the crystal by this way

are always the nonequilibrium ones (injection will be discussed further in

Section 7.4). The photogeneration of charges in a dielectric is caused by various

types of irradiation; therefore this mechanism of charge carrier generation is also

nonequilibrium. Finally, the ionization by collisions occurs in strong electrical fields,
and it also leads to generation of nonequilibrium charge carriers: thanks to this ion-

ization the concentration of charge carriers increases up to an electronic avalanche

that may cause electrical breakdown (appropriate mechanisms will be discussed fur-

ther in Section 7.10).

The mechanisms of charges transport are another important aspect of electrical

conductivity in dielectrics (Fig. 7.35). Transfer mechanism is called as a drift, if upon
chaotic (thermal) motion of charge carriers their directed movement (drift) in elec-

trical field is imposed. In this movement, charge carrier spends most of its time,

whereas it spends much less time in collision, capture, and scattering by other par-

ticles. In not very large electrical fields, drift velocity of charged particles is much

less than their velocity in chaotic movement.

Dielectrics is such an important mechanism of charge transfer that it is considered

as the hopping mechanism; it is peculiar for both ionic and polaron types of conduc-

tivity. According to this mechanism, charge carrier spends most of its time in the

localized state and only a very short time does it expend for movement: it is a jump

into nearby center of localization in crystal lattice. It should be noted that jump itself

is a change of quantum state and it occurs almost instantaneously, but the number of

jumps per unit time (their frequency) is quite limited.

Both in semiconductors and dielectrics, the diffusive mechanism of charge trans-

fer might be also important, when in different places of a sample the concentration of
FIG. 7.35

Mechanisms of charge transfer in dielectrics.
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charged carriers is different, and, due to disordered (random) motion of particles, the

concentration of charge carriers in dielectric (or semiconductor) aligns. Charge car-

riers are gradually moving from the place of their higher concentration to the region

of their lower concentration. Diffusion current can be observed in the absence of

external electrical field.

In the processes of electromigration in dielectrics, the contact phenomena on the
boundary of “dielectric-metal electrode” play an important role.

In case of ionic (usually, cationic) unchanged current at stationary conduction can

be achieved only when the anode is made of the same metal that the ions transferring

electrical charge in dielectric. This phenomenon can be applied, above all, in those

technical devices, in which the “superionic” electrical conduction is used. For exam-

ple, in Rb4Ag5Cl9 crystal charge transport is ensured by the Ag+ ions, and, respec-

tively, in such a case the anode should be made of silver.

Such metal-insulator contact that provides a free exchange of charge carriers is
called neutral. Otherwise, by applying constant voltage, the charge carriers are grad-
ually depleted, and in near-electrode areas the depletion layer arises with high elec-

trical resistance; therefore ionic current through dielectric decreases with time.

Consequently, the distribution of electrical voltage inside dielectric becomes hetero-

geneous. Such a process is called “forming”: owing to charge carrier depletion, the

strength of the electrical field in a dielectric near its contact with metal increases.

Electronic conduction greatly facilitates the exchange of charge carriers between
dielectric and metal electrodes. However, in this case, current density depends on the

electronic structure of contacting pair. Contact metal-to-dielectric is neutral (ohmic),

if electronic work function φ of metal-to-dielectric is equal to electron work function

ϕ of metal-to-vacuum: φ¼ϕ. If φ>ϕ the contact is blocking (locking), and if φ<ϕ
the contact is defined as injection [7].

Comparative energy diagrams for metal-vacuum (M-V) and metal-insulator (M-I)
are shown in Fig. 7.36. Relative to dielectrics, two options are shown: the injection
FIG. 7.36

Energy diagrams of metal-vacuum (A) and two cases of injectionmetal-insulator transition (B,

C): F0, Fermi level; ϕ, electronic work function to vacuum; φ, reduced band bending barrier of
double layer;Nn, level of small electron traps (deep traps not shown),Np, level of shallow traps

for holes.
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contact that facilitates electron transition to conduction band of dielectric (bottom

level of this zone is denoted as Ec), and the injection contact that promotes transition

of holes in the valence band of dielectric (boundary of this zone is designated as Ev).

Ionic conductivity in dielectrics. Historically, the first dielectrics were defined

as “electrolytes”—the substances with predominance of ionic transport of electrical

charge (A. Ioffe). Therefore, already in early studies, a lot of attention was paid to

ionic conduction in these materials, which has been studied by various methods in a

wide temperature range as well as under high electrical voltage [6].

Most ions in crystal (their concentration is n�1022cm�3) are located at their lat-

tice sites; this position is rather stable and cannot be disturbed when applied to a crys-

tal electrical field that causes only a slight shift of ionic sublattices (that constitutes

quasielastic ionic polarization). However, any crystal, almost inevitably, contains a

certain concentration (n0≪n) of impurities or defects that are relatively loosely

bound in a crystal lattice. They can be located in the interstices (Frenkel defects)

or represent the charged vacancies (Schottky defects). These ions are weakly con-

strained and cause electrical conductivity.

The movement of ionic charge carriers in direct electrical field transfers not only

electrical charge, but also a part of material. Unlike electronic conductivity (when

electrons enter into dielectric from cathode, and finally leave dielectric in anode), ionic

conductivity is accompanied by the electromigration of transfer agent (mass transfer).

For this reason, the value of ionic current must be time-dependent, as the concentration

of available charge carriers in dielectric decreases gradually—ions are accumulated

near the electrodes. Negative charge carriers—anions—are deposited and discharged

at anode, while positive charge carriers—cations—are deposited at cathode and next

discharged. By measuring the amount of transferred substances, it is possible to estab-

lish what type of ions is involved in electrical conductivity in different dielectrics.

The experiment (proposed by Tubandt) allows obtaining direct evidence as to the

presence of ionic conduction in a substance (as well as Hall experiment indicates the

presence of electronic or hole current). In this experiment, in its initial implementa-

tion, a sample of dielectric is previously sawn into two parts that are polished and

pressed tightly to each other. Before being included in the circuit (that is used to

determine the amount of passed charge), the weight of each part of the tested sample

is measured with high accuracy. Then, for a long time (generally, at elevated tem-

perature, when conductivity is increased) through a twofold dielectric sample the

electrical current passes, while the amount of electricity is recorded. Weighing after

this experiment shows how themass of the two parts of the sample is changed. In case

of cation conduction, the mass of the near-cathode part of the sample increases with

reducing the mass of the near-anode part; in the event when anion conduction takes

place, the results are quite the contrary. Nowadays, for Tubandt experiment realiza-

tion, the radioactive isotope ions (tracers) are used whose number before and after

electrical field trial is recorded by the Geiger counter.

Thus, ionic current in dielectrics is due to moving weakly constrained charged

particles that can be regarded as impurities. Assume that volume concentration of

moveable particles equals n0. In order to move in a dielectric, ions must overcome
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potential barriers, that is, to overcome the forces, which bind them to neighboring

particles. The probability of energy barrierU being overcome by the ionic impurities

that are in random thermal motion can be determined by classic statistics: hopping

probability is proportional to exp(U/kBT), where kB is Boltzmann constant.

The ionic conductivity calculation is similar to the ionic polarizability estimation

as thermally induced polarization (discussed in Section 7.5, Fig. 7.13). In fact, both

mechanisms (ionic thermal polarization and ionic electro-conductivity) are due to

the diffusion of ions that is supported by electrical field. However, the magnitude

of potential barrier that ion must overcome for conductivity is almost an order of

magnitude higher than in case of thermally activation energy of ionic polarization.

The average number per unit volume of loosely bound charged particles that

overcome per one second the potential barrier U at their jumps is n Tð Þ¼ n0
6
ve�

U
kT ,

where n0/6 is the number of ions moving in the positive direction of selected axis,

ν is frequency of thermal vibrations of ions in lattice (Debye frequency), while

parameter exp(�U/kBT) shows probability of potential barrierU overcoming at tem-

perature T. As thermal hopping of impurity ions at the absence of external electric

field is chaotic, electrical current in case of these random hopping does not occur.

In the event that electrical field is applied to dielectric, the probability of potential

barrier overcoming changes on value of exp(ΔU/kBT), where ΔU¼ 1
2
qδE; q is ionic

charge, δ is jump length (otherwise it is length of “free path”), and E is electrical field

(Fig. 7.37). If external field is absent (Fig. 7.37B), loosely coupled ions randomly

overcome potential barriers and jump, for example, from position 1 to position 2

(or vice versa). This thermally activated jumping (per second) makes the following

number of ions:

n12 ¼ n21 ¼ n0
6
νexp � U

kT

� �
FIG. 7.37

Ionic conduction: (A) small cation jumps over interstices; (B) potential barrier in the absence

of electrical field; (C) change in barrier.
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Since n12¼n21, in case of such counterdiffusion any electrical current does not occur.
However, if one applies to dielectric the electrical field E that is directed along the

selected axis x, the probability of transition of weakly bounded ions from position 1

to position 2 increases (Fig. 7.37C), while the probability of their coming from

the opposite direction decreases. First, the height of potential barrier, when ions jump

1 ! 2, reduces on ΔU, and, second, for transitions in 2 ! 1 direction barrier it

increases on ΔU. The value 2ΔU represents the work, done by electrical field in

the path δ of ion transference.

After electrical field application, a certain amount Δn of weakly bounded ions

(from their total number n0) can overcome the potential barrier, and thus they become

involved in electrical conductivity. Average velocity of directional movement of

ions is v¼ Δn
n0
δ. This formula naturally corresponds to the dimension of velocity:

[m/s], as the dimension of Δn is [m�3 s�1], the dimension of n0 is [m
�3], and the

dimension of δ is [m]. As conductivity equals σ¼n0qυ¼Δnqδ, where q is charge

and δ corresponds to lattice constant, calculation of conductivity is reduced only

to Δn value determination. This calculation is provided in the assumption that

changes of potential barrier in electrical field are much less than average thermal

energy of crystal, that is, ΔU≪kBT (this inequality is always valid in comparatively

weak electrical field). Thus calculation of conductivity is reduced to Δn value find,

dependent on temperature and on electrical field strength:

Δn¼ n0qδvE

6kT
e�

U
kT

This relationship allows to obtain the formula for specific ionic bulk conductivity:

σ¼ n0q
2δ2v

6kT
e�

U
kT (7.38)

which characterizes its temperature dependence.

Similar to temperature dependence of electronic conductivity, expression (7.38)

represents the activation process that is characterized by energyU. In the logarithmic

scale temperature dependence of conductivity corresponds to logσ¼ logA�B/T,
where A¼ (n0q

2δ2ν)/6kBT and B¼U/kBT.
In the simplest case, when conductivity is characterized by only one type of

charge carriers, this dependence is the inclined straight line (Fig. 7.38A). From its

tilt, the potential barrier that weakly bound ions overcome can be determined. Usu-

ally experiments for ionic crystals give the value of activation barrier of U¼1–3eV.
It should be noted that similar temperature dependence of conductivity logσ(1/T)

is also characteristic of electronic conductivity—as in dielectrics, so in semiconduc-

tors. In semiconductors, a sharp turn (like in Fig. 7.38B) means that at low temper-

atures conductivity has impurity character while at high temperatures intrinsic

conductivity prevails. In the ionic dielectrics, a sharp turn in logσ(1/T) dependence
has other interpretations. For example, at low temperatures the ionic conductivity

may prevail, while at high temperatures the conductivity might have an electronic

nature. Another possible case: at low temperature, the anionic conduction is

observed, while at high temperature, the cationic conduction prevails [6].



FIG. 7.38

Temperature dependence of conductivity in dielectrics: (A) one type of charge carriers,

(B) two types of carriers that differ in activation energy; (C) case of continuous distribution of

charge carrier activation energy.
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Eq. (7.38) is derived from the assumption that only one kind of particles is

involved in electrical conductivity. In general, by combining high- and low-

temperature parts of σ temperature dependence, conductivity can be expressed by

the following formula:

σ¼A1e
�U1

kT +A2e
�U2

kT :

This not only makes it possible to explain the sharp turn in logσ(1/T) dependence, but
it also allows to determine main microscopic parameters of ionic conductivity on the

basis of experimental data. It is possible not only to find activation energies ofU1 and

U2 from the slope of line segments in Fig. 7.38B, but also to find appropriate con-

centration of charge carriers by the extrapolation of line segments on ordinate axis.

One reason for the sharp turn in characteristic logσ(1/T) in glasses and in ionic crys-
tals may be that at high temperatures electronic conductivity can be added to ionic

conductivity, that is, in dielectrics the mixed conduction is quite possible.

However, in some dielectrics temperature dependence of conductivity may be sig-

nificantly different from that described above by ordinary laws (Fig. 7.38A and B).

Namely, the curved logσ(1/T) dependence is seen, fromwhich it is impossible to clearly

distinguish a transition from one type of conductivity to another. This case is the attri-

bute ofweakly ordered structure of dielectric that is usually customary for amorphous,

glassy, and polycrystalline structures. The cause of the curvature of this dependence is

the violation of long-range ordering in atomic arrangement. In this case, activation bar-

riers for different mechanisms of conduction are not clearly delineated, but they are

distributed in a certain energy range. For this reason, in glasses and glass ceramics,

the boundary between low- and high-temperature conductivity is difficult to define.

The surface conductivity in dielectrics, typically, has ionic character. In solid

dielectrics, due to inevitable surface moisture, oxidation, and contamination, surface

conductivity becomes very significant. For its quantification, dielectric is character-

ized by a definite value of surface resistivity ρS. It should be noted that in the con-

ductive materials surface current is negligibly small as compared to volumetric

current, and, therefore, surface resistance of these materials is not considered.



FIG. 7.39

Electrode arrangement for measuring surface resistance of material: 1—electrodes, 2—

dielectric.
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The surface resistivity ρS numerically is equal to resistance of a square locating

on surface of material, while surface current (Fig. 7.39) flows through two opposite

sides of this square:

ρS ¼RS � d=l, (7.39)

where RS is surface resistance of material (2) between electrodes (1) coated on sur-

face, located at a distance l and having a width d.
The RS is defined as Ohms/square, or [Ohm/]. It should be noted that same unit of

surface resistance is a very common characteristic of conducting and semiconducting

films deposited on dielectric substrate (such films are used, in particular, in micro-

electronics). However, determination of RS in bulk semiconductor does not make

sense, since in this case it is practically impossible to separate surface leakage cur-

rents from volume current. As can be seen from formula (7.39), for ρS determination

the size of “studied square” does not matter—it can be square centimeter, square mil-

limeter, etc. It should be noted that for bulk sample determination of specific resis-

tance ρ the aforementioned “law of similarity” has no effect.

The surface resistivity ρS can be considered as a distinctive parameter of dielec-
trics, although ρS is dependent on temperature, humidity, and applied voltage. Water

is characterized by increased conductivity, while any polar and highly porous dielec-

tric might be highly moistened. It is sufficient to have even a thin layer of moisture on

the surface of dielectric to cause significant conductivity, which is mainly deter-

mined by the thickness of this layer. At that, surface conductivity is caused not only

by the presence of moisture, but also by pollutions and various defects on the dielec-

tric surface.

The value of ρS in dielectrics is usually associated with the magnitude of the con-
tact angle (angle of wetting) and with the hardness of the dielectric. The smaller the

contact angle and the higher the hardness of humid dielectric, the lower the ρS.
Depending on the contact, angle solid materials are subdivided into hydrophobic
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and hydrophilic. Hydrophobic dielectrics are related to the nonpolar dielectrics: their
clean surface is not wetted, and, therefore, when such dielectrics are placed in the

moist environment, their surface electrical conductivity practically is not changed.

Hydrophobic dielectrics are related to the water-soluble and polar dielectrics are

related: these are mostly ionic dielectrics with wetted surface. Intermediate type

of dielectrics conditionally includes the weakly polar dielectrics.
In case hydrophilic dielectric is placed in a wet medium, its surface conductivity

significantly increases. In addition to polarity, some other contaminations may

adhere onto surface that leads to additional increase in surface conductivity. It should

be noted that the value of ρS in humidified insulation can be significantly increased

with increasing temperature and after drying. To increase ρS in dielectrics there are

different technological methods: washing in distilled water or in solvents (depending

on the type of dielectric), heating to sufficiently high temperature; coating the sur-

face by water-resistant paints or glazes, placing dielectric products in protective

housings and casings, etc.

For example, surface electrical resistance of glass is determined by the resistance

of its surface to swelling, especially if glass contains aqueous alkaline solution with

significant conductivity. Therefore surface resistance of glass is a function of its

chemical composition (on content of alkali metal-oxides) and depends on ambient

atmosphere humidity. In case of relative humidity increases, surface resistance of

glass rapidly decreases, while temperature increase reduces the amount of moisture

in the surface layer and increases surface resistance. Typically, surface resistivity of

glass is 1010–1012Оhm/□.

Electronic conductivity in dielectrics. In most cases, electrical current occurs

under the influence of electrical field (as well as field-induced polarization). Never-

theless, in some crystals directional movement of electrons can also be caused by

temperature gradient and by gradient of concentration.

Conductivity given by directional movement of electrons in external electrical

field can be found in all classes of dielectrics (gases, liquids, crystals). However,

in relatively low electric fields contribution of electrons to overall conductivity is

usually small. The point is that electrons that appear in a dielectric for a variety

of reasons polarize the nearest environment, and, therefore, moving of electrons

in the dielectric is delayed by originated local polarization. In gases and liquids,

the incipient electrons usually “stick” to neutral molecules and form the charged

complexes that move in the electrical field as charged particles. In solid dielectrics,

some electrons are trapped by the defects of structure and cannot move, or turn into

low-mobility polaron state.

However, in strong electrical fields accelerated by the field high-energy electrons

do not have time to be trapped by molecules or by crystal lattice, so the contribution

of electronic current to the total value of conductivity becomes predominant. More-

over, a strong electrical field promotes generation of new electrons owing to the phe-

nomenon of ionization by collisions.

In crystals having energy gap in the spectrum of electronic states (i.e., in crystal-

line semiconductors and dielectrics), electron-hole type of conductivity is described
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by band theory and by theory of electronic transport phenomena. In the conduction

band, most dielectric crystals have definite levels of energy, and in the impulse space

they formed so-called valleys. Moreover, the constant-energy surfaces even in cubic

crystals are anisotropic, and, therefore, effective mass of electrons (or holes) is tensor

parameter. It also determines anisotropy of effective mass mef, relaxation time τ, and
charge carrier mobility u. However, in cubic crystals these energy valleys in impulse

space are arranged symmetrically, and, therefore, effective mass can be averaged

over all the valleys, so not only the mef but also parameters τ and σ may be repre-

sented by isotropic values.

The energy spectrum of electronic states is well studied only in covalent crystals

of semiconductors (see Chapter 8). For majority of ionic crystal-dielectrics owing to

a very large energy gap and strong electron–phonon interaction only very small elec-

tronic conductivity is seen (detailed structure of electronic spectra in dielectrics is

poorly investigated). Therefore, further arguments about the nature of electronic con-

ductivity in dielectrics are very approximate and based on the analogy with electrical

conductivity of semiconductors.

Mobility of electrons in dielectrics is smaller by hundreds and thousands times

than in semiconductors. For instance, in semiconductors of InSb and InAs mobility

lies within the limits of 2�104–8�104cm2 V�1 s�1 while in dielectrics AgI mobility of

electrons is �3cm2 V�1 s�1 while in NaCl it is only �1cm2 V�1 s�1. Therefore

electronic mobility in dielectrics is very small (1–10cm2 V�1 s�1), whereas in semi-

conductors it is 1000 times greater.

Mobility of charge carriers is related to their effective mass: u¼qτ/mef. Actually,

electrons and holes in crystals are the quantum excited states, characterized by neg-

ative (�e) and positive (+e) charges, respectively. It should be noted that the mass of

electron or hole in a crystal can be significantly different from the mass of electron in

the vacuum (me); moreover, in crystal charge carriers mobility depends on the direc-

tion of electron or hole motion, so the mass acquires anisotropic (tensor) value.

Therefore, to describe the mechanism of electronic conductivity in dielectrics and

semiconductors, the concept of effective mass is used. Low mobility of charge car-

riers in dielectrics indicates that the effective mass of electrons and holes in dielec-

trics is very often abnormally high: tens and hundreds of times more than mef in

metals and semiconductors.

The concentration of charged carriers is characterized by a rather strong temper-

ature dependence. In case of high enough temperature, Fermi-Dirac distribution of

equilibrium charge carriers turns into classic Boltzmann distribution. It can be shown

that the concentration of charge carriers increases with temperature exponentially:

n�exp(�W/kBT), whereW is width of forbidden band (energy gap). From this depen-

dence it follows that temperature dependence of conductivity may be approximated by

the formula σ¼A exp (�B/T). Therefore, temperature dependence of intrinsic elec-

tronic conductivity (that is noticeable in dielectrics at elevated temperatures) in scale

of lnσ(1/T) is characterized by an inclined line: lnσ¼ lnA�B/T (see Fig. 7.38A).

Experimentally, in most cases, a fracture of this line is observed in the crystals

(see Fig. 7.38B), and this is explained by the fact that at lower temperatures
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conductivity is conditioned by impurities, whereas in case of high temperatures the

intrinsic conductivity is prevailing. However, in many dielectrics temperature

dependence of conductivity is significantly different from that for simple laws shown

in Fig. 7.38A and B (this peculiarity will be discussed later).

The temperature dependence of charge carrier drift mobility indicates its differ-
ence from Hall mobility. The features of light absorption and temperature depen-

dence of thermoelectromotive force also show different nature of electronic

conductivity in most dielectrics as compared with semiconductors (such as silicon).

This is difficult to explain from the standpoint of band theory. The reason for these

difficulties is that electronic conductivity of solid dielectrics can be caused by the

movement of polarons.

Polaron (hopping) electrical conductivity. As already mentioned, incipient

electrons in dielectrics might be partially constrained. This phenomenon is especially

characteristic of ionic crystals, because in this case Coulomb interaction between

electrons and ions in crystal lattice is sufficiently larger than that in atomic crystals.

The point is that in ionic crystal the lattice near incipient electron (or hole) becomes

distorted.

In Section 7.5, the idea of polarons was introduced as constrained charged par-

ticles forming nanoregions in the ionic crystal lattice (lattice distortion) under the

influence of electrical field of electron. In other words, polaron is the excited state

of a lattice around electron or hole. Themeaning of this term is that electron (or hole),

by its electrical field, polarizes the lattice of dielectric (part of ions are shifted

slightly), so electron becomes localized in the area of distortion.

Such a self-trapping electron usually occurs in a small volume (covering several

unit cells), but persists for a relatively long time (with respect to atomic scale of

movement). Polaron moves in crystal lattice using energy of thermal fluctuations:

it makes quick “jumps” to the neighboring lattice site. The time of these “jumps”

is much less in comparison with the time of electron self-trapping. In this case,

together with electron (or hole) the excited region moves in a crystal that results

in higher effective mass of polaron-type charge carrier.

The size of polaron is determined by the dimension of distorted area. If the area of

excitation rpol is far superior to lattice parameter (rpol≫a), it is the large-radius
polaron. In this case, the mobility of charge carriers varies insignificantly. Another

thing is if there is the small-radius polaron with rpol � a. This is a case of strong

electron-phonon interaction and is determined by ionic polarizability of crystal lat-

tice quantified by parameter (1/εоpt�1/εion)
2. The existence of polaron state does not

meet the assumption of “adiabatic approximation” (i.e., independence of electron

movement on atoms or ions) that, as is known, forms the basis of electronic band

model of solids.

In case of weak electron-phonon interaction, the large-radius polarons have rel-

atively little effect on electrons (holes) mobility in a lattice. The point is that defor-

mations of crystal lattice in this case are minor, although the size of excited area is

much greater than lattice constant. Therefore the conditions for electron and hole

movement for large-radius polarons differ only a little from the movement of free
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charge carriers. As in the case of “zone” electron, the mobility of large-radius

polarons decreases with increasing temperature.

In contrast, for the small-radius polarons, the size of lattice distortion is small, but

its deformation is significant. The polarization covers only from one to three cells,

but localization time is comparatively large (�10�9 s). The excited state follows

beyond movement that significantly increases polaron effective mass (in slang,

description of this phenomenon might be as “electron dressed in phonon’s coat”).

In quantum theory, the indeterminacy principle can be recorded for energy and

time in the formΔW�Δt 	 h. The width of energy band in case of “band” electron (or
hole) in semiconductors is ΔW¼1–2eV. It follows that such electrons can be local-

ized in the lattice at a time no greater than 10–15 s, as in case of a longer period elec-

tronic wave functions “blur” in the entire crystal. However, for small-radius polarons

in ionic dielectrics the width of band is approximately 7–10eV that is responsible for

long-term self-trapping of quasiparticles.

The movement of polarons in crystal lattice is supported by thermal fluctuations

(as in the case of ionic conductivity). The “jump” of self-localized electron (or hole)

to the neighboring node in a lattice is determined by deeper potential well formation

in this node. The set of such thermal jumps of the polarons is chaotic movement.

However, in the external electrical field thermally activated jumps of polarons

become directed: this is the hopping conductivity. Nevertheless, in contrast to

high-mobility “band” electrons (that show the maximum in ue(T) dependence) tem-

perature dependence of mobility of small-radius polarons is characterized by a min-
imum upol with the subsequent return of mobility due to the decay of the polarons

(electrons liberation) that can be seen as maximum upol(T) (Fig. 7.40).
A decrease in charge carrier mobility in dielectrics with increasing temperature in

a wide temperature range (as well as in semiconductors at normal and elevated tem-

peratures) is because of electron scattering on lattice vibrations. However, at lower

temperatures thermal motion in lattice stimulated appearance of polarons: they arise

due to thermally activated displacements of lattice around electron or hole. At that, as

temperature rises, chaotic thermal motion of ions in crystal lattice becomes more

intense. Therefore, during self-trapping polaron becomes overgrown by “phonon
FIG. 7.40

Temperature dependence of mobility of small-radius polaron.
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condensate,” that is, some closer located ions displace from their equilibrium posi-

tions. The increase in polaron effective mass decreases their mobility; for this reason,

a fast decrease (down to a minimum) is observed in the dependence of upol(T)
(Fig. 7.40). Then, as temperature increases, stability of polarized environment

around electron (or hole) begins to collapse, so mobility of electrons increases up

to a local maximum in upol(T) dependence.
Thus, electrons and holes in most dielectrics have lowmobility and they look like

being inactive. The origin of polaronic state is energetically favorable, because local

polarization of crystal lattice reduces energy of charge carriers. Polarons arise on

account of electron-phonon interaction, which is neglected in the band theory of

semiconductors and metals. Low mobility of electrons in dielectrics results in small

electronic conductivity only in weak electrical fields, when electrical field cannot

change as concentration so mobility of charge carriers. However, in strong electrical

fields the role of electronic conductivity increases sharply. In increased electrical

field, first of all, mobility of charge carriers increases because polarons are des-

tructed. Second, a strong electrical field may also dramatically increase concentra-

tion of electrons in the conduction band (and holes in the valence band) owing to the

ionization at collisions and due to injection of free carriers from electrodes.

Charge carrier injection and nonlinear conductivity. Ohmic conductivity is

violated in case of charge carrier injection. Conductivity changes depending on

the intensity of electrical field; moreover, a sudden jump in conductivity can be

observed due to the injection of electrons or holes in a dielectric or semiconductor

(also in case of phase transitions or electrical breakdown).

The process of injection occurs in relatively strong electric fields and is accom-

panied by a variety of nonequilibrium phenomena. The most important phenomenon

is the case of SCLC. Space charge is distinguishable from usual charges: this is the

excess electrical charge, distributed over a space in vacuum or in dielectric. In vac-

uum, space charge can be created only by electrons; in solids, the sign of space

charge can be either negative or positive. Being emitted from a metal, the charge

carriers form a kind of cloud in a certain volume of dielectric (in conductive medium,

charges should be rapidly neutralized or screened).

Excess electrons or holes, being introduced into a crystal from electrodes by

injection, can provide important information about the concentration and type of

structural defects in the dielectrics or in the wide-gap semiconductors. The point

is that some structural defects of crystal represent the “traps,” captivating injected

charge carriers. Investigation of current-voltage characteristics of SCLC makes it

possible to get information about the concentration of structural defects and energy

levels of local states (capture or trapping levels) as well as about levels of charge

carrier recombination.

During the monopolar injection, only one type of charge carriers (electrons or

holes) is introduced in a crystal. In this case, injection takes place only from one

of electrodes: electrons penetrate into a dielectric from cathode, or holes penetrate

from anode. In case of bipolar injection, electrons and holes are brought into a crystal
from two opposite electrodes.
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The monopolar and bipolar injections of charge carriers are the nonequilibrium

process when the electrical neutrality in crystal is locally violated. It should be noted

that the equilibrium charge carriers (e.g., thermally activated) are generated in pairs,

so electric neutrality persists. Therefore the spatial charge formation and its partial

trapping are the infringement of neutrality. That is why at conditions of space-charge

presence, the dependence of current on electrical field becomes nonlinear (Ohm’s

law is violated) [7].

The well-studied phenomenon of electronic emission into vacuum from heated

cathode can serve as a good analogue for injection processes in crystals. Space

charge in vacuum, created by emitted electrons, is located over cathode and, owing

to Coulomb repulsion of electrons, limits further emission, which results in the non-

linearity of electrical current, flowing through vacuum diode:

j¼ aU3=2d�2 (7.40)

where a is constant and d is distance between cathode and anode. This expression

uses the voltage U (not field strength E) because E has different value in the space

between electrodes. For the same reason, current density is inversely proportional to

the square (not to first degree) of distance between electrodes. Thus, the nonlinearity
of conductivity in the condition of space charge is possible even in vacuum, at that,

instead of Ohm’s law, a law of “degree of the three second” takes place.

The regularities for injection of electrons (or holes) in dielectric are much more

complicated than those in case of emission in vacuum. First, in crystals charge car-

riers interact with lattice vibrations, resulting in their scattering and possibility of

their transfer to a slow polaron state. Second, some charge carriers may be trapped
by defects of crystal structure that account for charge carrier localization in crystal.

Finally, in contrast to vacuum diode, in the crystal a double injection with mutual

compensation of negative and positive space charge are possible, as well as the

recombination of electrons and holes.

In practice, the realization of capable to injection contacts looks like rather dif-

ficult task. However, the effective rate of injection can be achieved even in case of

blocking contacts by using a sufficiently large electrical field. In this case, thin

potential barrier “metal-insulator” allows electron tunneling. To increase the level

of injection, the translucent electrode with ultraviolet illumination can be applied;

hence for nonequilibrium charge carrier generation the photoelectric effect is used.

As a common method to increase the intensity of injection a metallic tip can be

adapted, near which the strength of the electrical field is increased. In all these

cases, the density of injection current (even being limited by space charge) is thou-

sands of times greater than the density of electrical current conditioned by equilib-

rium charge carriers.

Monopolar injection. In the relatively pure dielectric (with no structural defects

traps), space charge depends on the Coulomb repulsion of electrons in a lattice. The

limited by SCLC dependence on electrical voltage is given by the expression

j¼ uεU2d�3 (7.41)



FIG. 7.41

Volt-ampere characteristic in defect-free crystals in the case of monopolar injection (here

and in Fig. 7.43); each division on axes corresponds to change on the order of value.
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where ε is permittivity, u is charge carrier mobility, and d is distance between elec-

trodes. This is Mott-Gurney law, wherein the “non-traps” SCLC shows quadratic
current-voltage dependence and inverse cubic current-thickness dependence; this

law is confirmed experimentally.

Volt–ampere characteristic of a dielectric, in which there are no traps for elec-
trons (or holes), is shown in Fig. 7.41. Here, except SCLC, the normal (ohmic) cur-

rent conditioned by equilibrium charge carriers (j�U) is also shown. The

dependence j(U)¼aU+bU 2 consists of two easily separated sections. On the first

plot (at low voltage, which is less than voltage U1), electrical current is small and

current density is proportional to voltage: this is law of Ohm. On the second plot,

beginning with voltage U1, the dominating law is monopolar SCLC that is charac-

terized by the quadratic dependence of current on voltage. It is seen that the slope of

logj(logU) characteristic becomes twice larger than that in first plot. Strictly qua-
dratic SCLC low being characteristic of pure crystal can be used in analogous com-

puting devices.

Volt-ampere characteristic of dielectric containing defects (traps) differs from
the discussed idealized dependence. Except linear plot 1 and quadratic dependence

of conductivity 2, in the event that nonequilibrium charge carriers exist, the plot 3

appears, shown in Fig. 7.42A: it is a stepwise increase in current at voltage U2. Then,

in plot 4 the j(U) dependence again becomes quadratic. Extrapolation of plot 4 to low

voltages (plot 20) indicates the increase in charge carrier mobility above voltage U2.

At lower level of injection (plot 2), drift mobility of electrons (or holes) is smaller

because in the vicinity of structural defects the process of continuously capturing and

releasing of electrons occurs. These inhibitory traps reduce mobility of charge car-

riers and level of SCLC, as compared with defect-free crystal. However, above



FIG. 7.42

SCLC in crystals with defects in the case of a monopolar (A) and bipolar (B) injection.
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voltage U2 all catchers-traps are filled; hence stepwise increase in current occurs at

the expense of injected charge carriers that are not inhibited in traps (plot 3,

Fig. 7.42). Therefore, by a value of voltage U2 a concentration of structural defects

is determined while the jump in current characterizes the depth of “sticking” levels
(that are located in the band gap of semiconductor or dielectric). The closer the level

Nn of “sticking” electrons to bottom of conduction band Ec, the smaller the current

step in plot 3. In case of holes, the depth of “sticking”Np is measured from the surface

of valence band Ev.

The example, shown in Fig. 7.42A, corresponds to a simple case, when all defects

are the same, and their level lies above the Fermi level (shallow levels), since

U1<U2. Otherwise, when U1>U2 (the case of deep levels), the vertical jump of

current density (plot 3) would start in the area of Ohm’s law (in plot 1).

This implies that in the event of monopolar injection only from the volt-ampere

characteristic of SCLC is it possible to determine whether the defect traps are shal-

low or they are deep. If considered structure has the multiple types of defects that

energy levels are located in the energy gap (forbidden zone) with different depths,

the dependence j(U) shows a plurality of vertical steps, each of that allows to deter-

mine both concentration and depth of corresponding traps. Finally, when the energy

levels are distributed in the energy range in the energy gap, the plot 3 will not be a

vertical but inclined line, while the angle of inclination enables to find distribution

function of energy levels for “sticking” traps.

Data on energy characteristics of defects are important for new dielectric and

semiconductor materials development, intended for use in the devices of electronic

equipment. The described technique of deep-level investigation by relatively

simple electrical measurements (current-voltage characteristics) gives indication
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of microscopic structure of crystals. Nonlinear voltage-current characteristic of

SCLC with defects can also be used in some applications, as the current can increase

by thousands of times. Devices with this feature can be a basis for voltage regulators

and other threshold apparatus.

The bipolar injection of charge carriers is characterized by even more compli-

cated volt-ampere characteristics than monopolar injection. One of typical charac-

teristics of such injection is shown in Fig. 7.42B. It is assumed that dielectric

comprises only one type of shallow levels. Linear plot with Ohm’s law is not shown

while the plot 2 is shown with reduced trap mobility of charge carriers. The features

of double injection become apparent in plots 3 and 4 of considered characteristics.

With current density increases in plot 3, electrons and holes of space charge areas

interpenetrate each other: electrons neutralize space charge of holes near anode,

while holes, in turn, neutralize electronic space charge at cathode. Under these con-

ditions, the restrictive effect of space charge is largely weakened, whereby current

density continues its increase even when voltage decreases: current density in plot 4

falls from the monopolar threshold potential U2 to a smaller value U3. The region of

unstable current between voltages U2 and U3 characterizes the presence in dielectric

or semiconductor injected electron-hole plasma.
The sharp decrease in resistance of dielectric (or semiconductor) in the plot 4 (in

region of negative resistance) can be described as “electrical breakdown.” This view
looks consistent with increasing of electron tunneling near the contacts, supplying

nonequilibrium charge carriers. Besides, in the vicinity of instability, the ionization

by collisions may occur (caused by fast electrons) that increases charge carrier con-

centration. Moreover, the photoionization processes are also observed, being acti-

vated owing to intense recombination of electrons and holes. However, unlike

true breakdown, when electrical current increases infinitely and crystal failure

occurs, the current increase in electron-hole plasma, formed by double injection,

is limited. Therefore, breakdown of the dielectric (or semiconductor), which is usual

in the case of a usual breakdown, does not occur.

First, the recombination of electrons and holes prevents unlimited increase in cur-

rent that is promoted by lattice defects—centers of recombination. Second, in the

event of plasma, the increase in current is still limited by the space-charge effect,

the influence of which is only partially neutralized by the charge carriers of

opposite sign.

Thus the double injection creates in dielectric (or in wide-bandgap semiconduc-

tor) the unique case of “partial breakdown” that is not accompanied by irreversible

destruction of crystal. This process can be controlled by the change of voltage or by

control of electrical circuit parameters. Instability (i.e., the region of negative resis-

tance) is typical for devices with dual injection. This phenomenon is used in various

apparatus development, such as electronic equipment for switching devices, gener-

ators, etc. At recombination of nonequilibrium charge carriers the effect of light
emission occurs, which is a basis for diode-laser operation. They use wide-band

semiconductors, which are transparent in long-wavelength part of optical spectrum

(near-IR wavelengths).
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Returning to Fig. 7.42B, it should be noted that plot 5 of voltage-current charac-

teristic is also characterized by quadratic SCLC (formula 7.41) that occurs in con-

ditions of charge carriers with high mobility (analogous to plot 4 in Fig. 7.42A).

However, a further increase in voltage to a value of U4 changes the character of

j(U) dependence that in the plot 6 becomes cubic:

j¼ aεunupτU
3d�5 (7.42)

where ε is permittivity, τ is lifetime of charge carriers, a is parameter of crystal, while

un and up are mobility of electrons and holes, respectively. Meaningfully, the voltage

U4 can determine the concentration of recombination levels. It is interesting to note

that in the case of double injection the current dependence on distance between elec-

trodes ( j�d�5) is even greater than in the case of monopolar injection. Therefore, for

research and application of this phenomenon, preparing fairly thin samples or crys-

tals using thin-film technology is necessary.

The bipolar injection is accompanied by many other options of current-voltage

characteristics, which are different from those shown in Fig. 7.42B. On the peculiar

form of j(U) dependence, which characterizes the depth of “sticking” levels of elec-

trons (or holes), affects mobility charge carriers, and effectiveness of their recombi-

nation. The quality and nature of injection contacts are also very important.

Thus the injection of electrons and holes from metallic electrodes into dielectric

results in complicated nonlinear dependences of electrical current on electrical volt-

age. The study of space-charge limited current allows investigating the nature of

defects in dielectric and semiconductor structures.

Frequency dependence of conductivity. Temperature dependence of conduc-

tivity, that is, the dependence σ(T) is discussed earlier; in the case of space-charge

limited current the dependence of conductivity on electrical field σ(E) was consid-
ered. However, in many cases, for research and application, the frequency depen-
dence of conductivity σ(ω) is also important. In accordance with charge carrier

physical nature and depending on properties of dielectric, the conductivity with fre-

quency can both increase and decrease.

The increase in σ(ω) is usually caused by the delay of slow polarization mech-

anisms. This effect is conditioned by the close relationship between polarization

and conduction processes that can be completely separated only at direct voltage.

Fig. 7.43 shows conductivity dependence in dielectrics and semiconductors in a wide

frequency range (10�4–108Hz) for quite different structures and chemical composi-

tions. This community of σ(ω) dependence can be described by the power law, estab-
lished by A. Ionscher [12]:

σ�ωn, 0:7< n< 1: (7.43)

This law is peculiar to most mechanisms of charged particle local movement in the

dielectrics under an alternating electrical field. The ions and polarons during their

“hopping” movement between the states of self-trapping, as well as the dipoles

in a process of their rotational vibrations between several equilibrium positions

(separated by potential barriers) simulate conductivity while frequency increases.



FIG. 7.43

Frequency dependence of conductivity in some dielectrics at different temperatures: 1—

covalent crystal silicon (4.2K), conductivity is caused by electron “jumping”; 2—ionic crystal

Al2O3 (77K); 3—molecular crystal anthracene (300K); 4—phosphate glass P2O5-FeO-CaO

(300K); 5—silicon monoxide (300K); 6—thin film of stearic acid (300K); 7—amorphous

selenium (300K); and 8—amorphous As2S3, 300K (by A. Jonscher [12]).
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In the same way, other charged particles and complexes that are under electrical field

move in a confined space and bring the contribution to frequency dependence of

conductivity, described by formula (7.43). Thermally activated motion of charged

particles, whose localization is determined by a set of potential minima and barriers,

in external electrical field gives rise to both conduction and polarization.

At comparatively low frequencies (ω! 0), the processes of polarization predom-

inate, as the movement of charged particles in almost constant field is limited by the

potential barriers (structural defects and interfaces) that prevent total transfer of

electrical charges from electrode to electrode. With frequency increase, the charged

particles do not have enough time during a quarter of sinusoidal voltage period to

reach the places of their localization but continuously follow the change in electrical

field, contributing to a conductivity.

For this reason, their contribution to polarization is ceased, resulting in the dis-

persion (reduction) of permittivity: ε0(ω) decreases. The difference in height of

potential barriers and the distinction in length of charged particle free path explains

the very continuous increase in conductivity σ(ω) in a wide frequency range

(Fig. 7.43).

Therefore, at subsequent increase in frequency, that is, in more rapid changing

electrical field, the inertia of charge carriers begins to affect, making their movement
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at high frequencies impossible. Sedentary molar ions do not have sufficient time to

move in the electrical field already at subsonic frequencies such that electrophoresis

is studied and used mainly at direct voltage. The ionic conductivity in dielectrics is

delayed already at radio frequencies; therefore this type of charge movement prac-

tically has no effectiveness at microwaves. The less inertia mechanism is electronic

conductivity, but in dielectrics this mechanism, for the most part, has polaron char-

acter, so it is delayed at much lower frequencies than in the semiconductors.

Normal mechanism of electronic conductivity in semiconductors and metals

(described by band theory) does not lead to σ frequency dependence over the entire

frequency range that is used in electronics (up to terahertz). Nevertheless, as far as

frequency increases, in the end, the movement of electrons also manifests their iner-

tia, but σ(ω)-dispersion mechanism in the metals is quite another as in dielectrics (see

Chapter 5, Fig. 5.2). Very small (as compared to bias current of polarization) elec-

tronic conduction of dielectrics cannot be studied in the IR and optical frequencies,

but the mechanism of electronic conductivity dispersion is clearly manifested in

metals.

As the permittivity of the metal is negative below the frequency of plasma res-

onance, the presence of free charge carriers in doped semiconductors and dielectrics

reduces their optical refractive index on Δη:

Δη¼� n0λ
2e2

8π2ε0mefc2
,

where c is light velocity and λ is wavelength. This negative plasma contribution to

permittivity is noticeable in those materials, in which effective mass of electrons is

small. Such crystals are some semiconductors of AIIIBV type. The effect of plasmic

decrease in permittivity may be used in integrated optics for planar waveguides. Thus

frequency dependence of conductivity can be applied in electronics.
7.10 ELECTRICAL BREAKDOWN
Taking into account the increase in operating temperature of electronic and electrical

devices, as well as widespread use in electronic thin dielectric films (that are applied

in increased electrical fields), considerable attention should be paid to the mecha-

nisms of electrical aging (degradation) and electrical breakdown in dielectrics. In

a strong electrical field, owing to the increase in conductivity, the irreversible

changes in electrical properties of a dielectric may occur that in solid dielectrics

may be accompanied by their destruction.

The breakdown occurs, when the strength of electrical field reaches a certain

threshold value, above which electrical durability of dielectric (that is characterized

by a small and steady electrical current) suddenly breaks. In case of breakdown,

electrical current through a dielectric increases sharply, which results in the electrical

discharge (spark or arc) passing through the dielectric. If the dielectric undergoes

strong electrical field of very high frequency (at microwaves), the increased
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conductivity occurs in a form local destruction. Similar phenomena are observed in

case of optical breakdown, when light-transparent dielectric can be locally damaged

by the laser beam; this kind of breakdown determines maximum permissible radia-

tion power density in the laser-based devices.

General regularities of electrical breakdown. The development in time of break-

down processes can be divided into distinguishable stages: in the first stage, dielec-

tric loses its electrical strength, while in the second stage the mechanical (or thermal,

or chemical) destruction of dielectric takes place.

The second stage in various dielectrics can occur in quite different ways depend-

ing on multitude circumstances, and it is not considered here in detail but only its

general features are discussed. The second stage of electrical breakdown is devel-

oped to lesser degree, because in this case the particular physical and chemical prop-

erties of various dielectrics have significant influence on their destruction. The

nature of the second stage of breakdown also depends on the properties of source

of voltage: if the power of this source is large, the breakdown occurs in the form

of electrical arc, while in the case of low power of source the breakdown looks like

a discharging spark with substantially less destructive force.

Manifestation of the second stage of breakdown also depends on the physical

state of a matter. For example, gases completely restore their dielectric strength

within a short time after breakdown. In the liquid dielectrics, their electrical strength
after breakdown is also almost completely restored. However, in the solid dielectrics,
breakdown usually results in irreversible changes, even in case of low-power source

of voltage: during breakdown a narrow channel (made by penetrating current)

remains, and it has high conductivity after the spark goes out. In case of electrical

arc, the significant destruction of solid dielectric (or organic materials) occurs.

Therefore, main attention is paid to the first stage of breakdown, when a balance
of small and stationary current in dielectric (that determines reliable electrical insu-

lation) is violated, and electrical current through the dielectric starts to grow as an

avalanche. The analysis of the first stage of breakdown is based on theoretical expla-

nation of electrical strength Ebr and its comparison with empirical determination of

breakdown voltage.

In the first stage of breakdown, the main physical mechanism of electrical

strength loss is the intense ionization process arising while electrons collide with

atoms, ions, or molecules. Due to this ionization, the concentration of charge carriers

sharply increases that gives rise to electronic avalanches that, in turn, leads to the

electronic breakdown. This type of breakdown is characterized by the short duration
of preliminary processes, while dielectric strength Ebr only depends a little on tem-

perature, on electrical field frequency, and on the properties of environment. Elec-

tronic avalanche initiates the streamer (leader), which extends very fast via the

process of photoelectric ionization. If the thickness of dielectric is small, electronic

breakdown becomes multiavalanches.
Various physical and chemical mechanisms give rise to the irreversible processes

of evolution in dielectrics, such as aging and mechanical or chemical damage; these
processes significantly vary over a time. In case the loss of electrical strength is due
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to the rapid electronic processes (electronic avalanches, polarons releasing, etc.), the
irreversible process develops in a short time—of about 10�6 s. The evolution of other

mechanisms of breakdown needs a much longer period.

For example, the electrothermal breakdown development occurs in the time

interval of 10�2–102s, which is much slower than in the electronic breakdown. In

this mechanism, the amount of released heat (generated in dielectric under electrical

field influence due to conductivity and dielectric losses) should exceed the value of

heat leakage to the environment. As a result, heat balance in the dielectric might be

violated, so a disturbance of thermal steadiness occurs owing to electrical conduc-

tivity ascending with temperature rise. In a strong electrical field, the dielectric

becomes overheated, and, eventually, the breakdown takes place.

The electrochemical processes, which lead to aging of dielectric before break-

down, are developed even more slowly than heat balance violation. In solid dielec-

trics, different mechanisms of electrolysis are possible: metallic dendrite

germination through dielectric, various electrochemical processes existent on sur-

face and in volume of dielectric. Such phenomena are the electrodegradation. These
processes lead to significant reduction in electrical strength and can be qualified as

the electrochemical breakdown. The time at which electrochemical processes take

place is estimated in different cases by the time interval of 103–108s.
Thus evolution time of irreversible processes can be considered as one of the

important parameters that can be used to distinguish between possible mechanisms

of electrical breakdown. Fig. 7.44 is an example of volt-second characteristic. Such

dependence can be obtained experimentally by electrical strength Ebr measurement.

To a tested sample, the “saw-tooth” (serrated) voltage pulses is applied being inter-

rupted by breakdown of dielectric. To generate short-term serrated pulses, the special

high-voltage impulse generators are used. As shown in Fig. 7.44, there is a great dif-

ference between the evolution time of breakdown mechanisms for electronic, elec-

trothermal, and electrochemical types of breakdown.
FIG. 7.44

Breakdown voltage dependence on exposure time for thin film (Al2O3, 70 microns), at

temperature T¼1800K; El, electronic breakdown at low exposure time; ET, electrothermal

breakdown, EC, electrochemical breakdown (according to S. Koykov).
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Maximal voltage for breakdown is a peculiar property of the electronic break-

down; in case of electrothermal breakdown, this voltage is smaller in order of mag-

nitude, and it is even two orders of magnitude smaller for electrochemical breakdown

(compared with electrodegradation).

In dielectrics that have different states of aggregation, the mean free path of

accelerated electrons is quite different, and this strongly affects the breakdown volt-

age. In fact, in gases (under normal conditions) electrical field of breakdown is less

than 106 V/m, in liquids in case of electronic type of breakdown this strength reaches
to the value of 108V/m, while in solids it increases up to 109V/m. In the event that

electronic breakdown occurs in the thin films electrical strength can reach

1010–1011 V/m (a very important fact for microelectronic devices).

The time during which electronic breakdown occurs usually is very short (10�8–
10�5 s). The large distinction in the interval of time is due to not only peculiarities of

dielectrics (gases, liquids, crystals) but also differences in experimental conditions

that are determined by temperature, time of exposure, sample thickness, and the rate

of overvoltage. Fig. 7.45 shows the dependence of breakdown time on thickness of

dielectrics in case of electronic breakdown. Such dependence is typical for dielec-

trics of quite different structure: gases, liquids, crystals. On the one hand, this sim-

ilarity testifies the identity of principal mechanism of breakdown. On the other hand,

it can be seen that mechanisms of electronic breakdown in case of diminutive dis-

tance between electrodes (including thin layers of solids) are significantly different,

in which case that dielectric thickness is relatively large.

In the vicinity of certain critical length δcr the time of breakdown abruptly

changes up to several orders of magnitude (Fig. 7.45). For larger and smaller values

of δ, the dependence of breakdown time on the value of δ is opposite. The reason is
FIG. 7.45

Dependence of electronic breakdown time τel on dielectric thickness δ.
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that at smaller thicknesses of dielectric the electronic breakdown has the multiava-
lanche nature, while in the event that a larger value of δ, the one-avalanche break-
down mechanism prevails.

Development time of electronic breakdown characterizes the acceleration of

electrons in the electrical field. In solid dielectric, the ionization process by the col-

lisions starts when the energy, which electrons gain from electrical field, becomes

greater than the bandgap energy (or equal to it). A possible conception of impact

(collision) ionization is as follows: accelerated by electrical field electrons release

other electrons from their bonding with atoms (or ions); these secondary electrons

move from the valence band to the conduction band.

Typically, in the event of ionization, instead of one “fast” electron (already accel-

erated by electric field), two “slow” electrons appear in the conduction band; then

they should be accelerated by the electrical field and reproduce the ionization, cre-

ating already four electrons, and so on. The result is the avalanche of 2n electrons,

where n is the number of ionization acts.

However, electrical breakdown is a very complicated physical phenomenon that

depends on many properties of dielectrics—electrical, optical, thermal, mechanical,

and chemical.

Electronic breakdown in crystals. Experimental studies of dielectric strength in

solid dielectrics are complicated, because breakdown in solids is irreversible: in con-

trast to gases and liquids, in this case, for each test it is necessary to prepare a new

sample, as during breakdown mechanical or thermal destruction of dielectric occurs.

In addition, while studying breakdown in crystals, it is necessary to consider that the

surface of solid dielectric is obviously bordered by the gas or liquid dielectric, in

which electrical strength is much less than in solid dielectrics.

To prevent the flashover of samples (overlap electrical discharge), they need to

have such a geometrical shape in which the path of surface discharge will be length-

ened as much as possible (Fig. 7.46A). In addition, to examine only the electronic
breakdown it is necessary to exclude the possibility of dielectric heating in a strong

electrical field and to prevent the rise of electrochemical processes that lead to aging.

It should be also noted that statistical methods are required for breakdown
FIG. 7.46

Electronic breakdown peculiarities: (A) different forms of dielectric samples (1) and

electrodes (2); strength dependences on: (B) temperature, (C) frequency, and (D) sample

thickness (above Tth and frequency ωth an electrothermal breakdown starts).
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experimental data processing: therefore a large number of research samples are

required. The question is that breakdown is a random and local event in its nature,

and in order to make correct conclusion from the experiments it is necessary to inves-

tigate dozens of samples [13].

Thus every experimental study of solid dielectrics breakdown is a very time-

consuming test. Partly for this reason, electronic breakdown has been studied

mainly in single crystals in order to minimize additional complicating factors

due to the nonuniform structure of samples. However, electronic mechanism is

the most important mechanism of breakdown in solid dielectrics (in polycrystalline

and amorphous materials as well). Of particular importance is the electronic break-

down in thin dielectric films that are widely used in microelectronics (just as inor-

ganic dielectric film in chip elements so also in polymer films for protective

coatings).

In solid dielectrics, in strong electrical fields, Ohm’s law is violated and an expo-
nential increase in current before breakdown is seen; however, any saturation in the
j(E) dependence is not observed. Electronic breakdown, except for the largest Ebr

value, is distinguishable by short time of the first stage of breakdown. In the

event of one-avalanche mechanism, the processes resulting in electrical strength loss

are developed during 10�7–10�6 s; however, in thin dielectric films it takes

10�6–10�4 s because the breakdown mechanism is multiavalanche.

Short time of electronic breakdown allows to experimentally separate this mech-

anism from other forms of breakdown in solid dielectrics. With that end in view, the

volt-second characteristic with short exposition time can be used (Fig. 7.44), in

which any of electrothermal or electrochemical process has no time to develop. Also

note that the electronic mechanism of dielectric breakdown is peculiar to solid

dielectrics at very low (cryogenic) temperatures, when the intensity of both thermal

and chemical processes is greatly reduced.

In case of electronic form of dielectric breakdown, the strength Ebr does not

depend on the properties of environment, as well as on many other adverse factors.

Breakdown voltage is determined by a set of electrical, mechanical, optical, and ther-

mal properties of studied crystal, and therefore, parameter Ebr may be considered as

the most reliable (reproducible in different experiments) characteristic of dielectric

properties.

This is confirmed by basic experimental data as to electronic breakdown.

Fig. 7.46B–D demonstrates that the value of Ebr is only little dependent on temper-

ature, it is practically independent of frequency, and does not change with the

variation of sample thickness (except samples of very small thickness, when the

breakdown mechanism changes). Single-crystal study shows that channels of break-
down are narrow, straight, and oriented according to crystallographic axes. There-

fore, breakdown strength Ebr in crystals exhibits the anisotropy that is observed even
in the AHCs, whose cubic structure demonstrates isotropy of all other electrical

characteristics (σ, ε, μ) and isotropy of optical refractive index n. For example,

in crystals such as NaCl, Ebr [100]¼1.6�108V/m, Ebr [110]¼1.5�108V/m, and

Ebr [111]¼1.3�108V/m [14].
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It is found that the material of electrode practically has no effect on the break-

down in the AHCs. At that, before a breakdown, the dislocations in crystals appear;

then (in initial stage of discharge) the channels of current flow arise, which have a

thickness of about 1μm and increased electrical conductivity. These channels are

preferably oriented along the diagonal of cubic crystal, that is, in the direction of

[111] axis, and next grow through crystal with a velocity of about 104m/s, while cur-

rent density in these channels reaches 109A/m2. In the vicinity of these channels, an

intense glow is observed that is caused by electroluminescence. Later these channels

widen in their diameter up to about 10μm, wherein the crystal melts owing to high

power density.

During the study of electrical breakdown in AHCs important properties have

been found: the value of Ebr is proportional to energy of crystal lattice

(Fig. 7.47A). Furthermore, with the increase in lattice parameter, the value of Ebr

decreases (Fig. 7.47B). Thus the binding force of ions (or atoms) in lattice prevents

the development of electronic breakdown in solid dielectrics.

Features of electronic breakdown mechanism in ideal crystals, in which almost

no defects exists (traps for electrons and holes, donor, or acceptor centers), can be

explained as follows. Primarily, it should be noted how “free” electrons in such crys-

tals can appear: first, the strong electrical field liberates electrons from their bound

(polaron) state and transforms them into band-electrons state; second, owing to elec-

tron injection from metal electrode.

A possible mechanism of electronic breakdown is as follows: electrical field

accelerates the released electrons, next the ionization by collisions starts, when elec-

trons (holes) acquire a field energy that is greater (or equal) than the width of band-

gap of a crystal. Speeded up by the field, electrons, owing to their interaction with

lattice, free other electrons from the valence band to the conduction band. All elec-

trons are accelerated by the electrical field, generating new electrons; therefore the

avalanche of electrons with 2n appears, where n is the number of ionizations.
FIG. 7.47

Features of electronic breakdown in AHC: (A) proportionality between crystal lattice

energy and electrical strength (by A. Vorobyov [13]), (B) connection between breakdown

voltage and lattice parameter.



390 CHAPTER 7 Dielectrics
The value of electrical field, at which electronic avalanches are formed, is deter-

mined by the electron–phonon interaction in a given crystal.

In the defect-free crystals, acceleration of electrons is protected by crystal lattice,

because during their motion electrons are scattered by lattice vibrations—phonons. It

is known that probability of scattering is maximal in case of equality of impulses and

energies of interacting quasiparticles. Therefore accelerating electrons actively inter-

act just with longitudinal optical phonons, in which direction the impulse vector is

consistent with the polarization of electronic wave (that is also longitudinal). The

equality in energy is possible only when the energy of accelerating electrons reaches

the value of ℏωLО, where ωLО is frequency of longitudinal optical mode of lattice

vibrations. Exactly at this condition, the transfer of energy from accelerating elec-

trons to the crystal lattice is maximal, that is, there is a maximum electron energy

loss when scattering by phonons takes place.

The energy of moving electron is transmitted to crystal lattice by excitation of

longitudinal optical oscillations, but due to anharmonicity of vibrations this energy

is distributed between other vibrational modes, turning into a heat. Generally speak-

ing, acoustic oscillations near the boundary of Brillouin zone as well as optical vibra-

tions also affect breakdown voltage. Destruction of crystal during electronic

breakdown becomes possible due to appearance of the elastic shock wave that

accompanies the resulting avalanche of electrons. If the electrical field becomes

so large that electrons that gain energy from the field exceed a maximum of energy

lost, their braking becomes small. They turn into the fast (hot) electrons, and, sub-

sequently, are accelerating in electrical field and generate an electronic avalanche

that causes the breakdown.

Thus, the higher the frequency of longitudinal optical mode, the greater the

breakdown strength. Fig. 7.48 shows the dependence of breakdown voltage on the

longitudinal lattice vibration frequency that is defined at the boundary of Brillouin

zone. The frequency is obtained from far-IR spectra, taking into account spatial
FIG. 7.48

Dielectric strength dependence in alkali-halide crystals on longitudinal optical phonon

frequency, defined on the boundary of Brillouin zone (1cm�1¼30GHz).
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dispersion (i.e., depending ωLO on wave number k). Breakdown strength increases in
direct proportion to lattice frequency (Ebr � 0.05νLO, where νLO is longitudinal fre-

quency, measured in sm�1).

Thus the main criterion of electronic breakdown in crystals is obtained by com-

parison of energy, acquired by electron in external field and maximal energy loss of

moving electron in crystal lattice.

These ideas about the nature of electronic breakdown are confirmed by experi-

mental data. First of all, small dependence of Ebr on temperature (Fig. 7.46B) is due

to ωLО small dependence on temperature. Some increase in Ebr(T) is conditioned by
the increase in phonon density in LO optical branch with increasing temperature.

Crystallographic orientation of breakdown channel is due to lower value of electron

energy loss in [110] the direction, and, in particular, in [111] the direction, in which

the channel of breakdown is preferably directed in cubic crystals. The anisotropy of

Ebr is conditioned by different values of ωLО(k) in various directions of spatial dis-

persion in Brillouin zone. In the center of a zone where k¼0 frequency ωLО is same

in all directions, but the more the value of k (closer to border of zone) the more the

interaction of electrons with optical phonons. In AHCs the largest spatial dispersion

(reductionωLО(k)) is observed in the [111] direction; in the same direction the lowest

is value of Ebr¼ Ebr[111]. Breakdown voltage, according to the described mechanism,

should not depend on frequency of electrical field, owing to a very short time of

breakdown (at least, up to frequency of 106Hz that is observed in the experiment,

Fig. 7.46C).

It is assumed that electronic breakdown in bulk samples is developed in accor-

dance with one-avalanche mechanism, similar to streamer in gases. The avalanche

creates a space charge near anode, thereby it turns into a streamer that moves from

anode to cathode with a velocity of �104m/s. This explains a small time duration of

breakdown (Fig. 7.45, right part of curve from δ¼10�5 m), but this time increases in

proportion to thickness of a sample. In the case of one-avalanche breakdown, the Ebr

is practically independent of thickness (Fig. 7.46D). The theory of electronic break-

down also explains the increase in dielectric strength at very small thicknesses. This

phenomenon is associated with the long time of thin film breakdown as compared

with bulk samples.

There are some other theoretical assumptions as to the mechanisms of electronic

breakdown in crystals. One idea is to understand how breakdown relates to polaron

theory, according to which strong field releases electrons from their bound polaron

state. Another conception of breakdown as manifestation of domain current instabil-

ity in dielectric crystals is developed. According to this hypothesis, the formation of

narrow channels of electronic breakdown may cause the pinching of current chan-

nels. A considerable role in the mechanism of breakdown is given also to injection

processes.

In the thin films (Fig. 7.45, curve shown on the left from δ¼10�5 m), one ava-

lanche cannot create near anode enough positive space charge that could initiate the

expansion of a streamer. However, the needed space charge can be created by several
successive avalanches, if they fall into the same microarea of film. Breakdown
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nature becomes multiavalanches. Consequently, the time of development of break-

down significantly increases (by two orders of magnitude), because between ava-

lanches that fall within the same area of anode, time delay inevitably occurs

(statistical lag).

It should be noted that evolution time of multiavalanche breakdown becomes

greater the smaller the film thickness. For electronic avalanches to gain enough

power, thinner layer higher electrical field is required. Therefore, dielectric strength

in films is greatly increased. The breakdown voltage in thin dielectric samples can

exceed 1010V/m. The effect of breakdown strength increasing in thin dielectric

layers is used in microelectronics in structures of metal-dielectric-metal (MDM)

and metal-insulator-semiconductor (MIS). Owing to electrodes, a good heat sink

is guaranteed; therefore breakdown in thin film has an exclusively electronic nature.

Nevertheless, it is impossible to infinitely reduce the thickness of dielectric film

while maintaining low electrical conductivity (high electrical resistance). Currently,

microelectronics technology is capable of providing qualitative nitride-oxide film

with thickness less than 10nm (0.01μm). However, in such films electrical conduc-

tivity dramatically increases for a reason that has no relation to the breakdown: this is

quantum effect of electronic tunneling through thin dielectric layer. Tunneling effect
can be explained by the indeterminacy principle: ΔxΔp	 ħ

2
. This shows that in case

of restrictions of quantum particle coordinate its impulse p becomes less certain.

Impulse uncertainty can add particle energy to overcome barrier. Thus, with a certain

probability, the quantum particle can penetrate through the barrier, while average

energy of particle remains unchanged. Therefore, thin film of silicon oxide or silicon

nitride becomes a good conductor because of their very small thickness.

It is necessary to note that effect when quantum particle penetrates through

energy barrier, which frequently occurs in thin dielectric layers. In case of supercon-

ductivity, quantum tunneling through thin dielectric film corresponds to Josephson

effect. In electrical engineering, the effect of tunneling of charge carriers through

thin oxide film is also very important. Oxide dielectric film often covers many con-

ductive metals (particularly, aluminum), but electrons tunneling through this film

provides good conductivity in points of conductor mechanical connection (stranding

wires, terminals, etc.).

However, in most cases, in electrical engineering practice the main risk is in elec-

trochemical or electrothermal breakdown (that have much lower dielectric strength),

so the study of electronic form of breakdown has mainly theoretical interest.

Optical (laser) breakdown. In a strong electrical field that arises in giant laser

pulses, an optical breakdown is possible in the transparent dielectrics. The ionization

of structural defects of different origin (impurities, defects caused by abrasion) con-

tributes to laser breakdown. Near structural defects, the ionization wave or local

heating is formed that destroys dielectric.

However, there might be another reason for optical breakdown: a self-focusing of

light beam in the dielectric due to dielectric nonlinearity. Self-focusing of light is a

phenomenon of light wave concentration in a medium, which refractive index

depends on electrical field intensity. The refractive index n increases with increasing
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field owing to nonlinearity of electronic polarization (see Section 7.4). The structure
of laser pulse is such that maximal intensity of light falls on the center of a beam.

Therefore, the refractive index in the middle of beam inside dielectric becomes larger

than that at the edge of beam. Due to this optical inhomogeneity, the dielectric

behaves as focusing lens: the thickness of laser beam is gradually reduced, and light

intensity increases this effect; that is, self-focusing occurs.

In the event that self-focusing, laser beam becomes much stronger than in case of

the usual method of focusing lens, the self-focusing is the concentration of electrical

field. In the dielectric, a “focal point” arises, where the intensity of radiation becomes

sufficient for ionization and formation of plasma: laser breakdown occurs in a lim-

ited volume of a medium where light propagates. It should be noted, however, that in

case of dielectric heating by the laser beam an opposite phenomenon may occur—

light beam defocusing (nonlinear blur of beams). In such a case, the refractive index

decreases with intensity: in some dielectrics, heating and thermal expansion

(decreasing medium density) reduce n.
Such is, in general terms, current understanding of electronic and optical break-

down in crystals. There are different theories detailing breakdown mechanisms;

these items may indeed differ in dielectrics with different structures, as electronic

and optical breakdown are rather complex physical phenomena.

Electrothermal breakdown in dielectrics. Thermal form of electrical break-

down is observed only in the solid dielectrics (in liquids and gases such breakdown

is prevented by convection). In comparison with electronic breakdown, the electro-

thermal breakdown is characterized by significantly smaller (tens of times) value of

Ebr and much longer duration of preliminary processes (see Fig. 7.44). Therefore, in

the event of long-acting electrical field the risk of thermal breakdown is more likely

than electronic breakdown [6].

Peculiarities of electrothermal breakdown are strong dependence of breakdown

strength Ebr on sample thickness, on ambient temperature, and on frequency of elec-

trical field (Fig. 7.49). In comparison with same characteristics of electronic
FIG. 7.49

Main characteristics of electrothermal breakdown; dependences on: (A) temperature,

(B) frequency, and (C) sample thickness (below Tth and ωth breakdown has electronic

nature).
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breakdown (see Fig. 7.47), electrothermal breakdown strength significantly decreases

with increasing temperature. Electrical strength decreases also with frequency and

with thickness of tested sample. This means that the probability of thermal break-

down occurrence in a given insulator increases with temperature and frequency.

Electrothermal breakdown occurs due to the violation of thermal equilibrium in a

dielectric when it is continuously heating due to the influence of a strong electrical

field. The reason is that the amount of heat, released due to dielectric conductivity (or

dielectric losses), exceeds heat dissipation to the environment (thermal conductivity

of dielectrics usually is small).

The breach of thermal equilibrium promotes a sharp increase in electrical con-

ductivity and in dielectric losses with increasing temperature. Therefore, the over-

heating of electrical insulator increases exponentially with temperature rise. At

the same time, heat released from dielectric into a medium is characterized by much

weaker (linear) temperature dependence. Thus, in the dielectric placed in a strong

electrical field in the areas of poor cooling the conditions for local overheating
are created, resulting in an essential increase in local temperature.

In physics of dielectrics, only the first stage of electrical breakdown is mainly

investigated, when the reason for breakdown is discovered. If the reason for elec-
tronic breakdown is the rise of electronic avalanches, in case of electrothermal
breakdown the loss of electrical strength occurs due to infringement of steady-state
thermal regime.

Further development of breakdown, that is, its second stage (destruction of

dielectric), might occur in different ways for various structures of dielectrics. For

example, it may cause a sharp increase in electronic current in thermally weakened

local place or mechanical destruction of dielectric due to uneven heating that, in turn,

breaks the uniformity of electrical field and causes breakdown. In dielectrics with

low melting temperature during their heating, prior to any other electrofield pro-

cesses occurring, a meltdown can occur. This phenomenon is sometimes called as

thermal breakdown of second kind.
In the simplest case, when electrical field is direct, dielectric is homogeneous, and

heat dissipation factor β is known, it is not difficult to estimate breakdown voltage

Ubr in the event of electrothermal mechanism. Thermal power Qe that evolves in

dielectric (its calorification) is determined by electrical voltage U and electrical

resistance R that exponentially depends on temperature:

QB ¼U2

R
¼U2

R0

exp a T�T0ð Þ½ � (7.44)

where T0 is ambient temperature, R0 is value of resistance at temperature T0, and a is
constant factor. The value ofQe increases exponentially with temperature (Fig. 7.50).

The amount of heat that is removed from dielectric to the surroundings also increases

with temperature of dielectric, but linearly:

Q0 ¼ β T�T0ð Þ (7.45)

where β is coefficient of heat sink.



FIG. 7.50

Explanation to voltage calculation of electro-thermal breakdown.
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As shown in Fig. 7.50, temperature of dielectric that is subjected to voltage U1

can rise only to value T1 when thermal equilibrium is settled; that is,Qe¼Q0. In case

of accidental deviations from this equilibrium (e.g., when dielectric would be over-

heated above T1), the heat sink exceeds the heat increase, so dielectric will be cooled
to equilibrium temperature T1.

However, in case of significant increase in voltage (e.g., to value U3, Fig. 7.50)

the calorification in dielectric at all temperatures will exceed its heat sink. Therefore,

when voltage U3 is switched on, the overheating of dielectric obviously occurs and

electrothermal breakdown inevitably comes.

Thus, in dielectric at voltage lower than U2 the self-stabilization of temperature

sets, while at voltage higher than U2 the overheating and breakdown occur. There-

fore the breakdown voltage can be calculated from the limiting conditions of thermal

equilibrium: when the curve Qe(T) is in contact with the line Q0(T). This voltage is
U2¼Ubr (Fig. 7.50). From relations (7.44) and (7.45), as well as from condition of

two characteristic tangency, that is, at equality of ordinatesQv2¼Q02 and equality of

derivatives
dQB

dt

� �

T¼T2

¼ dq0
dt

� �

T¼T2

, the value of breakdown voltage and the max-

imal temperature of sustainability can be found, at which theoretically the thermal

equilibrium is still possible:

U2
br ¼ βR=a; Tbr ¼ T0 + 1=a (7.46)

It can be also shown that a time, during which process of thermal equilibrium is set-

tled, is given by formula τU2 � const, which is confirmed experimentally.

Significant dependence of breakdown voltage on the thickness of dielectric

(Fig. 7.49C) is attributed to the fact that thermal conductivity of dielectrics is much

lower than thermal conductivity of metallic electrodes. Therefore, by increasing test

sample thickness, the overall heat transfer to environment and, thereby, the break-

down strength reduces.



FIG. 7.51

Durability dependence on electrical field and on temperature; (A, C) polyethylene; (B, D)

rutile ceramics at constant voltage (a—E in MV/cm; b—E in MV/cm).
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Dependence of breakdown strength on frequency (Fig. 7.51B), that is typical for

electrothermal breakdown mechanism, may be obtained from the losses of capacitor:

Qe¼U2 C�ω�tanδ. From this expression it follows that in case of same calorification

(which is determined also by frequency), the breakdown voltage must decrease with

frequency rise as 1/ω1/2, in full accordance with Fig. 7.49B.

It should be noted that in some experiments with fragile dielectrics that contain
pores (gas inclusions) observed frequency dependence is much weaker: Ubr� l/ω1/3.

Such dielectrics are, for example, ceramics. In this case, a different mechanism of

breakdown becomes apparent, namely, the electrothermomechanical breakdown.
A feature of this mechanism is that breakdown starts near overheated by ionized
gas pores of dielectric. This overheating gives rise to uneven thermal expansion

of brittle dielectric, resulting in the formation of microcracks and subsequent

destruction of a dielectric.

The discussed elementary calculation (in connection with Fig. 7.50) of dielectric

thermal stability in a strong electrical field is only a qualitative description of elec-

trothermal breakdown phenomenon. At present, many theories of this mechanism of

breakdown as well as the analytical methods of different dielectric structures and

devises overheating are well developed in detail.

Electrodegradation (aging) of dielectrics. In strong electrical fields, conductiv-

ity of dielectrics becomes nonlinear, at that, dependence σ(E) shows a fast increase.
Here, if the electrical field does not exceed a certain threshold value, the changes in

electrical properties of dielectrics remain reversible: while electrical voltage would
be switched off, the initial properties of a dielectric are restored.
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Conversely, if the electrical field exceeds this threshold, then the irreversible
changes in properties of dielectric are observed: this is the electrical aging culminat-

ing in a breakdown. In this regard, it should be noted that electrophysical description

of dielectric is not entirely described by the electronic breakdown strength Ebr, but it

is also characterized by the electrothermal (EET) and by the electrochemical (EEC)

breakdown strengths. However, the latest are largely dependent on many random

factors, such as impurities and different external conditions; therefore, parameters

EET and EEC cannot serve as the fundamental parameters of a particular dielectric,

as the parameter Ebr for electronic breakdown.

While aging, the duration of electrochemical processes development, that is, the

time, taken between electrical field switching on and destruction of dielectric, is

called as the dielectric durability τd or, sometimes, as the “life time.” As in other

types of breakdown the smaller the τd the higher the voltage. To electrical aging

mainly organic dielectrics (polymers) are exposed, but in some cases this phenom-

enon is also observed in the inorganic solid dielectrics (crystals, glasses, and

ceramics). Mechanisms of electrodegradation in various classes of dielectrics are

quite different, but some experimental characteristics that describe aging have the

common features.
First, the relationship between durability and electrical field for both polymers

and inorganic solid dielectrics is satisfactorily described by empirical exponential

formula:

τd ¼AE�m,

where exponent m ¼3–4. Fig. 7.51 shows experimental data for durability of differ-

ent classes of dielectrics depending on electrical field.

Second, the reduction in durability with temperature in strong electrical fields is

also described by exponential law

τd ¼ τ0 exp W=kBTð Þ,

where τ0 is experimental parameter and W is energy of activation.

It should be noted that same temperature dependency is usually observed for

relaxation time, and this is the typical characteristic of thermally activated processes.
Fig. 7.51C and D shows temperature dependences of durability both in the polymers

and in the ceramic dielectric that are similar.

Significant difference in mechanisms of electrical aging of polymers and crystals

(ceramics) primarily is due to the fact that aging of polymers occurs more rapidly in

alternating voltage, in which connection of their durability is inversely proportional
to the frequency of this field: τd�ω�1. In the crystals and ceramics, in contrast, elec-

trical aging occurs primarily at the direct voltage.
In inorganic dielectrics, the mechanisms of aging may be associated with charge

transfer by ions and electrons. The ionic conductivity in direct electrical field always
results in irreversible change of dielectric properties, as it is accompanied by elec-

trotransport of matter. The flow of ionic current violates local stoichiometry of

dielectric composition. In some cases, while the influence of direct current is
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prolonged, even the metallic filaments germinate through the dielectric—

dendrites—which ultimately may short electrodes. Obviously, these aging processes

have no threshold field, and can occur at any value of voltage.

Electrical phenomena of solid dielectric aging may be associated also with the

electronic conductivity, but in this case the irreversible changes usually occur only

at sufficiently large electrical field. Such aging has been studied in detail as in

ceramics and single crystals, containing titanium oxide, so in the AHCs, in which

the mechanism of electronic conductivity in strong fields dominates over the ionic

charge transfer.

The temporal change of current density can be divided into four stages

(Fig. 7.52). The first stage that takes duration from several minutes to several hours

(depending on type of dielectric and temperature) is characterized by some decreas-
ing current in time. Before aging, titanium-containing ceramics, for example, dem-

onstrates conductivity of p-type, but after the first stage of aging conductivity

becomes of n-type. Therefore it is natural to assume that at the first stage of aging

the influence of acceptors is compensated by donor increase.

At the second stage, with a rather short duration (minutes), the current increases

by two or three orders of magnitude. It means that the compensation of acceptors by

donors is over, but the concentration of donors continues to grow. In some cases, this

effect results in such a large increase in current that the electrothermal breakdown

occurs, and the stages 3 and 4 cannot be observed. In the other case, if after the sec-

ond stage of aging the power would be switched off, then, after some time, the orig-

inal properties of dielectric will be restored. This regeneration can be greatly

accelerated by heating of dielectric, as well as upon application of electrical field

of opposite polarity. For this reason, electrical aging of inorganic dielectrics does

not occur at alternating voltage.

At the third stage of aging, dependence logj on logτ for a long time (tens of hours)

remains almost unchanged (Fig. 7.52). Nevertheless, the properties of dielectric in

this case change irreversibly due to electrochemical processes. The result comes

at last—the fourth stage that is characterized by a new increase in current and by
FIG. 7.52

Typical dependence of electrical current density on time while degradation in strong electric

fields for inorganic dielectrics.
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the breakdown. Tracing the beginning of this stage, it is possible to turn off power in

a timely manner and to prevent breakdown. However, complete regeneration of

dielectric properties (as it was possible after the second stage of aging) now becomes

impossible.

It is assumed that at the third stage of aging the equilibrium concentration of

donor is settled, depending on temperature and electrical field. The current remains

constant, but some active electrochemical processes occur (possibly, in near-

electrode regions) that prepare the injection process of holes or electrons. The fourth

stage of aging always ends by a breakdown, as it results in a sharp increase in elec-

tronic current. It is assumed that this current has injection nature.

Further it has been found that in AHCs with a strong increase in electrical field

electrical current increases and aging is accompanied by crystal coloration—
appearance of so-called F-centers. This type of defects in crystal structure consists

of anionic vacancy and electron, localized near this vacancy (F-centers can be

created in crystal also by other methods). Conductivity of colored crystals

(especially their photoconductivity) rises sharply, and these processes have the elec-
tronic nature.

In the titanium-containing ceramics (TiO2 CaTiO3, BaTiO3, SrTiO3 et al.), as

well as in single crystals of the same compounds, during electrical aging coloration

is also observed. It is known that such events occur in these substances in case of a

lack of oxygen. However, during the aging of solid dielectrics containing rutile the

oxygen is not lost, but some other electrochemical reactions occur, resulting in the

formation of color centers, involving anionic vacancies.

Thus aging of inorganic dielectrics in a strong electrical field is due, first, to the

capture of electrons by the anion vacancies (reversible processes), and, second, to

development of irreversible processes, preparing the injection of electrons (or holes)

that lead to electrical breakdown. The prerequisite for electrical aging evolution is

the presence of ionic component of conductivity. The most intensive aging occurs

when ionic and electronic current components are almost equal. Although develop-

ment of aging process in crystals and polycrystals can be observed as the change of

current with time, physical processes of electrodegradation in crystals in many

respects remain unclear.
7.11 SUMMARY
1. Most important macroscopic characteristic of dielectric is the permittivity ε.

In the noncentrosymmetric crystals and textures permittivity εij is a second-rank
tensor; therefore due to dielectric anisotropy, permittivity can be diverse in

different directions. Permittivity depends also on many conditions: in

noncentrosymmetric dielectrics permittivity is different in mechanically

clamped and mechanically free dielectrics; in polar dielectrics, there is

difference between isothermal and adiabatic permittivity.



400 CHAPTER 7 Dielectrics
2. To describe polarization of dielectrics in macroscopic theory vector of
polarization P is introduced that is numerically equal to electrical moment per

unit volume of dielectric and directed in accordance with the direction of

electrical field E and symmetry of dielectric crystal. In isotropic dielectric

vectors P and E are collinear.

3. The macroscopic field in dielectric is in ε times less than in vacuum, being

created only by the “free” charges on electrodes of a capacitor: these charges are

not compensated by polarization. That is why the electrical induction vectorD is

introduced in order to characterize total electrical charge on electrodes.

4. The vectors P, D, and E are bound by simple relation D ¼ ε0E+P that can be

obtained in the electrodynamics by averaging Maxwell’s equations for

physically infinitesimal volume and time interval; the result is Maxwell

equations in dielectric: D ¼ εε0E. For most dielectrics Maxwell equations

are simplified by the assumption that relative magnetic permeability μ ¼1.

Energy of dielectric polarization in the electrical field can be found from

Maxwell’s equations as well.

5. Induced by electrical field polarized state of dielectric can be described by

several mechanisms of quasielastic, thermally induced, and space-charge
polarizations, at which the displacement of electrons, ions, or dipoles occurs in

external electrical field.

6. The quasielastic (deformation type) polarization is almost independent of

temperature, and it is the least-inertial polarization, so it determines the high-

frequency and optical properties of dielectrics.

7. The electronic quasielastic polarization is a common mechanism of

polarization, as the deformation of electron shells of atoms or ions in the

electrical field occurs in all materials. In addition, it is practically no-inertial

polarization mechanism, as the mass of electrons is much smaller than masses of

other charged particles (ions or molecular dipoles) involved in the process of

polarization. Rapid settling of electronic polarization allows selecting its

dielectric contribution using optical experiments.

8. The ionic quasielastic polarization is peculiar to such dielectrics and

semiconductors, in which ionic character in molecules or crystal lattices is

expressed. Time of settling of this mechanism is significantly greater than in

case of electronic polarization, as the mass of ions is larger than the mass of

electrons. However, the settling time needs to establish ionic polarization

(�10�13 s) is still much smaller than relaxation times of thermal and

space-charge polarization of dielectrics.

9. The model of quasielastic dipole polarization might be applied only in case

when external electrical field forcedly changes the direction of hardly oriented

group of dipoles (at that, elastic force arises, tending to return previous
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orientation of dipoles). For this mechanism, the existence of intrinsic
polarization is necessary, at which all dipoles would be oriented and

connected in a structure. Obviously, elastic dipole polarization can occur mostly

in the polar crystals, but this polarization can also occur in the liquid crystals.

Inertia of this polarization is small and comparable with inertia of ionic

polarization.

10. The mechanisms of thermally activated (relaxation) polarization are

conditioned mainly by the structural defects in dielectrics and leads to

ε-dispersion and dielectric losses at low frequencies and radio frequencies.

Thermal motion of particles in dielectric may greatly affect the polarization

process, if dipoles, ions, or electrons are weakly bounded in dielectric structure.
Remaining localized in the nanoregions, these particles under the influence

of thermal motion can make thermal jumps, moving at a distance in the order

of atomic dimensions and directed by external field.

11. Thermally activated dipole polarization (Debye’s mechanism) is peculiar to

polar gases, liquids, and crystals. When external electric field is absent

(E ¼0), all dipoles are oriented randomly, so electrical moment per unit volume

(polarization) is zero. If E >0, then thermal chaotic motion of dipoles becomes

partially oriented along the field, resulting in a new state of equilibrium—

polarized. In this case thermodynamic equilibrium (that is due to dipoles

thermal vibrations or rotations) becomes changed and favorable for orientation

in external field; however, the same thermal motions prevent full orientation of

dipoles in electrical field so only some of dipoles become oriented. The higher

the electric field strength, the greater is a part of oriented dipoles that causes

thermal dipole polarization. Average electrical moment per molecule is

proportional to the electrical field, acting on dipoles. Settling time of this

polarization is relatively long (τ ¼10�3–10�9 s), being strongly dependent on

temperature.

12. The ionic thermal polarization is due to thermal jumps of weakly coupled ions

(usually impurity ions) in local area of a lattice; thus, such polarization

arises mainly in solid dielectrics that have defects in their structure. Ions located

in interstices as well as ionic vacancies (voids in regular structure) may change

place of their location due to the influence of thermal fluctuations. During these

movements (limited by structural defects, for example, dislocations), ion

overcomes potential barriers and jumps to new positions, creating electrical

dipole. In the absence of external electric field locally limited movement of

charged particles is disordered, random, and cannot lead to macroscopic

polarization. However, in external electrical field distribution of ions in defect

sites of crystal lattice changes, resulting in electrically induced thermal ionic

polarization.

13. The electronic thermal polarization is peculiar only to solid dielectrics. Being

captured by vacancies, electrons (holes) can lead to thermal polarization only in
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case when ground state of electrons is degenerated and a combination of

degenerate wave functions can create dipole moment. In the absence of

electrical field under the influence of thermal fluctuations localized electron (or

hole) moves from one to another place of its localization. However, this chaotic

movement of charges does not lead to polarization, if external electrical field is

absent. Switching on of this field stimulates the “unipolarity” of electronic

transitions and leads to field-induced electrical moment per unit volume of

dielectric, that is, increases polarization. Relaxation time of thermally activated

polarization is rather long: 10�7–10�6 s.

14. Not all possible types of polarization are equally frequent in real dielectrics

and play the same role. Moreover, it is impossible to consider various

mechanisms of polarization as completely independent of each other—on the

contrary, considered basic mechanisms can influence each other; so, strictly

speaking, they cannot be discussed as being independent. However, in many

cases this analysis is sufficiently accurate approximation.

15. Electrical field, acting on particles of solid dielectric (local field), is different

from macroscopic field conditioned by polarization – due to polarized

environment of a particle. In Lorentz approximation the important formula

is obtained for dielectric constant calculating from the microscopic

parameters of dielectric: (ε + 2)/(ε – 1) ¼ (3ε0)–1
P

nkαk, where αk is
polarizability and nk is concentration of particles that take part in polarization.

16. The migratory polarization is additional mechanism of polarization that

may exist in solid dielectrics with inhomogeneous structure: macroscopic
violations and impurities. This very slow polarization has no time to be set

at high frequencies, but can cause significant dissipation of electrical energy

(losses). One reason for this polarization appearance is the presence in dielectric

some layers of different conductivity or semiconducting inclusions in technical

dielectrics.

17. Electrical moment (polarized state) in dielectrics is due to different physical

mechanisms. If electrons, ions, and dipoles are constrained in a structure

relatively hard (but elastically), the impact of external electrical field results in a

small but very fast shift of charged particles from their equilibrium state: this is

the deformation-type (quasielastic) polarization. On the contrary, when

polarization arises with participation of thermal motion of charged particles, the

rise of such polarization is a much slower process, which has to be described by

other dynamics. Therefore the analysis of different mechanisms of polarization

should be different for rather “fast” and relatively “slow” polarization

processes.

18. Polarization, which is due to thermally activated motion of charged particles,

establishes relatively slowly. Its settling time depends on temperature and at

normal conditions (at 300K) τ ¼10�3–10�9 s. Dielectrics are used in technique

mainly in the frequency range f 50–1011 Hz; it turns out that just in this range
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natural frequencies of dipole thermal motion are located. Therefore undesirable

for technical application dielectric losses, as well as ε-instability are caused by

thermally activated polarization. Migratory (space-charged) polarization is

even a slower mechanism that leads to ε-instability and dielectric losses at low

(sound range) and infralow frequencies. It is appropriate to note that quasielastic

polarization in sound- and radiofrequency range is set almost immediately, so in

the frequency range of 50–1011 Hz this very fast polarization does not change

the value of ε and makes almost no effect on dielectric losses.

19. Dynamic properties of relaxation polarization can be described by the

Debye formula that also takes into account the contribution ε(∞) of rapid

processes of polarization:

ε∗ ωð Þ¼ ε0 � iε00 ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ
1 + iωτ

,

where τ is relaxation time, ε(0) is static permittivity constant, while difference

[ε(0)�ε(∞)] represents contribution to permittivity from thermally activated

(relaxation) polarization.
20. Dynamic properties of ionic crystals depend on a difference between

frequencies of longitudinal ωLO and transverse ωTО optical vibrations of a

lattice; it is characterized by Lorentz dispersion equation:

ε ωð Þ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ

1� ω

ωTO

� �2
, ε 0ð Þ� ε ∞ð Þ¼ nq2

ε0mω2
TO

¼ nq2

c�nq2

3ε0

::
Here n is concentration of ionic couples and m is their reduced mass. Ionic (IR)

polarization appreciably affects dielectric properties of crystals: the larger is the

permittivity the more q (charge of ions) and the less c (elastic coefficient of ions
coupling).
21. Far-IR (ionic or phonons) polarization mechanism is possible only in the

ionic crystals, for example, alkali-halide crystals. Ionic polarization is also

typical for different classes of metal oxides as well as for chalcogenides.

Semiconductors of the AIIIBV and AIIBVI classes are also partially ionic crystals.

Ionic polarization, as well as electronic polarization, predetermines sufficiently

low dielectric losses at low and radiofrequencies (up to microwaves) and

relatively thermal stability of permittivity. It is important to note that

temperature dependence of electronic dielectric contribution εopt (characterized
by low or negative TCε) is partially compensated by ionic dielectric

contribution of εir (with small and positive TCε).

22. In partially ionic semiconductors AIIIBV, typified by gallium arsenide GaAs,

except electronic polarization a contribution to permittivity from ionic

polarization is observed. This polarization mechanism corresponds to the far-IR

frequency range (about 1013 Hz); therefore, below frequency of 1012 Hz it does
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not result in ε-dispersion. Thus, even in the submillimeter waves range (1011–
1012 Hz) any frequency change in permittivity in semiconductors of AIIIBV

group (as in diamond-group crystals) is not observed. Accordingly, loss factor

of high-resistive silicon and semi-insulating gallium arsenide at centimeter and

millimeter waves is large enough to use these materials as dielectric waveguides

or even as resonant microwave elements.

23. The dielectric losses are a part of electrical energy converted into heat in

dielectric. In quantitative description of dielectric loss there are three main

parameters that characterize losses in dielectrics: heat power density p, loss
coefficient ε00, and loss tangent tanδ. They are depicted as

p¼ σE2, ε∗ ¼ ε0 � iε00, tanδ¼ ε00=ε0, tanδ¼ σ= ε0ε
0ωð Þ, σ¼ ε0ωε

00,
0 00
where ε* is complex permittivity that consists of real (ε ) and imaginary (ε )

parts while σ is specific conductivity.
24. Frequency and temperature dependences of dielectric losses are determined by

distinctive physical mechanisms that define electrical energy dissipation in

dielectrics. The most important of these mechanisms are the conductivity and

the delay of thermally activated polarization.

25. Mechanisms of dielectric losses are quite different. In case of elastic

polarization dispersion of complex permittivity ε*(ω) has resonant character,
so frequency dependence ε0(ω) demonstrates not only maximum, but also

minimum, while loss factor ε00(ω) in the vicinity of resonant dispersion shows

a rather sharp peak. In case of thermal polarization permittivity dispersion

has relaxation nature that is characterized by gradual frequency decline in ε0(ω)
and by broad maximum of ε00(ω).

26. The magnitude of losses as well as their dependence on frequency and

temperature indicates certain features of polarization mechanism. Microscopic

source of losses might be as conductivity so the anharmonicity in lattice

vibrations. As a rule, the influence of conductivity at microwaves is minimal.

The primary cause of anharmonicity in crystalline dielectrics is the asymmetry

in electron density distribution along atomic bonds. This is conditioned by

differences in the electronegativity of atoms. Sometimes, distinction of different

atoms in their electronegativity might be large. Atom with higher

electronegativity strongly attracts electron-pair bond, so its true charge becomes

more negative. Atom with lower electronegativity acquires increased positive

charge. Together these atoms create the nonsymmetric polar bond.

27. Dielectric losses at high frequencies might be the footprints of:
• conductivity;

• slow polarization mechanism (electronic defects, ionic defects, various

kinds of dipoles, etc.) described by the Debye model of relaxation;
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• different kinds of structure imperfections that result in frequency-diffused

dielectric spectrum depicted by the Cole-Cole model;

• resonant mechanisms of fast polarization described by the Lorentz

oscillator model;

• in noncentrosymmetric dielectrics and semiconductors microwave loss

factor governs by very high-frequency polar mechanism of losses.
28. Frequency dependence of dielectric absorption is convenient to describe by

complex permittivity: ε* ¼ ε0 � iε00. Delay of polarization leads to ε0 decrease
with frequency accompanied by ε00 maximum. In case of thermally induced

polarization ε* frequency dependence is described by Debye relaxation

equation, and for quasielastic polarization is described by resonant Drude-

Lorentz equation.

29. Dispersion of dielectric constant is correlated change of real and imaginary

parts of ε* with frequency alteration. Main property of ε* dispersion is a

fulfillment of Kramers-Kronig relations, to which should satisfy any dispersion

equation. In a wide range of frequencies and temperatures as well as in different

crystallographic directions in dielectrics typically observed several

dependences of ε*(ω, T) that form the dielectric spectrum.

30. Depending on charge carrier physical nature, electrical conduction in dielectrics

might have electronic, ionic, polaronic, and molar-ionic nature. Mechanisms of

charge transport in electrical field can be divided into the drift (electrons, holes),
the hopping (small-radius polarons, ions), and the diffusion mechanism

(electrons, polarons, ions).

31. The value of conductivity depends on concentration and mobility of charge

carriers. High polarizability, on the one hand, reduces conductivity, as

charge carriers are slowing down due to their self-trapping by shift of

surrounded ions (in solids), or by carrier link with molecules and particles

(in liquids). On the other hand, high polarizability and increased dielectric

constant weakens Coulomb interaction of charged particles and thus increases

the probability of charge carrier generation, that is, leads to rise of concentration

and thus to conductivity increase.

32. Conductivity in dielectrics depends on many factors: σ(T, E, ω). It increases
exponentially with increasing temperature and in higher electrical field as new

charge carrier generation. In nonideal dielectrics conductivity increases with

frequency rise in the range of 10�2–108 Hz due to polarization lag. With further

frequency increase (at very high frequencies), conductivity is reduced by reason

of charge carrier inertia.

33. Directional movement of ions transfers not only electrical charge, but also a part
of material. In contrast to electronic conductivity, when electrons enter into a

material from cathode and transfer charge to anode through a crystal, in case of
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ionic conductivity the migration of charge is accompanied by the “mass-

transfer.” For this reason, ionic current at direct voltage must be time dependent,

as the concentration of charge carriers gradually decreases: ions are

accumulated at near-electrode layers. Negative charge carriers—anions—are

deposited and discharged at anode, while positive charge carriers—cations—are

deposited and discharged at cathode. By measuring of the amount of transferred

substance, it is possible to determine what kind of ions involved in the

conductivity in different ionic dielectrics.

34. The surface conductivity of dielectrics typically has ionic character. It is due to
inevitable hydration, oxidation, and soiling of surface in solid dielectric. In this

case, the dielectric is characterized mainly by the surface resistivity that is

numerically equal to resistance of a square, located on the surface of material

when current flows between two opposite sides of this square.

35. Strong nonlinearity in current-voltage dependence is observed in case of

injection of nonequilibrium charge carriers in a dielectric. In the event that

injection is monopolar current is limited by space charge (SCLC). In perfect

crystals, SCLC is characterized by quadratic volt-ampere dependence. In

crystals with defects, their volt-ampere characteristic has kinks and threshold,

dependent on electrical field. In case of bipolar injection, the effect of space-
charge neutralization may be observed that results in negative differential
resistance in the volt-ampere characteristics. Current limiting by SCLC depends

on peculiarities of dielectric (semiconductor). Owing to SCLC analyses, many

important physical parameters of material can be obtained, such as drift mobility

of charged carriers and density of impurities states in the bandgap.

36. Conductivity depends on frequency. In accordance with the physical nature of

charge carriers and depending on properties of the dielectric, conductivity can

both increase and decrease with frequency rising. The increase in σ(ω) is usually
caused by a delay of slow polarization mechanisms. This effect demonstrates

the interdependence of polarization and electrical conductivity that can be

completely separated by only at direct voltage.

37. In a strong electrical field at a certain threshold, the electrical breakdown occurs
in the dielectric (or semiconductor): electrical current suddenly increases,

accompanied by electrical discharge (spark or arc). The main physical

mechanism of the first stage of breakdown (when dielectric loses its strength) is

electronic ionization by the collisions that results in a sharp increase in

concentration of charge carriers while electronic avalanche is formed. This type

of breakdown in dielectrics (or semiconductors) is the electronic breakdown.

38. Main features of electrical breakdown is not only a rapid increase in current

with voltage rising, but also the critical character of j(E) dependence at E ¼ Ebr

(current aspires to “infinity”). Electronic breakdown is characterized by a very
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short evolution process when dielectric strength is gone. At that, breakdown

voltage is practically independent of temperature, frequency of electrical field,

and properties of environment. Typically, electronic avalanches initiate a

streamer that moves with the support of photoionization. In case of small

thickness of dielectric (films), electronic breakdown becomes multiavalanches.

39. The electronic breakdown in crystals, except for great value of Ebr, is

distinguishable by a short time of the first stage of breakdown. Processes that

lead to dielectric strength loss in bulk samples happen during time of 10�7–
10�8 s (one-avalanche mechanism), or in the thin films during 10�5–10�6 s

(when multiavalanche mechanism of breakdown occurs). The value of Ebr only

depends a little on temperature, frequency, and sample thickness (except

samples that have very small thickness; in thin films mechanism of breakdown

changes). Channels of breakdown in crystals are straight and oriented
accordingly to crystallographic axes.

40. In thin dielectric films a single electronic avalanche cannot create sufficiently

intense positive space charge near the anode, which can initiate the streamer.
However, such space charge can be created by several successive avalanches, if

they strike at same area of dielectric film. Therefore the character of breakdown

becomes the multiavalanches. As a result, the evolution time of breakdown

increases by two orders of magnitude because between the avalanches that fall

into same area near anode a time delay is seen (statistical delay). The effect of

electrical strength increase in thin layers is used in microelectronics in metal-

dielectric-metal (MDM) and metal-insulator-semiconductor (MIS) structures,

where, thanks to electrodes (that provide good heat sink), the breakdown has

electronic nature. However, the infinite reduction in dielectric layer thickness

with a preservation of low conductivity is impossible. The point is that when

films thickness becomes less than 10nm (0.01 μm) electrical conductivity

increases sharply due to quantum tunneling of electrons through thin

dielectric layer.

41. The optical breakdown in light-transparent dielectrics is conditioned by

structural defects in dielectric and by self-focusing of laser beam. Near the

defects the ionization wave is formed that results in local heating, which
destroys dielectric. Self-focusing of light is a phenomenon of field

concentration in the nonlinear medium whose refractive index depends on

field intensity. Owing to nonlinear change of electronic polarization, the

refractive index of dielectric increases with increasing field. The structure

of laser pulse is such that maximum of light intensity is located at the center of a

beam; as a result, lens effect occurs and dielectric becomes locally damaged.

42. The electrothermal breakdown is the loss of thermal stability in solid dielectrics

owing to calorification in strong electrical field caused by

electrical conductivity or dielectric losses. Overheating might occur so rapidly
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that it cannot be compensated by heat-dissipation processes. In case of

electrothermal mechanism of breakdown, the electrical strength decreases with

temperature and with frequency rise.

43. The electrochemical reactions in solid dielectrics that lead to irreversible

changes of their properties and significantly reduce electrical strength (as

well as reliability of electrical insulation) are the aging (degradation).

In inorganic dielectrics, aging takes place mostly in the direct electrical
field and consists in the formation of structural defects that contribute to the

increase in electrical current. In the polymers aging occurs mainly in the

alternating voltage due to the occurrence of partial discharges in gas

inclusions that result in erosion of polymer films surface, or dendrite-type

appearance in the volume of polymeric insulation.
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Physical properties of semiconductors are studied most thoroughly in comparison

with metals and dielectrics. The main stimulus for semiconductor investigation is

the wide production of semiconductor devices and integrated circuits. In addition,

in semiconductors, many interesting and important physical effects can be analyzed,

which cannot be observed in other substances. These effects are caused by the pecu-

liarities of electronic band structure in different semiconductors, including small

energy gap (some foundations of band theory, which is used in physics of semicon-

ductors, are reviewed in Section 4.6).
8.1 DEFINING CHARACTERISTICS AND CLASSIFICATION
OF SEMICONDUCTORS
Semiconductors are large class of solids whose conductivity σ occupies the interme-

diate position between conductors and dielectrics: in metals σ>105 S/m, while in

dielectrics σ<10�10 S/m (at room temperature). A characteristic feature of semicon-

ductors that distinguish them from metals is increasing conductivity with tempera-

ture rise. In contrast, metals’ conductivity decreases with temperature. In

semiconductors, exponential increase in σ(T) dependence is observed in a wide tem-

perature range:

σ¼ σ0 exp �Eg=2kBT
� �

,

where Eg is activation energy of electrons. As seen from this formula, near-absolute

zero (when T�0) semiconductor shows insulator property: σ�0.
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Such temperature dependence of conductivity in semiconductors is a result of

breach of electronic bonds in crystal lattice, so that part before bounded electrons

that is proportional to exp(�Eg/2kBT) turns into free charge carriers. Electronic

bonds in semiconductors can be destroyed not only due to lattice thermal motion,

but also by various external influences: light illumination, stream of fast particles,

strong electrical field, and so on. Semiconductors differ from conductors by strongest

dependence of conductivity on impurities and various types of radiations [1].

For these reasons, semiconductors are characterized by high sensitivity of con-

ductivity to external influences, as well as to the concentration of impurities and

defects in crystals, because activation energy of electrons, localized near impurities

or defects, is significantly less than activation energy of electrons in the regular crys-

talline lattice of semiconductor. The ability to manage conductivity in a wide range

by electrical and magnetic fields, temperature change, introduction of impurities,

etc., is the basis of many and varied applications of semiconductors.

Semiconductor materials can be classified on the basis of their chemical compo-

sition (inorganic or organic) and on the basis of their structure (crystalline, amor-

phous, and liquid semiconductors, the latter are not considered here). In most

practical applications, inorganic crystalline semiconductors are used, which are

divided into several basic groups [2].

Monoelement semiconductors. In Mendeleev’s periodic table of elements, it is

possible to find only a few simple elements, which are semiconductors. The most

important monoelement semiconductors are found among the elements of group

IV: carbon (C in graphite, diamond, and other forms), silicon (Si), germanium

(Ge), gray tin (α-Sn). Whereas graphite properties are similar to conductors

(Eg<0.1eV), natural diamond (C) is close to dielectric (Eg>5eV). However, arti-

ficially grown diamonds with impurities acquire the properties of semiconductors.

Most important semiconductors from group IV are Ge and Si that have crystal lattice

of diamond type. Together they can form continuous series of solid solutions Ge-Si

that also have semiconductor properties.

Boron (B) can be included in the monoelement semiconductor of group III.

Group V includes phosphorus (P), arsenic (As), and antimony Sb, while group VI

is presented by sulfur (S), selenium (Se), and tellurium (Te). Iodine (J) belongs to

group VII of semiconductors.

Chemical compound semiconductors. Crystalline structure of many semicon-

ductor compounds is characterized by tetrahedral coordination of atoms as well as

by diamond-type lattice. Therefore, these compounds are called as diamond-like

semiconductors. Most scientific and practical interest is seen in the binary com-

pounds (AIIIBV and AIIBVI) that at present are very important materials in optoelec-

tronics. Modern semiconductor technologies use also ternary and even more

complex chemical compounds.

Diamond-type semiconductors have similar properties and they can create isova-

lent solid solutions between them. In these solid solutions, by changing the compo-

sition of a compound, it is possible to control (smoothly and in very wide range)

important properties of semiconductors, including band gap and charge carrier
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mobility. This opens an additional opportunity for optimization of device parameters

and enables better coordination of physical characteristics of various components of

electronic equipment.

Binary compounds. Firstly, there are of about 30 crystalline compounds of three-

and five-valence elements of AIIIBV type; of these, the most used are GaAs, GaSb,

InSb, AlAs, GaN, and others. Secondly, there are known (and widely applied in elec-

tronics) crystals of AIIBVI group: ZnS, ZnSe, CdS, CdSe, HgSe, HgTe, and others;

they are also about 30.

Many others binary compounds belong to semiconductors: AIBVII (SuCl,

AgBr, …), AIBVI (Cu2O, CuS, …), AIBV (KSb, K3Sb, …), AIIBIV (Mg2Sn, Ca2Si,

…), AIIIBVI (GaS, In2Fe3, …), AIVBVI (PbS, PbSe, …), AIVBIV (SiC), AVBVI

(Sb2Te3, Bi2S3, …).

Ternary compounds may also have semiconductor properties. Most important

among them are cuprites (CuAlS2, CuInS2, CuSbS2, CuFeSe2), compounds based

on zinc (ZnSiAs2, ZnGeAs2), lead (PbBiSe2), cadmium (CdHgTe), and others. Ter-

nary compounds of AIIBIVCV type usually are crystallized in a lattice of chalcopyrite;

also they can form solid solutions with each other. Considering their electronic prop-

erties, compounds AIIBIVCV resemble analogues of AIIIBV compounds. Typical rep-

resentatives are CdSnAs2, CdGeAs2, and ZnSnAs2.

AIIIBV compounds are most important representatives of binary semiconductors.

They are the closest analogue of silicon and germanium. The AIIIBV crystals are

formed by the interaction of elements of subgroup III (boron, aluminum, gallium,

and indium) with elements of subgroup V (nitrogen, phosphorus, arsenic, and anti-

mony). It should be noted that bismuth and thallium compounds relate to the toxic

materials.

Semiconductors of AIIIBV group are classified by their metalloid element.

Accordingly, nitrides, phosphides, arsenides, and antimonides are distinguished.

Except nitrides, all AIIIBV compounds crystallize in the lattice of cubic sphalerite
(zinc blende). Note that semiconductors of sphalerite structure show piezoelectric
properties. In case of nitrides, the wurtzite structure of hexagonal type is typical; this

structure demonstrates not only piezoelectric but pyroelectric properties as well.

Regardless of lattice type, each atom of group III element is in tetragonal envi-

ronment by four atoms of group V element, and vice versa. Sphalerite structure,

unlike the structure of diamond, has no center of symmetry. This feature leads to

the differences in physical properties of (111) and (111) faces, which (theoretically)

are presented by atoms III and V groups. Different treatment of mentioned faces is

detected during etching, oxidation, and crystal growth.

All AIIIBV compounds are characterized bymixed covalent-ionic chemical bonds

(ionic component proportion is 15%–20%). Sometimes, chemical bonds in these

compounds are treated as a special type of chemical bond, called as donor-acceptor
bond. This term means that three of four covalent bonds (by which each atom is

embedded in lattice) are formed with socialization of three valence electrons (from

AIII and BV), while the fourth connection is created by nonsegregated pair of valence

electrons of atoms BV. The formation of these types of bonding corresponds to
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energetically favorable transition of electrons from atom BV to such energy state,

which is shared with donor (atom BV) and acceptor (atom AIII).

Many AIIIBV semiconductors can form continuous series of solid solutions

between them—triple and even more complex (GaxAl1�xAs, GaAsxP1� x, GaxIn1�x,

GaxIn1�xAsyP1�y, and so on), which are very important in modern electronics.

AIIBVI compounds. Semiconductors of the AIIBVI group are characterized by a

crystal structure type of sphalerite or wurtzite (rarely—by structure of NaCl type).

The relationship between atoms in the lattices has a covalent-ionic character (pro-
portion of ionic component is 45–60%). For AIIBVI compounds, the polymorphism

and polytypicism of cubic and hexagonal modifications are peculiar.

The most important members of this group of semiconductors are crystals CdTe,

CdS, ZnTe, ZnSe, ZnO, and ZnS. Many compounds of AIIBVI type can form together

continuous series of solid solutions, typical representatives ofwhich areCdxHg1�xTe,

CdxHg1� xSe, and CdTexSe1�x. Physical properties of such compounds are largely

determined by the nature of intrinsic point defects that have low ionization energy

and show high electrical activity.

The AIVBVI compounds are of great practical importance. They crystallize in the

NaCl-type structure or in orthorhombic structure, and they also are characterized by
covalent and ionic types of chemical bonds. Most important representatives of this

type of compounds are semiconductors PbS, PbSe, PbTe, and SnTe; among them, the

most common are solid solutions PbxSn1� xTe and PbxSn1�xSe. Compounds such as

A2
IIIB3

VI also have technical interest; many of them have a crystalline structure of

sphalerite type, in which one-third of cationic nodes are empty; typical representa-

tives are Ga2Se3, Ga2Te3, and In2Te3. Among compounds of group VI with transition

metals and rare-earth elements, there are many semiconductors with ionic character

of bonding, characterized by ferromagnetic (or antiferromagnetic) properties.

The silicon carbide (SiC) is a single chemical compound, formed only from ele-

ments of group IV. Silicon carbide shows semiconducting properties in all its struc-

tural modifications, both in the β-SiC (sphalerite structure) and in the α-SiC
(hexagonal structure, which has of about 15 varieties). This is one of most heat-

resistant and wide-band crystals of semiconductor materials used.

Amorphous semiconductor materials. Typical representatives of amorphous

semiconductor materials are glassy semiconductors—chalcogenides and oxides.

Chalcogenides include alloys of Tl, P, As, Sb, Bi with S, Se, and Te. They are char-

acterized by a wide range of values of electrical conductivity, low temperature of

softening, and high resistance to acids and alkalis. Typical representatives are solid

solutions As2Se3-As2Te3 and Tl2Se-As2Se3.

Oxide glassy semiconductors, such as the compounds of V2O5-P2O5-ROx type

(R is metal of group I–IV), are characterized by electrical conductivity of

10�4–10�5ohm�1 cm�1. All glassy semiconductors have the hole-type conductivity

and also exhibit photoconductivity and thermoelectromotive properties. When they

are slow cooled, they usually turn into the crystalline semiconductors.

Another important class of amorphous semiconductor materials is solid

solutions with hydrogen: hydrogenized noncrystalline semiconductors are α-Si:H,
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α-Si1�xCx:H, α-Si1�xGex:H, α-Si1�xNx:H, and α-Si1�xSnx:H. A number of features

have been discovered and identified in the conductivity mechanism of amorphous

inorganic semiconductors. Hydrogen, which is contained in these semiconductors,

has high solubility and “locks” a significant number of free connections that are char-

acteristic of amorphous semiconductors. As a result, the density of energy states in

the band gap is sharply reduced; therefore, creation of p-n junction is made possible.

Organic semiconductors (Fig. 8.1) are solid substances that have electron or hole
conductivity. Organic semiconductors are characterized by a system of intermolecu-

lar valence bonds. Charge carriers in organic semiconductors are formed by the exci-

tation of electrons, delocalized within the polymer chains. Activation energy,

required for the formation of charge carriers in organic semiconductors, decreases

with an increase in connections of polymer molecule, and it can reach a level of mid-

dle heat energy.

Most organic materials are electrical insulators with a value of conductivity at

room temperature in the range of 10�9–10�14S/cm. Usually they are represented

by molecular structures, which do not have a system of covalent bonds. Therefore,

quantum interactions between highest molecular orbitals of neighboring molecules

are weak, and the valence zone, formed by these interactions, is found as very nar-

row. The conductivity band that occurs during such weak interactions between

orbitals is also very narrow; therefore, energy gap appears just as the same as the

area of free molecules.

In order to increase conductivity and, hence, awake semiconducting properties, it

is necessary to reduce the gap between orbitals. This can be done by adding some

heteroatoms with a pair of valence electrons (e.g., polyacetylene, polyaniline, or

polyaromatic) to organic compounds. This reduces electron transitions between con-

duction and valence bands and enables these substances to get properties of

semiconductors.
FIG. 8.1

Classification of semiconductors.
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Organic semiconductors might have formed of single crystals, polycrystals,

amorphous powders, and films. The values of resistivity ρ at room temperature in

organic semiconductors are found from 1018ohmcm (in naphthalene and anthracene)

up to 10�2ohmcm (in ionic-radical salts). The highest conductivity is seen in the

ionic-radical salts, mostly based on anion radical tetracyanogen-hinodimerhyl. They

exhibit electrical conductivity that is close to the conductivity of metals. In the

organic semiconductors having low electrical conductivity, the phenomenon of pho-
toconductivity is usually observed [3].

In disordered organic semiconductors, the usual band electronic transport cannot

be realized, and charge carriers (polarons) are transported via jumps between local-

ized states, scattering at every jump (hopping conduction). Jumping is facilitated by

polaron interaction with phonons, making charge mobility increase with tempera-

ture, but it remains very low (u ≪ 1cm2/Vs).

The boundary between hopping and band electronic transport mechanism is

determined by mobility value; in case of hopping transport u<0.1cm2/Vs, but in

the case of band transport, mobility is higher: u>1cm2/Vs. Highly ordered organic

semiconductors, such as anthracene and pentacene, have charge carriers with

increased mobility that is in addition temperature independence, including polycrys-

talline thin films of pentacene. This property favors the following argument:

activated by temperature hopping the charge transportmechanism can be implemented

for high-quality thin films of pentacene.
8.2 FUNDAMENTALS OF BAND THEORY OF SEMICONDUCTORS
According to quantum theory of solids (see Chapters 4 and 5), in the ground state of

semiconductors, all allowed energy levels of electrons are occupied. In total, these

levels form the valence band. In order to “liberate” electrons and cause electrical

current, it is necessary to supply crystal energy from the outside (e.g., to heat a crys-

tal). Due to this influence, electrons will be thrown from the valence band over the

band gap to energy levels of the conduction band (zone of free electrons).

It is necessary to recall that in semiconductors between valence band and conduc-

tion band there is an intermediate energy band (band gap, or forbidden zone). The

peculiarity of this area is the complete absence of permitted levels. Band gap equals

to the energy that is needed to add to transfer electron from its bound state in the

valence band into a free state in the conduction band; usually, the band gap value

in semiconductors equals 0.5–2.5eV.
Elementary theory of electronic energy bands in semiconductors takes into

account a fact that mass of atoms (or rather atomic core) is much greater than mass

of electron, and, therefore, the nature of motion of these particles is quite different

[4]. Heavy atoms can even be considered as fixed; however, it is assumed that their

movement can be taken into account by a certain averaged field. In this case, the

energy of atoms and the energy of electrons in a crystal can be found from indepen-
dent Schr€odinger equations. It means that Hamiltonian (function, defined by
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generalized coordinates and impulses) of initial Schr€odinger equation for crystal

breaks into the sum of Hamiltonians for heavy and light subsystems.

Wave function will be the product of two factors, one of which depends on the

atomic coordinates, and the other only on the coordinates of electrons. This approach

is called adiabatic approximation. Its main result is the wave function that describes
the behavior of valence electrons in a crystal. This wave function can be found from

the equation whose parameters are spatial coordinates, describing the instantaneous

position of atoms [5].

Thus the adiabatic approximation is based on the fact, that me≪M, because

atoms are relatively heavy particles (approximately 104 times more than electron).

For this reason, electron can, without inertia, monitor the instantaneous position

of nuclei in the process of its movement, while influence of nuclei is reduced to

accounting of the average field. Due to inequality of masses, it is considered to hold

nuclei as being fixed in their position. This makes it possible to separate the nuclear

and the electronic subsystems, and independently analyze processes taking place in

these subsystems.

However, within adiabatic approximation, any information about thermal vibra-

tions of atoms (phonons) is lost, as well as the interaction of electrons with thermal

vibrations of atoms (electron-phonon interaction) is not considered. The energy spec-

trum of thermal vibrations of atoms (phonon spectrum) is determined by solving the

semiclassical equations, as atoms are heavy particles and quantum effects in this case

are expressed very poorly. Nevertheless, the information about electron-phonon

interaction is essential for understanding the theory of electron scattering of phonons.

The operational Schr€odinger equation for the steady state of a system of atoms

and electrons: HΨ ¼EΨ has as many solutions (with wave functions Ψ and

energy values E) as many nuclei and electrons are in the solid. The density of solid

is 1022–1023 atoms in cm3, about the same as that for electrons. Therefore the exact

solution of Schr€odinger equations in such conditions is impossible. The general

principle of solving equations for a large number of interacting particles lies in

the necessity to transform the system of Hamiltonians in such a way that it will

be the simple sum of individual Hamiltonians. Then solving only one equation would

suffice HkΨ k¼EkkΨ , that is, to have a whole range of its solutions, and get specific

information about what occurs in the system of valence electrons and atoms.

Electrons of inner atomic shells usually are considered together with their nuclei,

as they cannot participate in the formation of valence bonds in solids [5].

Next, the multielectron problem should be reduced to one electron, because in the
adiabatic approximation wave function of electrons in a crystal would depend on

1023 variables. With this in view, the average effective field is introduced into a con-
sideration, which replaces the interaction of electrons. The energy of electron is a

sum of kinetic energy, potential energy in lattice field (interaction with nuclei),

and potential energy in average effective field, created by all other electrons.

The one-electron approximation consists in the middle-field theory that sup-

poses that at some point of interatomic space ri the ith electron is conditionally fixed.
Other electrons create at this point a certain potential U(ri). A similar procedure is
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performed to another point in a space, but only within the nearest neighboring atoms

[5]. As crystalline structure has translational symmetry, configuration of potential

field is periodically repeated. Thus the sequence is determined by the atomic poten-

tial field in a space, generated by all electrons except ith. As electrons are the indis-
tinguishable microparticles, ith electron can be like any other. With these

assumptions, it is enough to solve only one equation to determine the wave functions

and the energy spectrum of all electrons in a crystal.

Thus the Hamiltonian of electron system is divided into the sum of Hamiltonians,

which depend only on coordinates of individual electrons. At that, electronic wave

function of system is the linear combination of single-electron wave functions.

Schr€odinger equation is represented by a set of equations for finding the wave func-
tions of individual electrons. The middle effective field (self-consistent field), by
which interelectron interaction is represented, demonstrates that there is no need

to calculate but more important to show that by this way the multielectron task

can be reduced to the one-electron task.
Therefore, because of adiabatic approximation and self-consistent field, intro-

ducing the task is reduced to the problem of a single electron behavior in a potential

field of crystal lattice [6].

Now, let us consider the type of wave functions of electrons in the crystal. Each

wave function describes the quantum state of the electron, and, being in a steady

state, the electron has certain energy. In other words, every wave function is always

the function of coordinates and it always includes the options that determine the

value of energy E. Taking into account translational properties of electronic wave

function, it can be shown that in case of spatial shift in the periodic structure on

the vector of translation n the electronic wave function is multiplied by the phase

factor eikn. The eigenfunction of translational operator is

Ψ ðrÞ¼φðrÞeikn

This plane-modulated wave is the Bloch wave. So, starting from a position that

Schr€odinger equation for electron in crystal can be reduced to a system of linear

homogeneous algebraic equations, in which energy is included, it is possible to con-

clude that the energy spectrum of electrons in a crystal has band character, consist-
ing of prohibited and allowed energy bands (Fig. 8.2) [1].

The existence of a set of different functions E1(k), E2(k),… constitutes the foun-

dation of band theory of solids. These bands can be closed partially or completely (as

for metals, see examples in Figs. 4.26 and 4.27 in Chapter 4), but may not overlap.

This means that bands can form regions of energy, which do not have any electron

under any conditions (as for dielectrics, see Fig. 4.26). They are bands of forbidden

energy (or band gaps). It can be shown that the greater the number of higher energy,

the wider the area of permitted and prohibited zones, and the narrower the energy

intervals (when E ! ∞ spectrum becomes continuous).

One of the important consequences of wave function translational properties is the

presence of physically equivalent points in electronic states. As is known from quan-

tum mechanics, the physical meaning of a square modulus of wave function of
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Permitted and prohibited (shaded) bands of energy.
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coordinates |Ψ (r)|2 is the probability of electron being at the point with coordinates r.
In case of electron shift on a vector n, the squared modulus |Ψ (r + n)|2 does not

change. This means that in points r and r + n the probability to find electron is

the same.

Translational properties of electron wave function become apparent only when

wave vector k has real value. In case of imaginary values of k, the wave function

of electron will characterize localized electron states at a point r, and its square mod-

ule is the probability to find electron only in this point. The consequence of trans-

lational symmetry structure with long-range order placement of atoms is the

presence of physically equivalent points in the interatomic space. Translational prop-

erties of wave function of electron in the periodic structure are realized only in case

of real values of wave vector. The solutions of stationary Schr€odinger equation for

electrons in a crystal form the modulated plane waves—the Bloch waves [4].

In Chapter 1, the relationship of direct and reciprocal lattices was considered. It

should be recalled that direct lattice is a physical space, in which the position of each
atom is determined by the direct lattice vector a. The inverse lattice is the impulse
space with a dimension of the inverse length; geometric configuration that defines

the reciprocal lattice is vector b. For direct simple cubic lattice, the reciprocal lattice

is also a simple cubic lattice; for face-centered cubic lattice, the reciprocal lattice is a

space-centered lattice; and for direct cubic space-centered lattice, the reciprocal lat-

tice is a face-centered lattice.

For a diamond-type structure, the unit cell of reciprocal lattice is the cut octahe-

dron. Simultaneous translation of wave function in the direct space on the vector a,
and in the reciprocal space on vector 2π/a, does not break the translational properties
of wave function [1]:
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ψ r + a, k +
2π

a

� �
¼ψ rð Þei k +

2π
a

� �
a ¼ψ rð Þeika:

Thus wave function shows double periodicity: the period a in direct lattice and the

period 2π/a in reciprocal lattice. The basic period of wave vector k in the inverse

lattice is: 0 � k � 2π/a. However, for convenience, this period is made symmetric:
�π/a � k �+π/a. All possible values of wave vectors can be found within this basic
period; for this reason, it is called the coerced zone of wave vectors. Symbols “�”

and “+” indicate that there may be two identical electronic waves, which move oppo-

site to each other.

If one chooses in spatially infinite periodic structure the one-dimensional (1D)

(linear) chain of identical atoms with length L, the distance between atoms coincides

with the period of potential field. The minimal possible length of electronic wave is

2a, while the maximal length of wave is 2L. Thus, the length of electronic wave has
such a range of values:

2a� λ� 2L:

The most important fact in this formula is that the length of electrical waves is the

discrete being divisible by 2a. Wave discontinuity means that the wave vector

k¼2π/λ and the impulse p¼h/λ have discrete values. The discrete spectrum shows

the number of allowed values of kwithin a coerced zone. For a chain of atoms L¼Na
(where N is number of atoms in a chain), the linear dimension of coerced band in the

reciprocal lattice is 2π/a.
For three-dimensional (3D) space k¼2πmi/aiNi, where i ¼1, 2, 3 (that implies

number in coerced band), the number of atoms in a bulk is L3¼L1L2L3, where
N¼N1N2N3 is the number of atoms in the volume L3. If L3¼1, then N is concentra-

tion of atoms. Thus 3D impulse space in the coerced band takes a certain volume, but

unlike real physical space it has a dimension of inverse length and, therefore, it is

called the unit cell of inverse lattice. Elementary cells tightly fill the entire space

and form the inverse lattice. The number of wave vector within the band is defined

by the number of atoms and their valence, that is, each valence state of each atom

contributes one permitted value of a wave vector. The equal value of k can have only
two electrons with opposite spins.

The peculiarity of quantum mechanical description of physical systems is that

each steady state of system meets the complete set of physical quantities that have

in this state certain values, but proper functions of corresponding operators coincide

with the wave functions of a system.

The discussed items correspond to properties of electron in a crystal. Another

important characteristic of electron is a value that is similar to impulse. As electron

is a quasiparticle, its impulse characterizes electron interaction with its crystalline

environment, so the state of electron in a crystal cannot be described by the

“normal” impulse.

Quasi-impulse. In the ideal crystalline structure, without action of external fields,
the full energy of electrons is independent of time. Full energy and other physical
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quantities that are stored at electron movement are called integrals of motion. Poten-
tial field of ideal structure has translational symmetry, but it has the gradient char-

acter. In turn, gradient of potential corresponds to a certain internal periodic force,

acting on the electron and changing its impulse. This means that in an ideal periodic

structure the force field exists, but energy and impulse are independent of time [5].

As a consequence, electronic waves in the periodic ideal structure are stationary non-

damped. The impulse p, which is associated with the periodic potential, is the quasi-
impulse.

If crystal is subjected to the external field, the quasi-impulse of electron is chan-

ged under this field influence. The point is that the external field excites a system of

electrons from their thermodynamic equilibrium by the changing of quasi-impulse

vector modules and ordering their destinations. The quasi-impulse should also vary

at any violations of potential field. Structural defects cause the internal force field.
This means that in nonideal periodical structure electronic waves are scattered; this

scattering often is caused by such defects as thermal vibrations of atoms (phonons)

and by the neutral or charged impurity atoms.

Thus, one of the consequences of potential energy translational symmetry and

translational properties of the electronic wave function is the integral of movement:
invariable in a time quasi-impulse. Quasi-impulse invariability in time in the perfect

periodic structure means that electronic waves are stationary, and scattering does not

occur. Defects of structure that violate its periodicity change the quasi-impulse and

lead to electronic wave scattering. As mentioned earlier, the electron scattering in

lattice is the physical reason for the limited conductivity in metals (see Section 5).

Energy spectrum of electrons. For crystal structure formation from N atoms, all

valence energy states are N-fold degenerated, so a single value of electron’s energy

Ea meets ψa1, ψa2,…, ψaN wave functions. The valence electrons in a crystal can be

viewed as the perturbation of degenerated system, which wholly or partly removes its

degeneracy. Under these conditions, valence atomic levels split into N separate

levels, E1!ψ1, E2!ψ2, …, EN!ψN, each of which has its own wave function.

The set of energy levels creates the energy band.
Splitting is easily seen for both “s” and “p” valence states, regardless of whether

they are occupied by electrons or not (Fig. 8.3). Thus the s- and the p-bands are

formed, and hybridization in these bands (sp3-hybrid) is also possible.

Energy bands creation in a system of interacting electrons can be explained by the

necessity to keep them within a solid body, because electrons are negatively charged

particles, and between them the electrostatic repulsion exists. The stability of valence

bond system is provided not only by the attraction of electrons to positively charged

nuclei, but also by magnetic gravity of electrons (that have opposite spins), which

partly compensates electrons’ electrostatic repulsion. Such compensation is possible

only for the pair of electrons with same energy, while other electron pairs must have

different energy (Pauli principle) [2].

Solutions of Schr€odinger equation acquire formation of Bloch waves (see

Fig. 8.2) for real values of wave vector k, and corresponding value of electrons

energy form the allowed energy bands: for bonded electrons, this is the valence band;
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Valence level splitting in silicon and energy band formation; compared with bands in metals:

sodium, Fig. 4.23 and copper, Fig. 4.24.

420 CHAPTER 8 Semiconductors
for the first excited state of valence electrons this is the conduction band. The term
“allowed energy levels” means that only for those ranges of energies the nonloca-

lized solutions of Schr€odinger equation are possible within a crystal. It is worth recal-
ling that in semiconductors and dielectrics between valence band and conduction

band there is energy gap Eg (in other words, prohibited zone or forbidden zone), that
is, the energy range, where wave solutions are impossible, because they correspond

to the imaginary values of wave vector k. Bands for dielectrics, metals, and semi-

conductors are compared previously in Section 3, while the Eg value at temperatures

0 and 300K for some semiconductors is shown in Table. 8.1

From a physical point of view, the presence of energy band gap, located between

the valence band and the conduction band (Figs. 8.2 and 8.3), means that on the

boundaries of these bands the total internal reflection of electronic waves occurs;

that is, electrons themselves cannot go beyond permitted bands. Band gap energy

can be seen as a barrier between the levels, related to occupied electronic states

and free electronic states, which correspond to the conduction band [2].

There are no usual electronic states in the band gap, but the localized states may

exist in it. The wave functions of localized states should look similar to the radial

functions of electron in a hydrogen atom: ψ rð Þ� r2e�γr. Square module of this func-

tion (probability to find electron with coordinates r) has a maximum at this point, and
Table 8.1 Band Gap in Some Semiconductors

Crystal InSb Ge Si GaAs PbS PbTe

Eg(0), eV 0.23 0.74 1.17 1.52 0.29 0.19

Eg(300), eV 0.17 0.66 1.12 1.42 0.41 0.31
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decreases with increasing distance from it. Usually, the energy of local states inside

the band gap is created by the defects (impurity atoms, vacancies, dislocations, and

so on).

The basic properties of electron energy (as a function of wave vector) in the per-

mitted bands are [2]:

• unambiguity—electron cannot simultaneously be in different states;

• parity—energy should be independent of electronic wave direction and

frequency;

• periodicity—all possible values of wave vector are contained in the area which

looks like a unit cell of reciprocal lattice.

In the neighboring cells, wave vectors are repeated with the period �π/a. Exit
beyond the unit cell of reciprocal lattice cannot give new energy values; that is,

the adjacent cells repeat the same energy value. It should be noted also that such

a feature of electron energy, as the quasi-continuity, wave vector in the crystal of

limited size has discrete values. Accordingly, the energy spectrum should be dis-
crete. The states number in band is Na�5�1022cm�3, where Na is a typical concen-

tration of atoms in semiconductors and metals.

The size of the energy gap in semiconductors, typically, is 0.5–2.5eV; accord-
ingly, the difference in energy between neighboring states is 10�22–10�21 eV. Such

a very small energy difference of neighboring levels might be compared with an

average energy of thermal motion: at a temperature of 300K, it equals

2.6�10�2 eV. The number of energy states, experienced by electrons in their ther-

mal motion, is very large: it is about 1020. That is why the energy spectrum is

quasicontinuous.
Filling of permitted bands. In metals, the s- and the p-valence bands overlap—

there is no band gap. Taking into account the Pauli principle, the capacity of bands is

doubled; therefore in metals the filling of permitted band is partial, and free electrons
exist under any conditions (see Section 5).

In semiconductors and dielectrics in their ground state (at temperature Τ�0Κ),
there are no free electrons: the valence band is completely filled and the conduction

band is completely empty (Fig. 8.3). If temperature Τ>0Κ, then some free electrons

in conduction band appear—they are born by the thermal ionization of some elec-

trons located in the valence band [4].

However, thermal ionization processes in semiconductors can create no more

than 1020cm�3 carriers, which is in two orders of magnitude less than the capacity

of allowed energy bands. This slight filling of bands leads to the concentration of free
charge carriers exceptionally in the area of minimal energy (near the bottom) of the
conduction band, or near the maximal energy (near the ceiling) of the valence band;
that is, near the extreme values of energy. Therefore for practical application of semi-

conductors there is no need to examine the whole energy range of permitted bands,

because most interesting are values of energy near the extremes.

Unlike the conduction band, to which free electrons are added due to thermal (or

photo) ionization, the valence band, by contrast, loses electrons as a result of the
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same process. In the places of incomplete valence bonds the holes appear; that is,
nonoccupied by electron energy states. The availability of free energy states allows

valence electrons to migrate between noncompleted levels of valence bonds. The spa-
tial movement of electrons in the conduction band (as well as movement of holes in

the valence band) is ordered by the external field that creates electrical current.

However, in the external electrical field, a peculiarity in hole behavior is

observed: negatively charged electrons move against the direction of a field while

holes move in the direction of a field that is like the positively charged particles. Just
this characteristic behavior of holes that partially fill the valence band is the basis for

introduction of a concept of positively charged quasiparticles—holes that have

charge “+e.”
Effective mass. In connection with a specific filling of the bands (just near

extremes of energy), energy dependence of wave vector E(k) in the conduction band
can be studied only in the vicinity of absolute minimum of energy (Fig. 8.4A). Under

such conditions, energy dependence on wave vector has the form of a parabola:
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FIG. 8.4

Electron’s parameter dependence on wave number; (A) energy, (B) velocity,

(C) effective mass.
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For free electron in a vacuum in the 1D case is E(p)¼p2/2me, while impulse is

p¼ℏk; therefore: E(k2)¼ℏ2k2/2me. Correspondingly, in the 3D space:

E k2
� �¼ 1

2

ħ2

me
k2x +

ħ2

me
k2y +

ħ2

me
k2z

� �
:

If one compares these expressions for energy of electron (in crystal and in free space)

using dimension, it is possible to get the following expression:

m∗
ii ¼ ħ2

∂
2E

∂k2i

� ��1

,

this parameter has dimension of mass and is the effective mass.
For free electron in a vacuum, which is defined by energy E¼ℏ2k2/2me, electron

mass corresponds to its rest mass. The effective mass of charge carriers in the semi-

conductor is a specific parameter of charged quasiparticle: me* that is different from
the rest mass. It is not a mass in its usual sense, because it does not specify either

gravitational or inertial properties of electron. The magnitude me* may be as bigger

so less than mass of free electronme; moreover, the signme* can have the positive as
well as the negative value.

In the first Brillouin zone in the absence of external field, the electron is situated

in the bottom of conduction band. If crystal is subjected to the external field E under

which electron accelerates, its kinetic energy increases, leading to electron transition

to the higher energy level in the conduction band.

In case of small values of the wave number k when the curve E(k) is parabola
(E(k)¼ℏ2k2/2me*, Fig. 8.4A), the velocity of electron υ¼ℏk/2me* increases

linearly with k increasing (Fig. 8.4B) while electron’s effective mass

me*¼ℏ2(∂2E/∂k2)�1 remains almost constant (Fig. 8.4C). As the wave vector

increases (distance from zero k rises, Fig. 8.4A), dependence E(k) already is not

a parabola; correspondingly, the velocity of electron grows sharply near kA
(Fig. 8.4B). In the point A (point of inflexion), first derivative dE/dk shows max-

imum while second derivative d2E/dk2 vanishes. It means that effective mass me*
increases (Fig. 8.4C) [2].

For wave vector values of k>kA the effective mass of electron changes its sign

and becomes negative. The velocity of electron in case of k>kA reduced, although

external force direction remains. At k¼π/a (the boundary of Brillouin zone) electron
feels Bragg reflection (k jumps to the value �π/a). Further, the electron is acceler-

ated in the opposite direction to external force, and its velocity varies from zero to the

maximum, while effective mass me* changes up to �∞. At the point A0 the sign of

effective mass is changed to the positive, and electron is accelerated in the direction

of external force.

In other words, in the middle of Brillouin zone (k¼�π/2a) the sign of curvature
of E(k) dependence changes, and it passes through a zero, while corresponding mass

value (me* ! ∞) loses its physical meaning. Therefore, the approximation of effec-

tive mass is valid only for those charge carriers that are located near the bottom of the
conduction band (or near the ceiling of the valence band).
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In case of crystal anisotropy, the dynamic properties of electrons during their

movement show anisotropy. Consequently, the effective mass is a tensor of the sec-

ond rank. This anisotropy is most manifested in two directions; correspondingly, the

surface of constant energy has a form of ellipsoid of revolution. In this case, the effec-
tive mass divides into effective mass in the longitudinal direction ml* and effective

mass in the transverse direction mt*.
In the absence of anisotropy, the surface of constant energy looks like a sphere,

and effective mass has scalar value. Table 8.2 represents the experimental values of

electrons’ effective mass in silicon and germanium.

Comment. Indication mdn
∗ is effective mass for rotating ellipsoid axes. Physical

content of mdn
∗ is ellipsoidal isoenergetic surface, where minima of absolute energy

are replaced by one equivalent energy states of sphere, whose radius is proportional

mdn
∗ . Within single energy minimum, the effective mass is anisotropic; however,

because of symmetric spatial placement of energy minima, the average value of

all masses of ellipsoid looks isotropic. For the valence band of silicon and germa-

nium, the situation with effective mass of holes is slightly different, because in

the subzones just as the heavy so also the light holes exist. In this case, the isoener-

getic surface represents deformed areas, but it can be approximated by conventional

fields [5].

Therefore:
• Effective mass is introduced in consideration, when there is a parabolic

dispersion law; in the other case, mass might be dependent on energy, but in this

regard the negative effective mass is possible. Effective mass is inversely

proportional to the second derivative of expression E(k2), which describes the

curvature of function at the points of extreme. The inverse curvature value is the

radius of curvature. As a result, the effective mass is directly proportional to the

radius of curvature of theE(k2).
• Curvature of function at the point of extreme might have signs: “�” at the

maximum and “+” at the minimum. For holes, the minimum of energy exists in

the ceiling of the valence band; therefore, the direction of energy axis in the

valence band should be chosen in the opposite direction to its direction in the

conduction band. Under these conditions, effective mass of holes is positive.

Therefore, the hole is a quasiparticle with the charge “+e” and positive effective
mass. Inasmuch as the valence band in the silicon originates as the mixture of

3s2- and 3p2-orbitals, the holes in silicon have different effective mass: the light
Table 8.2 Components of Effective Mass Tensor for Silicon and Germanium

Semiconductor Mass of Electrons Mass of Holes

Parameter M mt
∗ m‘

∗ mdn
∗ mpВ

∗ mpЛ
∗ mdp

∗

Silicon 6 0.19me 0.98me 1.08me 0.52me 0.16me 0.58me

Germanium 4 0.082me 1.59me 0.56me 0.34me 0.04me 0.35me



FIG. 8.5

Bandgap energy profiles: (A) silicon, (B) germanium.

4258.2 Fundamentals of band theory of semiconductors
holes, when the curvature of the E(k2) dependence is small, and the heavy holes,
when this curvature is large (Fig. 8.5A).

• In order for effective mass to play the same role as the actual mass of electron, it

should be not dependent on energy and on the wave vector that can be changed

under the influence of external forces. The parabolic dependence satisfies this

condition, as second derivative for such dependence is constant.

• Tensor nature of effective mass illustrates the fact that electron in a crystal lattice

does not move as a usual particle with the rest mass but as a quasiparticle, whose

mass depends on the direction of crystallographic axes of crystal.

In the approximation of effective mass, the knowledge of exact configuration of peri-

odic potential in crystal is not necessary; it would suffice to replace the actual mass to

the effective mass in the equations of motion of electrons and holes. If one fixes a

certain value of energy, it will be possible to get the quadric equation that corre-

sponds to the ellipsoid of general form:

k2x
a2x

+
k2y
a2y

+
k2z
a2z

¼ 1,

where ai ¼
ffiffiffiffiffiffi
2m∗

ii

ħ2

q
E is the semiaxis of ellipsoid: i¼x, y, z.

For high symmetry crystals (typical for semiconductors of a cubic structure), the

absolute extreme is located in the center of coerced band; at that, the absolute

extreme is only one, while isoenergetic spherical surfaces are spheres, and effective

mass is scalar. However, absolute extreme can be found in the intermediate point on

one of the main axes of symmetry of cube (h100i, h111i, h110i), and then the
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isoenergetic surfaces are ellipsoids, in which the rotation axis is the main axis of the

cube. Therefore, effective mass has two components: mt
∗ and m‘

∗ (Table 8.2).

Based on these general positions, let us consider the band structure of mostly used

semiconductors.

Conduction band of silicon and germanium. The energy profiles of band struc-

ture of silicon and germanium are shown in Fig. 8.5. Similar to silicon, in the ger-

manium the minimum and maximum of energy correspond to different values of a

wave vector. For this reason, these crystals are the indirect bandgap semiconductors.
The scanning of the bandgap energy profile is shown in Fig. 8.5 by shaded area in

a reciprocal lattice space. The absolute minimum of energy in silicon is placed on the

axis h100i; the coordinates of minimums are kmin�2/3(π/a), the number of extremes

is six, correspondent effective masses are mt
∗¼0.19me and m‘

∗¼0.98me, and ellip-

soids anisotropy is m‘
∗/mt

∗¼5.16.

Band structure of AIIIBV semiconductors. Most of these compounds have

kmin¼kmax so they are the direct bandgap semiconductors (except GaP and AlP).

Therefore, conduction band at kmin¼0 is characterized by spherical isoenergetic

surface.

As an example, Fig. 8.6 shows the band structure of GaAs. Scalar effective mass

of electrons has wide margins: 0.01me<mn
∗<2me. In the conduction band, two min-

imums of energy can be seen: the absolute minimum (in the center of coerced band,

with effective mass mn
∗¼0.067me) and the nonabsolute minimum (on coerced band
FIG. 8.6

Energy profile of gallium arsenide.
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boundary in the direction h111i); it is higher by 0.36eV relatively to the absolute

minimum. The isoenergetic surface for nonabsolute minimum is ellipsoid, the num-

ber of full ellipsoids is four, and the effective masses are mt
∗¼0.075me,

m‘
∗¼1.9me; m‘

∗/mt
∗¼25.3.

The attention given to nonabsolute minimum is because in the strong electrical

fields it is filled up by electrons with significantly increased effective mass. Under

certain conditions, this fact can be used to generate microwave oscillations (Gunn

effect).

All AIIIBV compounds are characterized by a marked deviation of E(k2) depen-
dence from parabolic law, which means the mn

∗ dependence on electron’s quasi-

impulse that changes under the influence of an electrical field. The structure of

valence band of AIIIBV compounds, generally, is the same as in Si and Ge: energy

maximum is located in the center of coerced band and two sub-bands can be seen—

for heavy and for light holes; the isoenergetic surfaces are spherical, while the effec-

tive masses are scalar.

Therefore, the concept of effective mass greatly simplifies the description of elec-

tron behavior in a crystal. Effective mass is such a mass that must be attributed to the

electron in its motion in a crystal under the influence of external forces that have the

form of Newton’s second law. Although effective mass has the dimension of normal

mass, in general, it is characterized by the components of second-rank tensor. The

concept of effective mass is very useful in solid-state physics, particularly, in the

physics of semiconductors.
8.3 INTRINSIC AND EXTRINSIC SEMICONDUCTORS
The intrinsic semiconductors practically have no electrically active impurities, so

the concentration of free charge carriers in them is determined only by temperature

and inherent to this semiconductor energy of valence electrons, that is, by the band-

gap Eg value. Intrinsic semiconductors are also known as pure (or undoped) semi-

conductors, that is, as perfect semiconductor crystals, which are free from defects

and impurities of other elements [7].

Covalent bond is characterized by a pair of electrons belonging to two neighbor-

ing atoms. The number of covalent bonds that can create an atom is limited to the

number of electrons missing in the outer shell of the atom to create the stable com-

pleted configuration of nearest inert gas. For example, monoatomic semiconductors

of Group IV of the periodic table of elements (Ge and Si) create crystal lattice of

diamond type with tetrahedral covalent bonds, that is, each atom highlights four elec-

trons for covalent bonds. Fig. 8.7 shows a model of Group IV semiconductor lattice,

when all bonds are filled; then any free electrons in a crystal are absent; accordingly,

the conductivity of such a crystal should be zero in its ground state (T¼ 0).

Ideally, when thermal motion is absent, free electrons in the lattice cannot exist,

because all valence electrons are involved in the bonds. In a real case at T> 0, the

fluctuations of atomic thermal motion can break covalent bonds in some places of a



FIG. 8.7

Band diagram (A, B) and flat model (C) of intrinsic crystal lattice of semiconductor.
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crystal and release the electrons, which are now eligible to participate in conductiv-

ity. Hence, in order for valence electron to become the conduction electron with

charge “�e”, it must get some activation energy, equal or greater than Eg (sufficient

for covalent bond destruction). In turn, the nonfilled bond can be seen as the charge

carrier with positive charge “+e”, and it also can move freely through a crystal by a

transition through valence electron bonds between neighboring (filled) bonds.

The energy of random thermal motion that destroys electronic bonds between

atoms equals kBT, where kB¼1.38�10�23 J/K is Boltzmann constant. As stated ear-

lier, at room temperature of T¼300K the energy of thermal motion equals

kBT�0.026eV. Note that this value of kBT characterizes only the average thermal

vibrational energy of the atoms [7].

Due to a random (chaotic) thermal motion in a crystal, at any given time there are

some atoms, whose energy becomes much more than the average value, including

those whose energy is greater than the value Eg. A number of these atoms are rela-

tively small, but they exist, and some electronic links between atoms are ragged by

thermal ionization. A probability of such an event in the statistical physics is defined

by the exponential dependence: exp(�Eg/2kBT), where Eg is the energy of valence

bonds destruction.

It is easy to calculate the probability of the ionization at temperature of 300K

equals 3�10�2 for InSb crystal (Eg¼0.18eV), equals 8.5�10�10 for Si crystal

(Eg¼1.1eV), and it is only 1.4�10�12 for GaAs crystal (Eg¼1.4eV). Therefore,

the increase in Eg of about eight times (while comparing indium antimonide with

gallium arsenide) reduces the probability of thermal ionization of valence bonds

by 2�1010 times. Note that a significant change in the probability of thermal ion-

ization of valence bonds will be seen in the semiconductor when temperature

changes. For example, by cooling Si to the temperature of “dry ice” (solid CO2 that

is evaporated at 216K¼�57°C) results in thermal ionization probability decrease

4000 times.

The valence bonds can be broken in semiconductor not only by thermal ioniza-

tion but also due to absorption of light, if the energy of light photon is hν�Eg (this
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type of valence bond destruction is photo-ionization). The energy Ec in Fig. 8.7B is

the lowest energy level of conduction band, that is, the minimal energy is correspon-

dent to the bottom of the conduction band, while Eυ is the upper energy level of the

valence band (at the ceiling of the valence band); difference Eg¼Ec�Eυ is the band-

gap. The arrows on the band charts show possible electronic transitions

between bands.

The valence bond violation has the following main consequences [7]:

• to deliver electrons into the conduction band, where they are able to change their

energy and change spatial position under the influence of external fields; in other

words, to create the opportunity for electric current;

• to release some energy states in the valence band that also gives the opportunity

for holes to change their energy and spatial position, therefore, also to create

electrical current.

The energy states vacating the valence band should be considered in more detail.

From the covalent binding orbit one electron is removed, but another remains. This
incomplete bond that is allowed but not occupied the electronic state is the hole in the
energy spectrum. In the absence of external electrical field, similar to the hole, the

electron also moves within a crystal randomly. This occurs because the neighboring

electron of covalent bond, using energy of thermal vibrations of lattice, can fill the

incomplete covalent bond; as a result, the hole from a position 1 moves to the posi-

tion 2 (Fig. 8.8C). For the same reason, the hole can go further. Thus the movement of

holes, actually, is carried by the electrons moving between the covalent bonds.
FIG. 8.8

Temperature dependence of intrinsic concentration in silicon and germanium.
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In other words, the absence of negative charge of electron in the atomic orbit dis-
turbs the neutrality of covalent interatomic space: it becomes positively charged.
There is no difference, in principle, in the movement of which particle—electron

(as material carrier with negative charge) or hole (partially filled valence band,

which is positively charged carrier)—gives rise to conductivity.

In support of this approach, it is possible to give also the following argument: the

electrical field creates a flow of electrons that are directed against the field, but the

electrons leave behind them the holes that move in compliance with field, so they

look like positive charges. In any case, the hole is an empty place; therefore regard-

less of properties attributed to hole, it cannot be the material positive charge carrier.
However, in nature, another material positive charge carrier exists—a positron;
hence, to avoid confusion, the hole is the quasiparticle with positive charge, which
can exist only as a partially filled valence band.

Therefore eventually torn covalent bonds form a pair of free charge carriers—

electron in the conduction band, and hole in the valence band, which also contributes

to electrical conductivity of intrinsic semiconductor. The concentration of charge

carriers is denoted as follows: ni¼n¼p (“i” index derived from the English

“intrinsic”¼own). The concentration in some semiconductors at temperature of

300K is presented in Table 8.3 [2]. The concentration is proportional to the proba-

bility of thermal ionization of electrons from the valence bonds: ni�exp(�Eg/2kBT).
The analysis of this exponential function shows that it varies monotonically with

temperature; correspondingly the ni varies, by the exponential law throughout the

temperature range.

The intrinsic conductivity of semiconductors is the sum of their electronic and

hole conductivity components: σi¼eni(un+up), where un and up are the mobility
of electrons and holes, respectively. Usually un>up, because holes are “heavier”

than electrons. The resistivity ρi¼1/σi for some semiconductors at temperature of

300K is also given in Table. 8.3. This table shows how radically Eg affects intrinsic

(own) charge concentration and resistivity. As stated earlier, the movement of neg-

atively charged electrons along empty vacancies against field direction is equivalent

to the movement of positively charged unfilled bonds in the opposite direction.

Total intrinsic conductivity consists of electron and hole components. Obviously,

in the pure semiconductor the concentration of electrons (n) and holes (p) is equal, as
Table 8.3 Properties of an Intrinsic Basic Semiconductor at Temperature
of 300K

Semiconductor Ge Si GaAs

Eg, eV 0.66 1.12 1.42

ni, cm
�3 2.4�1013 1.45�1010 1.8�106

ρi¼1/σi, Оhmcm 47 2.3�105 108
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these free carriers are created in pairs due to covalent bond breaking. However, the

mobility of electrons and holes is different, because mechanisms of their motion in

the electrical field differ significantly.

Total conductivity σ in crystal is

σ¼ σn + σp ¼ enunn + epupp,

where indices n and p refer to electronic and hole components, respectively, while

ni¼n¼p is the concentration of electron-hole pairs.

Thus the semiconductors in which conductivity is because of a break of their own

covalent bonds in a lattice are called as intrinsic, and carrier concentration ni is the
intrinsic concentration. This concentration increases with increasing temperature;

the less the semiconductor activation energy Eg (which determines energy gap),

the more the intrinsic charge carrier concentration at given temperature.

Generation and recombination. When it comes to formation of intrinsic carriers,

the terms thermogeneration and photogeneration are used. In this regard, it should be
noted that thermogeneration is continuous in time process, and the question is: Why

charge carrier concentration is fixed at a certain temperature? The answer to this

question can be obtained if one considers relating an opposite process—recombina-
tion. In a physical sense, recombination is a reconstruction of valence bonds due to

electrons fastening in a lattice. To restore valence bonds, at least three conditions

should be taken into account: spatial electron must “meet” the hole, it should lose
energy, which is more than Eg, while the spin states of free electron and electron

in the incomplete valence bonds must correspond to the Pauli principle; all these

events have to occur simultaneously [2].

Just the simultaneous fulfillment of these conditions requires a lot of effort and

delaying the recombination process in time. The point is that electrons of conduction

band and holes of valence band move independently with the average thermal veloc-

ity vT�5�105m/s (at T¼300K). This velocity is important, because the “meeting”

of electrons and holes should be realized at regular intervals of time. The loss of

energy occurs by its transfer from charge carriers to thermal vibrations of atomic lat-

tice; therefore at the time of meeting, atoms should take an energy�Eg, but this is not

always possible. Finally, electronic spins all the time “switch” at electron collision

with each other and with the oscillation of atoms; so the implementation of the third

condition also requires some time.

When temperature increases, the rate of generation increases: the number of

electron-hole pairs, generated in the unit volume per one second, rises, wherein more

number of vacancies in the valence band appear, that is, the rate of recombination

also increases: the number of electron-hole pairs, which recombine in the unit vol-

ume per one second, rises. If the temperature is fixed, a balance between the rate of

generation and the rate of recombination will be established, as a result of which the

concentration of free charge carriers will be independent of time. Due to the fact that

rates of generation and recombination increase synchronously, valence bond viola-

tion during charge carrier thermogeneration does not cause a destruction of the semi-

conductor as a solid.
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Concentration of electrons and holes in intrinsic semiconductor. At steady
state, the dynamic equilibrium exists: the number of pairs of free “electrons-holes”

released every second in the semiconductors by thermal generation is equal to the

number that “die” (consolidate in a crystal) by recombination.

Therefore, a certain temperature equilibrium in the concentration of electrons

and holes in semiconductor is established. For calculation it should be determined

how many free carriers are generated in unit volume per unit time, and how many

of them are neutralized by the recombination. The number of electron-hole pairs

(K1) generated every second in unit volume of semiconductor equals

K1 ¼ α exp �ΔE=kBTð Þ,
where α is proportionality coefficient, different for various semiconductors. The

number of charge carriers that recombine every moment per unit volume (K2) is

K2 ¼ βnipi ¼ βni
2 ¼ βpi

2,

where ni and pi are concentrations of electrons and holes, respectively, in the unit

volume of semiconductor. These concentrations are proportional to the probability

of occurrence that the number of free electrons and holes is equal, because charge

carriers are always generated and recombined by pairs.

Temperature dependence of carrier concentration in germanium and silicon is

shown in Fig. 8.8.

The equilibrium concentration of electrons and holes in the intrinsic semiconduc-

tor is determined by the numbers K1 and K2 equating:

α exp �ΔE=kBTð Þ¼ βni
2 ¼ βpi

2::

From this equation, it is possible to find

ni ¼ pi ¼ α=βð Þ1=2 exp �ΔE=kBTð Þ¼ A=Bð Þ1=2 exp �ΔE=kBTð Þ:
In all semiconductors, the values of constants A and B are well known; they are mea-

sured in cm�3. At room temperature (�300K), these values are within approximately

1017–1019 cm.

Extrinsic (doped) semiconductors. The special characteristics of semiconductors

can be obtained only in high-purity crystals. In usual engineering, a crystal that has
one foreign atom per 1000 own atoms (i.e., concentration of impurities equals 0.1%)

can be considered a pure substance. From a chemical point of view, a substance can
be considered quite clear if it has one foreign atom per 105 own atoms. Some addi-

tives to semiconductor can relatively easily give free electrons or holes. Therefore,

from a chemical point of view, a very clean germanium (with impurity concentration

0.001%) at room temperature will contain impurities, which can create 4000 times

more electrons compared with intrinsic germanium. Similarly, in silicon, 0.001% of

impurity concentration increases charge carriers 107 times, while in the gallium

phosphide it is 1017 times.

Thus the purity of semiconductors should be many times higher than the usual

standard with “chemically pure” material.
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It looks impossible to eliminate impurities completely; however, well-developed

technology enables to obtain semiconductor crystals of very high purity. Neverthe-
less, even in the ultrapure silicon, in which impurity concentration is no more than

1012 cm�3, the amount of charge carriers induced by impurities at room temperature

has been detected to be about 100 times greater than intrinsic concentration of elec-

trons and holes.

The extrinsic is a semiconductor that is doped, that is, in which the doping agent

has been introduced, giving its different electrical properties from intrinsic (pure)

semiconductor. One of most characteristic features of semiconductors is their very

high sensitivity to small amounts of impurities. Addition of foreign substances in the

quantities of one atom per million (or even per billion of own semiconductor atoms)

can markedly change its properties. Doping results in such concentration of free

charge carriers, which determines properties of a semiconductor: the concentration
and type of charge carriers.

Intrinsic semiconductors have the same number of electrons and holes; therefore,

there is no dominant type of conduction—electrons or holes. However, to create

microelectronic devices (diodes, transistors, integrated circuits, etc.) only semicon-

ductors with the adjusted type of conductivity should be used. For this purpose, in the
intrinsic semiconductor material the additives are embedded by replacing
basic atoms.

Using doping technology, following important problems are solved:

• receiving certain type of charge carriers—electrons or holes;

• prescribed concentration of charge carriers;

• adjustment of charge carriers relaxation time;

• guaranteeing necessary temperature range for temperature-independent charge

carrier concentration.

To solve the first problem, one must have a source of electrons or holes, which do not

depend on intrinsic carrier concentration.With this aim, in Group IV semiconductors

such additional atoms should be introduced, whose valence is different per one: these
are atoms of Group III or V elements. Group IV semiconductors are characterized by

covalent type of bonds, so four orbits with two electrons in each can be achieved.

Accordingly, into the semiconductor compounds of AIIIBV the atoms of elements

of Group II or VI should be introduced.

Acceptors. In the atoms whose valence on one is smaller than Si or Ge valence,

one electron is missing in a full bond, so main atoms of a crystal must be replaced by

elements turning to the negatively charged ions (Fig. 8.9B). This replacement

requires some energy costs that are realized by thermal ionization (Fig. 8.9A). Thus

the total number of valence electrons decreases, while in the energy spectrum of

valence band the unfilled energy states appear. Therefore, the introduced holes

appear whose number equals to quantity of imbedded three-valence atoms. Such

impurities of replacement are called acceptors. Most acceptors are boron (to Si), gal-

lium, and indium (to Ge), while for GaAs the acceptor is zinc [7].



FIG. 8.9

Band diagram (A) and simplified model (B) of p-type semiconductor (silicon doped with

aluminum).
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In Fig. 8.9A, by the energy level 1 the state of acceptors is marked. During ion-

ization, the atom of acceptor takes the electron from the valence band; due to this, in
the valence band hole appears. Because activation energy of acceptors is much smal-

ler than the energy gapΔE¼Ec�Ev, the conductivity activated by doping appears at

much lower temperatures than intrinsic conductivity (this ionization is shown by

number 2 in the figure). In the doped semiconductor, if concentration of acceptors
is sufficient, in a certain temperature range the intrinsic conductivity is much less

than the extrinsic one (σintrin ≪ σdoped), because intrinsic ionization requires much

higher energy than ionization of impurities.

Donors are those embedded in semiconductor impurity atoms, in which the

valence is bigger per one than a valence of basic atom; therefore, the excess electrons
appear, which are not involved in the formation of valence bonds. As these atoms in a

structure of semiconductor are surrounded by four connecting orbits, the attraction of

excess electrons to atoms is significantly weakened, which facilitates their release

into the conduction band by thermal ionization (Fig. 8.10A). As a result, free
FIG. 8.10

Band diagram (A) and simplified model (B) of n-type semiconductor crystal (silicon doped

with arsenic).
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electrons and positively charged ions are generated (Fig. 8.10B); their quantity as

many as doping atoms were imbedded. These impurities are the donors. Most com-

mon donors for Si are phosphorous, antimony, and arsenic; for Ge, they are antimony

and arsenic; and for GaAs, tellurium.

Extrinsic conductivity is unipolar, that is, charge carriers of only one sign are

created, unlike the bipolar intrinsic conductivity, which involves carriers of both

signs. Another important difference between extrinsic conductivity and the intrinsic

one is the significantly lower value of activation energy of donors and acceptors [7].

The second problem, which is solved by doping, is the receiving of desired con-

centration of charge carriers. At first glance, this problem seems quite simple: the

quantity of free electrons (or holes) will be the same as imbedded donors (or accep-

tors). However, this simplicity exists only at first glance: the lower limit of doping
depends on the intrinsic carrier concentration, while the higher limit of doping

depends on the possibility of dissolution of impurities in a crystal.

Any semiconductor has its own concentration of electrons and holes. If the semi-

conductor is not doped, intrinsic concentration is minimal at given temperature:

nmin¼pmin¼ni. To have an electron (or the hole) type of conductivity, the concen-

tration of impurity (that gives additional electrons or holes) should be at least 10 times

greater than ni.
As for the maximal concentration, there is also a certain limit. Impurity atoms

distort the structure and the potential field of doped semiconductors at any concen-

tration of impurities. Experience shows that semiconductor material still retains its

basic properties, if no more than one of impurity atom from a 100 of basic atoms is

replaced. Atomic density used in microelectronic semiconductors is about

5�1022 atoms/cm3, the maximum permissible concentration of impurities is about

1020cm�3, and the same is maximal concentration of charge carriers:

nmax�1020cm�3. As a result, possible concentration of charge carrier should be

within ni<n<1020cm�3.

Usually in semiconductors, there are charge carriers of both signs. If n¼p, then,
as already noted, the semiconductor is intrinsic. Impurities make a semiconductor

extrinsic (doped). If the concentration of impurity atoms-donors is Nd and acceptor

concentration is Na � Nd (i.e., identical or similar in order of magnitude), the semi-

conductor is called as totally or partially compensated. However, in the more com-

mon cases, n 6¼ p. At that, if the concentration of one type of charge carrier is larger
than the other type, they are the majority carriers. Charge carriers whose concentra-
tion is less are known as minority carriers. The majority carriers in the n-type semi-

conductors are electrons, while in the p-type semiconductors they are holes.

Thus conductivity of semiconductors at absolute zero temperature should be zero

as all valence electrons are bound in their atomic orbits, and cannot carry electrical

current. However, excitation energy of electrons in semiconductors is not very big,

and, therefore, at a relatively low temperature, due to lattice thermal motion, some

electronic bonds become broken. As a result, free electrons (conduction electrons)

and holes appear. Concentration of conduction electrons (n) and holes (p) exponen-
tially increases with temperature. In Fig. 8.11 the temperature in the abscissa is given



FIG. 8.11

Free charge carrier concentration temperature dependence studied in silicon doped by

donors (about 1015sm�3).
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in the inverse coordinate (T�1), while in ordinate charge carrier concentration it is

given in the logarithmic scale.

In the high-temperature range (higher than �500K, top portion of the graph in

Fig. 8.11), the intrinsic conductivity in semiconductor dominates and very rapid tem-

perature change in concentration of charge carriers is observed. In the low-

temperature range (below�200K, in middle of graph in Fig. 8.11), the conductivity

is caused by impurities, but it gradually reduces in the range of doped carrier

“freezing.” In the temperature range commonly used in semiconductor devices,

the charge carrier concentration is almost constant, and, therefore, semiconductor

devices demonstrate a rather stable work in the saturation range (also shown in

Fig. 8.11). Indeed, due to the doping, in the usual application temperature interval

(t¼�60 to +80°C, i.e., T�200–350K, or 103/T�5–3), charge carrier concentration
remains practically constant.

According to the charge carrier concentration, conductivity of semiconductors

increases exponentially with temperature rise. Correspondingly, electrical resistance

decreases (Fig. 8.12). It is evident, that a range of variation of resistivity of semicon-

ductors is very large: it covers five orders of magnitude in size. Therefore, a rather

simple idea can clearly explain temperature dependence of electrical conductivity of

semiconductors by increasing concentration of free charge carriers, excited due to

thermal ionization of atoms—as the basic atoms, so the atoms of impurities. How-

ever, by measurement of electrical conductivity of semiconductor it is impossible to

determine its type, that is, to conclude what exactly—electrons or holes—take part in



FIG. 8.12

Temperature dependence of silicon resistivity with different phosphorus content doses: 1—

4.8�1017cm�3; 2—2.8�1018cm�3; 3—4.8�1019cm�3; and 4—4.8�1020cm�3.
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the conductivity. Predominant conductivity mechanism (electrons or holes) can be

verified experimentally by Hall’s effect as well as by the sign of thermoelectromo-

tive force (Seebeck effect, see Section 8.3).

In case of Hall’s effect, in the magnetic field under the influence of Lorentz force,

the electrons deviate from their natural direction of motion and move aside to one of

the faces of studied sample; so a transverse electrical field occurs. This process takes

place as long as Lorentz electrical field is compensated by charge carriers on the side

edges. In the n-type semiconductors, the majority of carriers are electrons, and they

create at this sample the facet, to which electrons are directed, the negative charge. In
the p-type semiconductors, holes, for the same reason, create the positive charge.

Experimentally measured sign and magnitude of potential difference can determine

not only the sign of charge carriers, but also the value of their concentrations.

The sign of change carriers is also possible to determine using the thermoelec-

tromotive effect. This method of determining conductivity type is called the hot
probe method. The sample is fixed on the metal plate (i.e., the “cold” contact)

and then it is touched by the heated probe (i.e., the “hot” contact). In the closed elec-

trical circuit with “cold” and “hot” contacts, the galvanometer is included. Direction

of thermoelectric current (its sign) indicates what major carriers are in the sample. In

the case of n-type sample, the negative potential is created on the “cold” contact [2].

Detailed explanation of this effect will be given in Section 8.4; in short, between

“hot” and “cold” contacts of sample, the temperature gradient is created. If the major-

ity of charge carriers are electrons, then they diffuse from the hot area of a sample
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into the cold, as their thermal velocity will be higher. Therefore, the “cold” part of a

sample becomes enriched by the majority carriers and the negative space charge

appears in it. Accordingly, the “hot” area of the sample is depleted of electrons

and has the positive charge. If the type of conductivity were to be changed, the sign

of thermoelectromotive effect that can be indicated by the arrow of galvanometer

will be reversed.
8.4 KINETIC PROCESSES IN SEMICONDUCTORS
Exceptionally labile electronic structure of semiconductors demonstrates a large

amount of kinetic effects, many of which are used in the development of electronic

devices. Some kinetic phenomena are shown in Fig. 8.13.

Electrical conductivity. With the approximation of effective mass, equations of

electron movement in crystal formally coincide with Newton’s second law: acceler-

ation is proportional to force acr¼�eE/m* (the sign “�” denotes that electrons

move against electrical field). This makes it possible to argue that in a crystal, under

certain conditions, electrons have dynamic properties similar to electrons in vacuum,

but with another inert mass.
Electron dynamic processes in semiconductors consist of not only in acceleration

and kinetic energy, but also in loss of energy, received from the external field, which

is dissipated at electron scattering. In the process of scattering, electrical energy is

transmitted into lattice vibrations that are accompanied by heating (known as a Joule

heat); so the temperature of semiconductor increases under electrical current flow.

When electron kinetic description is given, it is necessary to calculate drift veloc-

ity of electrons υd, if time, during which field electrons are accelerated, is known.

This time is the free path time, and usually it is denoted by letter τ. After this time,

the electron completely loses its energy, and a new period of acceleration is started.

To determine the average drift velocity, acceleration should be multiplied by time τ:

υd ¼�ðeτ=m∗ÞE:
This expression shows that drift velocity is directly proportional to electrical

field. The proportionality ratio, denoted by letter u, is the mobility:

υd5�uE:
FIG. 8.13

Classification of main kinetic effects in semiconductors.
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In its physical meaning, mobility is drift velocity in electrical field of 1V/m (or

1V/cm). For example, at temperature of 300K mobility of electrons in the silicon

is: un¼1450cm2/Vs.

Electrical current is directed movement of charged particles in electrical field.

The density of electron drift flow is the product of electron density n on the velocity
υdn that determines the number of electrons crossing the unit area per unit time. Each

electron has the negative charge “�e.” Current density j¼enυdn¼enuE is directly

proportional to the electrical field (Ohm’s law). Proportionality factor σ ¼ enu is

the specific conductivity. In its physical content, conductivity σ is current density

in electrical field of 1V/m (or 1V/cm).

It is appropriate to remind that classification of solids is based only on their elec-

trical conductivity and semiconductors can be determined as a matter, which occupy

intermediate value of conductivity between dielectrics and metals; however, the

most important fact is that conductivity of semiconductors increases with

temperature rise.

Generation and recombination of charge carriers. At fixed temperature of semi-

conductors, a certain concentration of free charge carriers (n and p types) is formed as

a result of thermal ionization of valence bonds and impurities; this concentration is

the equilibrium concentration and it remains permanent. The independence of equi-

librium concentration on time (at invariable temperature) is conditioned by the

equality of rates of thermal generation and recombination.

Thermal ionization process is characterized by the speed GT that has dimension

[m�3 s�1]: this is number of free charge carriers that are generated in unit volume per

unit time. By the same dimension, the rate of recombination RT is characterized. In a

state of thermal equilibrium, the equal exchange by charge carriers takes place

between the conduction band and the valence band; the same exchange occurs

between bands and impurities levels. This exchange is accompanied by change of

carrier energy through the absorption and birth of thermal vibrational energy quanta
(phonons). During thermal generation, the electrons absorb phonons (total energy of

phonons reduces), while during electron recombination, the birth of phonons occurs

(total energy of phonons restores). A condition of thermodynamic equilibrium of

interchange is GT¼RT.

At temperature 300K, in a state of thermal equilibrium, characteristic frequency

of interchange conversions is about 1013Hz, and the average time of a single charge

carrier existence in their free state (depending on purity and quality of crystal) is

10�4–10�11 s. During this time, the electron, moving with a velocity of

�2.5�105 m/s, “finds” the appropriate hole with correspondent spin direction (or

find ionized donor or find nonionized acceptor), and localizes for some time. Follow-

ing interactions in the lattice of semiconductor results in the birth of electrons (with

phonons absorption), and everything starts from the beginning.

Free charge carriers in the conduction band (or holes in the valence band) can be

obtained not only by thermally activated generation but also with other energy

sources, such as the light energy, the energy of electrical field, the energy of radi-
ation, and others. In these cases, nonthermal generation happens.
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Therefore total concentration of electrons (or holes) consists of two parts: the

thermal (equilibrium) carriers n and p and the excess (nonequilibrium) carriers

Δn and Δp, conditioned by nonthermal energy sources. Excess charge carriers vio-

late the energy balance and balance of concentration in the conduction band or in the

valence band. At the time of phonon relaxation, the excess charge carriers acquire

energy equilibrium within the band, but equilibrium in concentration remains

disturbed.

The stationary equilibrium (independence on time of excess charge carriers con-

centration) can be set at condition, when the rate of nonthermal generation G and the

rate of recombination of excess carriers R are identical: G¼R. This condition, how-
ever, differs from thermodynamic equilibrium conditions:GT¼RT. The fact is excess

charge carriers occur not because of absorption of phonons, and, therefore, do not

change total energy of phonons. The energy that they have to lose through the recom-

bination often is beyond the phonon energy spectrum; therefore, this energy cannot

be directly transformed into thermal vibrations of atoms.

Recombination is a process of restoring equilibrium concentration, broken by the

nonthermal mechanisms of generation. Recombination comes down ultimately to

restore the state of thermodynamic equilibrium of concentration. The energy of each

individually taken electron, during quantum transitions, changes instantly, but the

number of transitions per unit time (i.e., frequency) is limited, so the restoring of

equilibrium concentration requires a certain amount of time.

The rate of recombination R is the number of electron-hole pairs, which recom-

bine per unit time in unit volume. In these processes, the recombination rate is

R¼�dΔn
dt

¼�Δn
τ
¼�n�n0

τ
,

whereΔn is concentration of nonequilibrium carriers and τ is relaxation time, during

which the excess concentration of charge carriers in the process of recombination

reduces by 2.7¼“e” times (Fig. 8.14).
FIG. 8.14

Relaxation processes under rectangular light pulse.
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Graphic representation of relaxation process in normalized coordinates is shown

in Fig. 8.14 for conditions when nonequilibrium carriers are generated by rectangular

light pulse [Fcy](t) with duration T. At the time of light pulse, charge carrier con-

centration increases and gradually reaches saturation; after light switching off, it

gradually falls to the equilibrium concentration.

Defined in this way (with exponential decrease), parameter τ is average time of

recombination process called the lifetime of excess charge carriers.
The principle of operation of almost all electronic devices is based on the phe-

nomenon of injection of nonequilibrium charge carriers that is realized by the impact

of external forces on a crystal. For this reason, just the recombination rate determines

the operation speed of devices. The higher the recombination rate, the higher the

operation frequency of device. This speed is characterized by the lifetime of charge
carrier τ, that is, characteristic time, after which excessive concentration of charge

carriers is reduced by “e” times through their recombination. Thus the average time τ
characterizes the existence of excessive concentration and it depends on temperature,

as well as on mechanisms of recombination in the semiconductor.

During recombination, the energy, obtained at generation, returns to the lattice or

environment. Mechanisms of recombination can be classified based the ways of

energy returning, released during the act of charge carrier capturing by crystal during

the recombination.

Recombination can be distinguished in two ways [8]:

• “band-to-band” recombination, at which excessive electrons are directly

transferred from the conduction band to the valence band (this is characteristic of

the direct-gap semiconductors);

• recombination through deep impurity levels, located in the bandgap of

semiconductor (this is characteristic of the indirect-band semiconductors).

The most likely mechanisms of recombination in semiconductors are:

• phonon recombination (direct energy transmission to lattice vibrations);

• radiating recombination (when energy released in the form of quantum of

electromagnetic radiation);

• impact recombination, when energy originally is delivered to nearby free electron

(or hole), which then gives the excess energy to atomic lattice vibrations or to

other charge carriers.

Comments. Recombination through the localized centers, sometimes, is called as

Shockley-Read-Hall recombination (or trap-assisted recombination). In this case,

the electron, during transition between bands, passes through the localized state, cre-

ated in bandgap by deep-level traps. This trap coordinates electron and hole

impulses. Such a process of recombination is dominant in silicon and in other indi-
rect bandgap semiconductors. In the direct bandgap semiconductors, the radiative
recombination can also occur that is accompanied by spontaneous emission of pho-

tons, whose wavelength corresponds to the released energy [5].
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Charge carrier scattering. Drift mobility of charge carriers in electrical field

depends on the free path length, and, thus, it is defined by the scattering processes

while electrons move in a semiconductor. The scattering process lies in the distortion

of charge carrier trajectory under the influence of forces acting on the electron or hole

from the center of scattering.

If the center of electron scattering is the positive ion (e.g., ion of donor), the force
of dissipation will be Coulomb potential. Similarly, the negative ion of acceptor
strongly dissipates the holes. If center of scattering is the neutral atom of impurity,

free electron collides with this atom and knocks another electron out of this atom.

Then, the first electron remains in the atom, while the knocked electron, receiving

the energy, moves by altered trajectory. As electrons are indistinguishable, the act

of electron sharing can be considered as the act of electron’s trajectory changing

while scattering. A characteristic feature of scattering on neutral atoms is the inde-
pendence of relaxation time on energy and temperature.

The process of electron scattering by thermal lattice vibrations is considered as

collisions with phonons. As the number of phonons is determined by temperature, the

charge carrier scattering depends on the temperature. Structural defects in crystal lat-

tice also can serve as centers of electron scattering: just as dislocations so also vacan-

cies; moreover, the electron-on-electron scattering is also possible. In the actual

semiconductors, multiple scattering mechanisms can be found simultaneously,

and the contributions of each of them can greatly vary with temperature and with

concentration of impurities.

Electron and hole mobility. Free charge carriers always are in a state of chaotic

motion that occurs with a high speed. Under normal conditions, the average speed of

electron’s chaotic motion is about 105 m/s. If the concentration of free carriers in

semiconductor is distributed unevenly, a diffusion occurs: the flow of charge carriers

from the area of higher concentration to the region of lower concentration.

Under electrical field influence on thermal chaotic traffic, the directed drift of

charge carriers is superimposed. The average drift velocity in the weak electrical

field is proportional to field strength (Ohm’s law). However, in the strong electrical

field, charge carrier drift velocity saturates because carrier velocity cannot exceed
the velocity of thermal motion.

The ability to increase electron velocity by the increase in electrical field is

described by the drift mobility of charge carriers. This mobility is very crucial for

high-frequency devices as it defines the frequency limit of semiconductor applica-

bility at very high frequencies.

Charge carrier mobility depends on temperature and on defect concentration

(especially, on the charged impurities, such as donors and acceptors). Fig. 8.15

shows temperature dependence of mobility with the example of silicon. This temper-

ature dependence is characterized by a maximum, which is located at relatively low

temperatures. Two basic processes of charge carrier scattering affect mobility u: the
scattering on ions uion (charged impurities) and the scattering on lattice vibrations—

phonons uphon:

1=u¼ 1=uiоn + 1=uphon:



FIG. 8.15

Experimental dependence of drift mobility of electrons in silicon with different impurities,

phosphorus dosed: 1—4.7 � 1017cm�3; 2—2.7 � 1018cm�3; 3—4.7 � 1019cm�3;

4—4.7 � 1020cm�3; dotted line indicates the static dependence u(T)¼15 � 105 T�3/2.
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The first component influences mobility mainly at low temperatures, and its temper-

ature dependence follows the law uiоn�T+3/2. Indeed, according to experiments, in

the temperature range of �200 to �50°C charge carrier mobility increases signifi-

cantly (Fig. 8.15, curves 1 and 2) for crystals with low concentration of impurities (if

there are too many impurities, this growth is not seen). Increasing mobility when

temperatures decrease is explained by the increasing of charge carrier velocity.

Indeed, in case of high velocity the time of charge carrier interaction with defects

decreases, thus mobility increases.

The second component, namely, charge carrier scattering on phonons, con-

versely, rapidly decreases with increasing temperature: uphon�T�3/2. Thus, total

dependence u(T) is characterized by a maximum (Fig. 8.15).

The Fermi level. To determine the number of free charge carriers in a semiconduc-

tor, it is necessary to know the number of energy levels (states) in the conduction band

actually occupied by electrons, and the number of free levels (states) in the valence

band. Depending on temperature and energy, the probability of finding an electron

in given energy levelw(T,E) is defined by the Fermi-Dirac energy distribution function

wðT;EÞ¼ f1 + exp½ðE�EFÞ=kBT	g�1;

where kB is Boltzmann constant, T is absolute temperature, and EF is Fermi level (see

Section 4.4). From this formula, it can be seen that distribution function for the level

E¼EF at T 6¼ 0 equals w¼½. Thus, the Fermi level is such an energy level where the

probability of its filling at given temperature (other than absolute zero) is equal to½.
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In metals at temperature T ¼0, the Fermi level divides conduction band in a

half—on the filled part of a band, and on the empty part of a band, without any

energy gap between these parts (see Section 4.4). In the semiconductors in the

absence of external influence and T ¼0, the valence band is completely filled,

while the conduction band is free of electrons. It can be concluded that the

Fermi level in the semiconductors is located inside the energy gap (in the

forbidden zone).

Only at first glance, this conclusion contradicts the definition of Fermi level (as a

level, the probability of filling at a temperature, other than zero, equals to½). In fact,

Fermi-Dirac distribution function is valid only for the allowed energy states; there-

fore, this conclusion does not mean that electrons obviously have to be on the

Fermi level.

Calculations show that in the intrinsic semiconductor the Fermi level is located

almost in the middle of the band gap:

EF ¼ Ec +Evð Þ=2 + 2=3kBT ln me
∗=mp

∗
� �

,

where me* and mp* are effective masses of electron and hole, respectively. The con-

cept of “effective mass” makes it possible to describe the movement of “free” charge

carriers in semiconductors like moving charged particles excluding periodic field

crystal lattices. For electrons located near the bottom of conduction band, their accel-

eration in the free path is proportional to attached force.

It is worth recalling that effective mass is introduced as a proportionality coeffi-

cient between force and acceleration, similar to Newton’s second law. Mass of elec-

tron in the lattice might appear to be even less than the mass of electron in free space.

During electron motion in a crystal in the absence of external field, its total energy

remains constant. Through periodicity of field action in crystal lattice, only the ratio

between potential and kinetic energy changes periodically. At that, the average

velocity of the electron remains constant.

Under the influence of external electric field, movement of electron can be chan-

ged in such a way that much work of the external field is spent for potential energy

increase; then, under the influence of the electrical field the velocity of electron

might increase less if electrons have a mass equal to mass in a free space. Thus, dur-

ing movement of electron (under influence of external field), the change of its kinetic

energy surpasses the work of force (due to potential energy partial transition into

kinetic energy), and electrons can have a velocity of particle lighter than electrons

in free space.

It is already established that the Fermi level in the intrinsic semiconductor is allo-

cated near the middle of the energy gap, and it depends only on the ratio of effective
masses of electron and hole (Fig. 8.16A). In the electronic-type semiconductor, the

Fermi level is placed closer to the bottom of the conduction band (Fig. 8.16B), while

in the hole-type semiconductor it is closer to the ceiling of the valence band

(Fig. 8.16C). However, with increasing temperature, intrinsic conductivity begins

to prevail over the impurity conductivity, and the Fermi level moves to the middle

of the energy gap (Fig. 8.16B and C).
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Regulation and temperature dependence of Fermi level in a semiconductor: (A) intrinsic type,

(B) electronic type, and (C) hole type.
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Knowing Fermi level position (which is electrochemical potential for metals and

semiconductors) is crucial for the development of various semiconductor devices

and microelectronic circuits [1].

Semiconductors in strong electrical field. Electrical field affects both the mobil-

ity and the concentration of charge carriers. There are several explanatory mecha-

nisms for charge carrier concentration increase in a strong electrical field:

electrothermal ionization, electrofield ionization (tunnel effect), and ionization by

the collisions.

Electrothermal ionization mechanism is seen mostly at low temperatures, when

concentration of electrons in the conduction band is determined by the probability of

donor level releasing (or flipping-over electron to acceptor levels). In case of elec-

trical field influence on electrons located in the donor level, except Coulomb attrac-

tion to positive ion (donor), the additional force acts: F¼ �qE, which can help to

break away the electron from a donor, and the electron becomes free. This increases

the probability of electron transition from donor levels into the conduction band,

which means an increase in charge carrier concentration and increased conductivity

of a semiconductor.

At higher temperatures, when donors (or acceptors) are totally ionized, the main

role in the increase in charge carrier concentration is played by the phenomena asso-

ciated with ionization by collisions, as well as electrostatic (tunneling) ionization in

the strong electrical fields.

Thermal conductivity (see Fig. 8.13) in semiconductors is due to the tendency of

a system to take up the state closer to thermodynamic equilibrium, which is a result of
temperature equalization. As it was shown previously in Section 3.8, if the temper-

ature gradient exists in a crystal, the energy flow occurs, which is directed opposite to

temperature gradient: ΔQ¼�λ grad T.
Kinetic coefficient λ¼ΔQ/gradT is the thermal conductivity. It is the amount of

energy passing in unit time through unit cross section of sample being created by

temperature gradient. In solids, thermal energy is usually transferred by the electrons
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and by the elastic waves—phonons. In metals, electronic heat transfer dominates,

while in dielectrics, phonon mechanism prevails.

The heat transfer in semiconductors may be implemented by many mecha-

nisms [5]:

λ¼ λphon + λe + λbp + λphot + λexc:

Designations:

λphon—phonon thermal conductivity, when heat transfer is caused by thermal

vibrations of crystal lattice atoms or ions;

λe—electron (or hole) thermal conductivity, when heat transfer is due to free

charge carriers;

λbp—bipolaron thermal conductivity, which is due to movement of electron-

hole pairs;

λphot—photon thermal conductivity, which is due to heat transfer by

electromagnetic radiation;

λexc—exciton thermal conductivity due to movement of excitons.

The mechanism of phonon thermal conductivity is universal for all solids; it was dis-
cussed in Section 3.6 in detail. Coefficient λphon¼ (1/3)C 
υ 
 l¼ (1/3)C 
υ2 
τ, where
C is heat capacity, υ is average velocity of photons, l is average free path of phonons,
and τ is free run time. Temperature dependence of phonon thermal conductivity

shows a maximum at temperature close to 0.1 θD, below this maximum the λphon fast
decreases.

The electronic thermal conductivity mechanism dominates in metals, and it is

associated with conductivity by Wiedemann-Franz law that was considered earlier

in Section 3.8. The ratio λe/σ¼L 
T (where L is Lorentz number which is same

for all metals) witnesses that thermal conductivity is directly proportional to absolute

temperature T.
Bipolar, exciton, and photon thermal conductivity mechanisms are specific to

semiconductors.

The bipolar thermal conductivity is due to intrinsic electrical conductivity of

semiconductor crystals. The number of electrons and holes near the hot end of a

semiconductor is larger than that near the cold end, and this causes the diffusion
of electron-hole pairs from the hot end to the cold end of a sample. At that, on

the hot end of a sample, energy is absorbed as it is required to form electron-hole

pairs, while on the cold end of a sample, energy is released during recombination

of electron-hole pairs. This energy consists not only of kinetic energy of electrons

and holes, but also of energy required to move electrons from the valence band to

the conduction band that is equal to the width of the band gap.

In most semiconductors Eg ≫ kBT; for this reason, the energy, which is trans-

ferred by electron-hole pairs, is much more than energy that is transferred by each

of charge carriers in the event of impurity conductivity. Thus, in the case of intrinsic

electrical conductivity, additional heat flow appears, hence the extra thermal
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conductivity λbp occurs—due to bipolar diffusion. It is obvious that bipolar conduc-

tivity depends on the concentration of electron-hole pairs and on bandgap width.

Regarding bipolar thermal conductivity, the following expression is proposed,

which is similar to electronic thermal conductivity:

λbp¼LbpσT,where Lbp is similar to Lorentz number (see Section 2.8), but it is spe-

cific to the bipolar thermal conductivity [8].

In semiconductors of complex energy band structure, by the analogy with pro-

cesses of charge carrier electro-transportation, similar contributions to heat transfer

of various types of charge carriers should be considered, as well as in the case of

interband scattering. For example, in the p-type semiconductors (GeTe, SnTe, PbTe,

Cu2Te), where in the valence band two sub-bands exist (for light holes and heavy

holes, Fig. 8.17), the contribution to thermal conductivity from heavy holes increases

with temperature rise. Thus, while temperature increases, diffusion of charge car-
riers from sub-bands makes an additional contribution to the bipolar thermal

conductivity.

At the hot end of a semiconductor, the concentration of carriers in the sub-band of

light holes is larger than that in the cold end. During carrier diffusion from sub-band

of light holes into sub-band of heavy holes, the energy releases, which is equal to

energy of spacing maxima of these sub-bands. Therefore, the additional thermal con-

ductivity occurs by the diffusion of charge carriers.

Photon thermal conductivity is important in those semiconductors in which

absorption coefficient in the thermal radiation range is small, and, therefore, photons

have a big free path. Therefore, the contribution of heat transfer by electromagnetic

radiation should be taken into account.
E
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FIG. 8.17

Energy structure of a semiconductor with a complex valence band.
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Thermal conductivity by excitons is caused by their diffusion in the case of tem-

perature gradient existence. This process becomes important when semiconductor is

inclined to the formation of excitons.

Thermoelectric effects (see Fig. 8.13) are a set of phenomena, by which temper-

ature difference creates the electrical potential, or electrical potential creates the dif-

ference in temperature. In the case of heat flow, which is partially caused by the

charge carrier movement, an electrical field appears. Since both average energy

and concentration of charge carriers increase with temperature rise, the stream of free

charge carriers arises, being directed by temperature gradient rT.
Thermoelectric effects are various phenomena in crystals associated with charge

carrier transfer in a condition of temperature gradient. They include the Seebeck

effect (thermoelectromotive force origination), the Peltier effect (electrostimulated

change in temperature), and the Thomson effect (heat transfer by charges flow)

(Fig. 8.18).

According to Seebeck effect, in a closed electrical circuit composed of heteroge-

neous conductors EMF (thermoelectricity) occurs, if contacts have different temper-

atures. In this case, a circuit consisting of two different conductors is the

thermocouple. The value of thermoelectric power depends on the material of conduc-

tors and on temperatures of hot (T1) and cold (T2) contacts. In case of not very large

temperature difference, thermoelectric power can be considered as being propor-

tional to difference in temperature:

U¼ α T2�T1ð Þ,
where α is thermoelectric ability of contacted couples (Seebeck coefficient). The

coefficient α is determined by conducting materials, and also it is dependent on tem-

perature (in some cases, α even changes its sign with temperature).

In metals, in which speed of charge carriers is very weakly dependent on temper-

ature (through electronic gas degeneration), thermoelectricity effect is rather small,

but, nevertheless, sometimes it is used tomeasure temperature. In some semiconduc-

tors, the thermoelectromotive force reaches thousands of microvolts per degree,

which makes such materials useful in thermal generators for the direct conversion

of heat into electricity. Thermoelectricity is applied also to create very small and very

precise temperature sensors (in particular, required in the computers).

Various mechanisms of thermoelectricity can be distinguished:
FIG. 8.18

Classification of thermoelectric effects in semiconductors.
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• Temperature dependence of electron average energy. If there is a temperature

gradient along a conductor, the electrons, located in the hot end, acquire higher

power and velocity than the electrons located in the cold end; in addition to

velocity, in semiconductors the concentration of conduction electrons increases

with temperature. The result is a flow of electrons from the hot end to the cold

end; as a result, on the cold end negative charge is accumulated, while on the hot

end uncompensated positive charge remains. This process of charge

accumulation is continued as long as the potential difference that appears does

not allow electrons to flow in the opposite direction, thus establishing the

balance. Thermal EMF that occurs according to this mechanism is bulk

thermoelectric power (or volume EMF).

• Temperature dependence of contact potential difference. Contact potential
difference is caused by the difference between Fermi energies of contacting

conductors. When contact is created, the electrochemical potentials of electrons

become similar; therefore, difference in contact potential that occurs equals to

U¼ F2�F1ð Þ=e,
where F is Fermi energy and “e” is charge of electron. As a result, on contact, being
localized in thin near-contact layer, electrical potentialU exists. When a closed elec-

trical circuit from two contacting metals is created, this potential appears on both

contacts. Electrical field will be directed in the same way in both contacts—from

the larger F to the smaller one. This means making a roundabout way along a closed

circuit, in one case, the bypass will be on the field, and another against the field. The

circulation of vector E will be zero.

If temperature of one of contacts changes, then, as Fermi energy depends on

temperature, potentialU also changes. However, in this case the contact potential

also changes; therefore electrical field will be changed in one of contacts, and

vector E circulation becomes nonzero: in the closed circuit, the EMF appears,

which is the contact EMF. If both thermocouple contacts have the same

temperature, then contact EMF and bulk thermoelectric effect will disappear [8].

• Phonon capture. If in the solid a temperature gradient exists, the number of

phonons moving from the hot end to the cold end will be higher than reverse

moving. As a result of collisions with electrons, the phonons can capture

electrons, so the cold end of a sample acquires negative charge (for hot end,

positive charge), as long as the potential difference does not counterbalance the

effect of capturing. This potential difference is the third component of

thermoelectric power.

The effect of electron capturing by phonons seen in metals can be seen in semicon-

ductors too. However, it is usually considered that in semiconductors charge carriers

interact only with long-wave phonons. Therefore, the greater the effect of carrier cap-
turing by phonons, the stronger the interaction of phonons with carriers and the

greater relaxation time of long-wave phonons. Thus, at low temperatures, this cap-

turing should occur stronger than that at high temperatures, as in the first case phonon

distribution slowly returns to equilibrium.
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It has been found experimentally that at low temperatures this additional thermo-

electric power may be hundreds of times greater than conventional thermoelectric

effect, caused only by the effect of temperature gradient on charge carrier movement.

In case of high temperatures, the role of phonon-to-phonon scattering increases and

electron capturing effect disappears.

It should also be noted that in the magnetics one additional thermoelectric com-

ponent exists, when electrons are captured by the magnons.

The Peltier effect in some ways appears to be the opposite of Seebeck effect, and

lies in the fact that, when current passes through a conductor (or semiconductor),

some heatQP is released or absorbed in the contacts (depending on current direction),

at that QP is proportional to the amount of electricity I 
dt, passed through contact:

QP ¼P 
 I 
dt:
where P is kinetic coefficient of the Peltier effect.

When external electric current coincides with the direction of thermoelectric cur-

rent, this contact is cooled. The analogy with Seebeck effect means that electrical

current circulation through a circuit consists of two different substances; in the

absence of initial temperature gradient (rT¼0) the current cools one contact and

heats another contact. It should be noted that in the case of Seebeck effect external

electrical field is absent, but the temperature gradient exists (rT 6¼ 0).

The Peltier effect can be explained on the basis of metal-semiconductor energy

diagram. For definiteness, a contact “metal–n-type semiconductor” is considered in

the condition, when work function of electrons in metal is greater than that in semi-

conductor: Fm > Fs. The cause of thermoelectric effect is that average kinetic energy
of electrons (that are involved in electrical current creation) in metal and in semicon-

ductor is different. It is important that in the metal only those electrons are involved

in charge transfer whose energy is located near Fermi surface. However, in the n-type
semiconductor, current can be carried by electrons, located in the conduction band.

The energy of electrons in the conduction band of semiconductor is greater than the
energy of electrons in the metal at the Fermi level on a value Ec �Fm.

Under the influence of the external electric field, directed in such a manner that

electron transition occurs from semiconductor to metal, the higher-energy electrons

of a semiconductor penetrate into the lower Fermi level of the metal; next, during

collisions with atoms of metal, these electrons return their excess energy. The heat,

released in this way, is a Peltier heat. As the electrons reach thermal equilibrium as a

result of small number of collisions in the vicinity of contact, almost all Peltier heat is

released just in the contact. In case of the opposite direction of external electrical

current, the electrons can move from the metal to the semiconductor only by over-
coming energy barrier Ec �Fm. To do this, the electrons have to get energy from lat-
tice, causing the cooling of conductor in the contact area.

When two metals are in contact, the Peltier effect is so small that it is indistin-

guishable against the background of ohmic heating. Therefore, this effect has prac-

tical applications only with the contact of two semiconductors [3].
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Thus, the electrical current actually transfers heat from one side to the opposite

side of the Peltier element and creates the temperature difference. When the heated

side of Peltier element is additionally cooled, for example, by a fan or heat sink, the

temperature of the cold side becomes lower. In the single-stage element, depending

on the type of element and current value, temperature difference can reach up to

about 70K.

The Thomson effect is the heat transfer by a current, flowing through homoge-
neousmaterial in which temperature gradient is created. In the volume of a conduc-

tor, a certain quantity of heat is absorbed or released (depending on current

direction), that is proportional to current strength, time, and temperature gradient:

QT ¼ τTdt=rT,

where τT is the kinetic coefficient of the Thomson effect.

The physical cause of the Thomson effect can be explained by examining heat

transfer by free charge carriers in the external electrical field. Such conditions are

considered, when along the conductor, through which electrical current flows, the

temperature gradient exists, and direction of this current corresponds to electrons

moving from the hot end to the cold end. Electrons, moving from hot to cold areas,

give excess energy to the surrounding lattice, wherein heat is released, and the con-

ductor is heated. If the direction of current were to be reversed, the electrons will

move from the cold area to the hot area, acquiring energy from the lattice. Obviously,

this case corresponds to absorption of heat.

The Thomson effect in a heterogeneous semiconductor can occur in the absence

of external electrical current. If the conductor were to be heated unevenly, the charge

carrier concentration will be greater in the area where temperature is higher. There-

fore the temperature gradient will result in carrier concentration gradient, and, hence,

there will be the diffusion current. The separation of charges creates internal electri-
cal field [8].

In the absence of current flow (I ¼0), the following expression can be obtained

for electrical field appearance in the case of thermoelectric effects:

E¼ΔF=e+ αrT:

This ratio describes all three thermoelectric effects. It should be noted that in terms of

mechanism of heat release or absorption, the Peltier and the Thomson effects are sim-

ilar. The Thomson effect is the release of energy in a thermoelectric field: Eα¼αrT,
while the Peltier effect is energy release in the an electrical field: E¼1/eΔF.
Between kinetic coefficients of all thermoelectric effects there are relationships,

which can be obtained from thermodynamics;

α¼P=T;
τT ¼�T 
 dα=dT:

Thus, all thermoelectric phenomena are closely related to each other, and can be

described by only one parameter α determined experimentally.
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8.5 OPTICAL PHENOMENA IN SEMICONDUCTORS
Optical phenomena include a large group of effects occurring in crystals during their

interaction with electromagnetic radiation of optical wavelengths. It is assumed that

on crystal the incident electromagnetic irradiation (light) acts with wavelength λ and
intensity Iinc(λ). By investigating reflected light intensity Iref(λ) and intensity of light,
passing through a sample Ipass(λ), it is possible to study processes that occur in a crys-
tal under light illumination [3].

To describe optical effects, such characteristics are introduced:

The reflection coefficient R(λ) that is given by ratio

R λð Þ¼ Iref λð Þ=Iinc λð Þ,

which describes the part of light, reflected from crystal, to the incident light; R(λ) is
the dimensionless value that very often is expressed in percentages. Reflection coef-

ficient is described by the relationship:

R λð Þ� n�1ð Þ2 + k2
h i

= n+ 1ð Þ2 + k2
h i2

,

where n and k are real and imaginary parts of the complex refractive index: n*¼n� ik.
Both parameters n and k are dimensionless, and depend on dimensionless complex

dielectric permittivity: ε*¼ε0 � iε00. Refractive coefficient equals n¼ (εμ)1/2� (ε)1/2,
because in optical range magnetic permeability μ�1; correspondingly, absorption

index is k¼ε00/2n.
In metals photon energy is spent on the excitation of free electrons that are char-

acterized by the quasicontinuous energy spectrum. Light absorption in metals occurs

only on surface (within a few atomic layers), and it is accompanied by the reradiation

of photons. This explains the large (over 95%) light reflectivity of metals.

Semiconductors usually have optical refractive index n¼3–4, while reflection

from semiconductors in far-infrared illumination is characterized by a value

R(λ)¼25%–40%. However, in the visible optical range, when energy of incident

light quanta exceeds the bandgap of semiconductor, the fundamental absorption
is observed with k ≫ n. The point is that on the surface of the semiconductor under

the influence of light a large concentration of excited free charge carriers appear; thus

optical reflectance of semiconductor is R(λ)�90%; they show a “metallic luster” and

are almost opaque. The main condition of fundamental light absorption in semicon-

ductors is that photon energy hν is sufficient for valence bond photo-ionization:

hν � Eg, where Eg is bandgap of semiconductor.

The absorption coefficient α is determined by the index of absorption k and light
wavelength λ: α¼4πk/λ; it is characterized by light intensity absorbed in a sample

having unit of thickness (Bouguer-Lambert law):

Ix ¼ Iinc 1�Rð Þ e�αx, α¼ x�1 ln Iinc 1�Rð Þ½ 	=Ixf g:
The value of (1�R) is a fraction of light that passes through illuminated surface into

the sample (taking in account reflection coefficient R). When passing any layer of
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Optical phenomena classification of semiconductors.
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material, the intensity of luminous flux decreases to a certain part, dependent only on

thickness. It is assumed that the loss of photonic beam in the media is independent of

light intensity and on thickness of absorbing layer. Absorption coefficient α has the

dimension of inverse length, measured in cm�1.

During crystal illumination, the energy of incident photons is transmitted into the

semiconductor, resulting in quite different physical or chemical processes

(Fig. 8.19).

The external photoelectric effect in the optical range in semiconductors is insig-

nificant (unlike metals). In order to demonstrate this effect, it is necessary that energy

of absorbed quantum is sufficient to release electrons from the valence band and

throw them outside. This process requires considerable energy; therefore, external

photoelectric effect in semiconductors under light irradiation becomes noticeable

only at frequencies, which are much higher than the frequency of visible light. Typ-

ically, a part of very high-frequency radiation in total incident solar radiation is rel-

atively small; therefore, external photocurrent in conventional semiconductors

is small.

Photoluminescence is secondary radiation, conditioned by quantum excitation of

matter by light; it is explained by electron quantum transitions in atoms or ions from

the excited state to the basic state (or to less excited state). During absorption of a

light in semiconductors, a pair of free electrons and holes appear. These free charge

carriers are in the excited states only for a certain period of time τ (lifetime), and then,

usually, electrons and holes recombine. The energy that is released during recombi-

nation might be reradiated as photons. This is the phenomenon of

photoluminescence.

Secondary radiation arises when a system is in the nonequilibrium state. Return

to an equilibrium state can be different. The luminescence that occurs only during the

excitement is the fluorescence, while another that continues for some time after exci-
tation is the phosphorescence.

There are some specific mechanisms of photoluminescence. Spontaneous lumi-

nescence occurs, when, at first, nonradiating transition from the excited level to the

basic energy level occurs; at that, further radiation takes place. This type of lumines-

cence is a characteristic of the impurity states in solids. Forced luminescence is

defined as a process that occurs after energy absorption, that is, at transition to
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intermediate (metastable) level, from which further transitions take place. Recombi-
nation luminescence occurs as a result of particles reassociation (they were departed

due to absorption of exciting energy). Recombination luminescence is an important

characteristic to study defects or impurity centers in semiconductors.

Therefore, luminescence refers to nonequilibrium optical phenomena that are

important characteristics of semiconductors and also used in manufacture of corre-

spondent devices [8].

The internal photoelectric effect is caused when an illumination of a number of

free electron-hole pairs appears near the surface of a semiconductor. This occurs

when photon energy is sufficient for tearing off electrons from atoms and throwing

them over from the valence band to the conduction band. This absorption of light is

intrinsic absorption.
Study of absorption spectrum is an important experimental method of investigat-

ing solid band structure, especially for semiconductors. Light absorption shows a

sharp increase when energy of photons equals or exceeds the energy gap between

the valence and conduction bands (i.e., forbidden energy of semiconductor). At that,

the impulse of photon h/λ (where λ�10�4 cm is the average optical wavelength) is

very small as compared with the impulse of electron in crystal h/a (a � 10�8 cm,

lattice parameter); therefore, impulse of electron is practically unchanged during

photon absorption.

During illumination by a light, the concentration of electrons and holes greatly

increases, resulting in electrical conductivity of semiconductor increasing vastly.

Under the influence of external factors in pure monocrystalline, semiconductor-

induced conductivity exhibits an intrinsic character, because it is caused by the

excited state of semiconductor atoms. Optical absorption of solids is usually

described by the frequency dependence of absorption coefficient α.
The photoresistivity (and photoconductivity) of semiconductor is the conse-

quence of internal photoelectric effect, and it is conditioned by light generation of

charge carriers at the expense of intrinsic or impurity absorptions. Regarding semi-

conductor illumination and the following light absorption, one photon usually gen-

erates one electron-hole pair. As in the light beam, there are a large number of

photons, thereby significantly increasing electrical conductivity during illumination.

The effect of photoconductivity is used to create a wide class of electronic devices.

Total conductivity σph under light irradiation and absorption can be presented in

two parts:

σph ¼ σ0 +Δσgen ¼ e n0un + p0up
� �

+ eΔn un + up
� �

,

where σ0 is dark conductivity (stationary),Δσgen is conductivity caused by light absorp-
tion, andΔn is charge carrier density, generated by light.With regard to practical appli-

cation, photoconductivity should be the dominatingmechanism:ΔσгeH ≫ σ0. This can
be achieved in the intrinsic or in the weakly doped semiconductors.

Charge carrier generation by light depends on a value of quantum yield η, which
is a number of free charge carrier pairs that single photon creates during light absorp-

tion. Quantum yield depends on the frequency of falling light (Fig. 8.20). In germa-

nium, the photogeneration starts with energy Eg¼0.68eV (Fig. 8.20A), and in the
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Spectral characteristics of photoelectric effect; internal quantum yield at different

temperatures: (A) in Ge at 300K; (B) in Si: 1—at 100K, 2—300K; 3—at 400K.
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frequency range of 1–2.7eV the quantum yield is constant value η¼1, that is, one

photon generates one electron-hole pair. The excess energy (relatively Eg) is dissi-

pated with phonon generation. With further increase in energy, one photon generates

more than one pair of charge carriers. Excess energy is sufficient for both interband
impact ionization of valence bonds and formation of additional electron-hole pairs;

therefore, quantum yield increases: η>1.

The effect of temperature change on quantum yield is shown, for example, for

silicon in Fig. 8.20B. With increasing temperature, the limiting power of early inter-

band ionization shifts toward the smaller values of photons energy that can be

explained by the bandgap decrease with temperature [8].

Thus, in case of internal photoelectric effect of valence bonds, ionization

becomes possible, creating the secondary electron-hole pairs that increase quantum
yield. When η>1, energy of photons corresponds to violet light waves.

The photovoltaic (Dember) effect is bipolar diffusion of charge carriers gener-

ating EMF. The nature of this effect can be explained in the following way: light

is absorbed in the surface layer of the semiconductor while average thickness of this

layer is equal to the track length of photons (light cannot penetrate deep into the vol-

ume of semiconductors). Thus, the surface layer of a semiconductor becomes a

source of nonequilibrium electron-hole pairs. This random generation of charge car-

riers is irregular and decreases exponentially (Bouguer-Lambert law).

As a result, common bipolar (electron and hole) diffusion occurs directed to the

depth of a semiconductor due to gradient of excessive concentration of charge car-

riers. As diffusion streams of electrons and holes spread in the same direction, these
streams could compensate each other—in case of identical values of electron and

hole diffusion coefficients. However, because the rate of electron diffusion is greater

than the rate of hole diffusion, electroneutrality is violated: electrons have greater

mobility (and higher diffusion coefficient), thus charges become spatially separated.

The space charge appears, and, as a result, the electrical field is directed along the

flow of separated charges.
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As a consequence of such dynamic polarization between illuminated surface and

the opposite (dark) surface of a semiconductor sample with thickness d, the differ-
ence of potentialUD and static electrical field ED appears, which is called theDember
field:

ED ¼UD=d:

Potential difference UD for germanium and silicon is from tens of microvolts to sev-

eral millivolts.

Thus, in simplified definition, the Dember effect is violation of electrical neutral-

ity in a semiconductor during light absorption that is explained by different mobility

of electrons and holes.

Light absorption mechanisms. Light absorption is the decrease in optical radi-

ation intensity during light passage through a matter and interacting with it, causing

light energy conversion into other forms of energy. Usually, absorption coefficient

does not depend on light intensity, but it is different for various wavelengths [8].

With the assumption of exponential law of light attenuation, in the depth x of a
sample parameter α can be interpreted as an indicator of photon absorption in the unit
of sample thickness, while value α�1 is the average track length of photons in a sam-

ple. In case of large values of refractive index (n ≫ 1), practically total reflection

occurs: R�1. If absorption is very large, the reflection also will be nearly absolute.

For this reason, a mirror-type luster in the metals is seen, while for most of semicon-

ductors the dim shine is peculiar, because the absorption coefficient of material in

visible spectrum is very large (α � 104cm�1).

The features of spectral dependencies in different parts of optical spectrum are due

to different mechanisms of light wave interaction with a crystal, mainly, thanks to dif-

ferent mechanisms of light energy absorption. Therefore, a theory of optical phenom-

ena in semiconductors is developed conformably to analyze light absorption spectra.

In various spectral ranges, the prevailing mechanisms of absorption should be

identified. As the light absorption is associated with photon energy transformation

into another form of energy in a crystal, the classification of absorption mechanisms

is conditioned by energy states of semiconductor lattice (Fig. 8.21). This diagram

lists only basic mechanisms of light absorption.
FIG. 8.21

Mechanisms of light absorption by semiconductors.
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The intrinsic (or fundamental) absorption is conditioned by electronic transitions

between allowed energy bands. Under these conditions, the interaction of photons

with electrons in the valence band occurs, that is, with own electrons of atoms that

make up the crystal lattice. Photons of certain energy are capable of giving their

energy to electrons and detaching them from atoms, transferring electrons to the

higher energy levels. In this case, photons are absorbed in a crystal.

During intrinsic absorption, the transition of electron can be direct, if the wave
vector of electron remains the same as well as the electron and originated hole have

the same quasi-impulse. The indirect transition occurs with the involvement of pho-

nons, to which the excess impulse of electron is delivered. During frequency depen-

dence of coefficient α study, the energy gap of a semiconductor can be defined by the

edge of intrinsic absorption [2].

The absorption by the free charge carriers is due to electron (or hole) transitions
inside allowed bands, as well as between the sub-bands of the approved band. Thus,
this absorption occurs when photons react with free charge carriers in the permitted

bands. Photon energy is spent on transition of charge carriers to the higher energy

levels. Under the influence of electrical field of light, the charge carriers perform

oscillatory movements, synchronously with the light field, and return accumulated

energy during collisions with lattice sites.

The impurity absorption is due to electron (or hole) transitions between allowed

bands and impurity levels in the forbidden band. In case of impurity absorption of

light, its photons interact with impurity atoms, ionizing or exciting them. The inter-
band absorption can be explained by the transitions of electrons (or holes) between

the impurity states in the forbidden band.

The interaction of photons with impurity atoms has a resonant character. In semi-

conductors, the absorption of photons can be created also by the excitons (bound

electron-hole pairs) that randomly move through a crystal. The excitonic absorption
is due to exciton generation that makes a significant contribution directly near the

fundamental absorption edge, as assessment of energy by excitonic state is small.

The absorption of light by the crystal lattice (phonon absorption) can also occur

in semiconductors. It manifests itself in the far-infrared region of a spectrum. Phonon

absorption is caused by the absorption of light wave energy by atom vibrations in a

crystal by the birth of new phonons in a lattice. In Fig. 8.21, the plasma absorption is
also mentioned; this is energy of light wave absorption by the electron-hole plasma,

which leads to transition of plasma into higher quantum state.

Almost all mechanisms of absorption, which are caused by different electrons (or

holes) transitions, are accompanied by absorption or emission of phonons. The need
for phonon participation in the processes of light absorption is associated with the

implementation of the law of impulse conservation. The fact that a large change

in electron (or hole) impulses during some transitions usually can be caused by small

impulses of photons (which are absorbed at these transitions) that require the partic-

ipation of phonons, which can have quite large impulses.

Therefore many mechanisms of absorption, listed in Fig. 8.21, are the combina-

tion of different mechanisms, which involved electrons and holes, as well as



FIG. 8.22

Scheme of electronic transitions during optical absorption: 1, 1a—intrinsic absorption; 2,

2a—absorption by free charge carriers; 3, 3a—absorption by impurities of closest zone; 3b,

3c—absorption by impurities; 4—interband absorption; 5—excitonic absorption by

excitation; 5a—excitonic absorption by optical decay of excitons.
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phonons. A diagram of electron transitions, responsible for different absorption

mechanisms (1–5), is shown in Fig. 8.22.

Next, basic mechanisms of light absorption will be discussed in more detail. To

assess the role of various absorption mechanisms in different parts of spectrum, the

energy of electronic transitions, occurring in semiconductors, should be

compared [8].

The fundamental (intrinsic) absorption is dominating absorption mechanism in

semiconductors in near-infrared and in visible ranges of spectrum. The main condi-

tion of fundamental absorption is that the energy of photons should be sufficient for

valence bond photoionization:

hν�Eg,

where ν is frequency of incident photons, Eg is bandgap, and h is Planck constant.

Sign of equality in this expression determines the edge of intrinsic absorption:

λk¼hc/Eg, where c is speed of light.

Absorption in the short-wave part of spectrum is accompanied by the bipolar gen-

eration of nonequilibrium electron-hole pairs. The energy and impulse conservation

laws for electronic transitions are determined by the energy band structure of a semi-

conductor. The electron and hole transitions in the k-space are depicted in Fig. 8.23.
Intrinsic absorption of light is shown by transitions 1 and 1a. The transition 1 can be
realized without significant change in wave vector of electrons, and, therefore, this

absorption is the direct intrinsic absorption.
Transition 1a occurs with significant change in electron wave vector. This change

in germanium and silicon has the order of the Brillouin zone size (i.e., k�108cm�1).



FIG. 8.23

Electronic transitions in k-space describing optical absorption: 1—direct transition; 1a—

indirect transition; 2 and 2a—intraband (selective) absorption of free electrons and holes; 2b,

2c, and 2d—selective absorption by free holes.

FIG. 8.24

Electronic transitions (A) and absorption spectra (B, C) in direct-band semiconductor.
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This effect is indirect intrinsic absorption. As already noted, at indirect absorption

phonon involvement is necessary.

From the examination of this transition, it becomes clear that absorption is not

possible in case of small energy of quanta (hν<ΔE). As a result, absorption spec-

trum should have a recession, called the absorption edge at the frequency of photons
ν�ΔE/h.

The direct intrinsic absorption is characterized in detail in Fig. 8.24A, which

shows the band structure of direct-band semiconductor in the neighborhood of

k ¼0. Fig. 8.24B demonstrates the typical character of frequency dependence of

absorption; in semiconductors, it corresponds to parabola of ½ degree.

Observed for direct transitions, parabolic dependence α(ℏω) is a result of energy
band parabolic form. Therefore, deviations in α(ℏω) dependence from parabolic
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character indicate the nonparabolic dispersion law of valence band (or conduction

band). In case of mn*<mp* the function α(ℏω) gives important information about

the shape of the conduction band, while in case of assumption mn* ≪ mp* (often

implemented to narrow-band semiconductors), it is possible to assume that deviation

of α(ℏω) dependence from parabolic law clearly indicates nonparabolic form of the

conduction band.

By observing absorption spectrum of the direct-band semiconductor, it is possible

to determine the width of its energy gap, extrapolating curve of absorption to the

region where α¼0. To increase the accuracy of experiment, it is necessary to extrap-

olate the α(ℏω) dependence in such coordinates, where it becomes straight. Obvi-

ously, the absorption spectrum needs to be built in the coordinates α2(ℏω). In
Fig. 8.24C, this method is used for allowing direct transitions. It is shown that band-

gap can be determined by linear extrapolation to zero [8].

Indirect intrinsic transitions are characterized by different forms of absorption

edge (this case is observed in silicon and germanium). Corresponding valence band

diagram has a form, shown in Fig. 8.25 in the impulse space. The valence band max-

imum Ev is located in the center of Brillouin zone, while the minimum of conduction

band Ec is located on the border of Brillouin zone (or very close to border) so that

change in electron quasi-impulse at transition from Ev to Ec must be very large—

close to the size of a Brillouin zone.

The impulse of absorbed photon pphon¼ℏkphon is small being conditioned by pho-

ton energy ℏω. Assessing ℏω�ΔE�1 eV, the value for kphon can be obtained,

�104 cm�1, which is much smaller than the size of Brillouin zone. Thus the indirect

transitions of electrons cannot be realized only with photon absorption, because the

law of impulse conservation will not be implemented. This law is valid only in case

of phonon absorption involvement (with impulse of large enough magnitude). Then,

for indirect transitions, a law of impulse conservation (neglecting small quantity of

photon impulse) takes the following form:
FIG. 8.25

Direct light passes through intermediate virtual state; dotted line shows transition with phonon

absorption, while solid arrows show transition with phonon generation.
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ℏk0 �ℏk��ℏkphon:

The “plus” sign corresponds to phonon absorption simultaneously with photon (at

the same time), while the “minus” sign corresponds to the birth (generation) of pho-

non while photon absorption.

The law of photon energy conservation in case of indirect transitions takes the

form:

Eh0 �Eh ¼ℏω�ℏωk,

where ℏωk is energy of phonons participating in absorption. Two different values of

energy for a particular point E0¼ℏω0 can be observed at the process of absorption or

emission of phonons. As the indirect transition should engage several number of par-

ticles (electron, photon, and phonon), as compared during direct transitions (elec-

trons and photons), the probability of indirect transitions and, thus, absorption

coefficient must be lower than that for direct transitions. This can be explained by

the conditional dividing of absorption process in case of indirect transitions on

two stages, as shown in Fig. 8.25.

In the first stage, the electron-absorbing photon jumps over from the valence band

by the direct transfer into the virtual state in the conduction band (that is not related
to violation of energy storage law). In the second stage, the electron moves from the

virtual state of the conduction band into the final state—to the minimum Ec, releasing

or absorbing a phonon. The probability of transition will be determined by multiply-

ing density of states.

The probability of phonon absorption process should be proportional to the num-

ber of phonons, given by Bose-Einstein function, while the probability of phonon

emission process should be proportional to the function that determines probability

of phonon emission. Therefore, the absorption coefficient for allowed indirect tran-

sitions should be determined by a complex dependence.

To interpret the α(ℏω) dependence in case of indirect allowed transitions, the

α1/2(ℏω) dependence should be built, as shown in Fig. 8.26. The absorption spectrum
T2>T1
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FIG. 8.26

Determination of bandgap energy and photons involved in indirect transitions.
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can be represented as a sum of two linear dependencies, which by extrapolating

α ) 0 give two energy values: ℏω1¼ΔE�ℏωk and ℏω2¼ΔE+ℏωk. The point that

is located in the midway between ℏω1 and ℏω2 corresponds to bandgapΔE. Fig. 8.26
shows dependencies at two different temperatures, taking into account the bandgap

temperature change. Note that contribution from transitions that occur with phonon

absorption decreases with temperature decline.

If temperature is below Debye temperature, the transitions with phonon absorp-

tion practically do not occur, because phonon concentration in crystal is very small.

This case is shown in Fig. 8.26 at temperature T1. On the contrary, with increasing

temperature (T2) phonon absorption in transitions increases.

Using absorption spectra, temperature shift of band edge can be observed for

direct transitions as well (Fig. 8.27). The absorption coefficient in case of direct tran-

sitions sharply increases, because the probability of involving only two particles—

electron and photon—increases.

There is another important opportunity of absorption edge shift, in addition to

temperature shift. Suppose that absorption is investigated in the noticeably doped
by donors direct-band semiconductor, whose band diagram is shown in

Fig. 8.27A. Then, in case of electron degeneration, the Fermi level enters into the

conduction band, and states, which lie below the Fermi level F, are all nearly filled.
Electron transition from the valence band with photon absorption ℏω¼ΔE+(F – Ec)

is impossible, because the relevant states in the conduction band are already occupied

by electrons. Because of such absorption, its edge will be shifted toward the higher-

energy photons; Fig. 8.27B shows this shift in highly doped indium antimonide.

The interband absorption of light in semiconductors by charge carriers is possible

in the presence of free charge carriers. Transitions occur within the band (electrons in

the conduction band, Fig. 8.27A, or holes in the valence band) with absorption of pho-

tons and phonons. Transitions 2, 2a 2b, 2c, and 2d, which have been shown schemat-

ically in Fig. 8.22, occur during absorption of light energy by free charge carriers in the
FIG. 8.27

Shift of absorption edge in InSb spectrum: (A) band diagram; (B) absorption edge of undoped

(1) and strongly doped (2) samples.
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permitted bands. Transitions 2 and 2a occur with change in the wave vector that nec-

essarily requires participation of phonons. The spectral dependence of absorption for

interband transitions of electrons and holes as appears to be a monotonous curve and is

called nonselective (indiscriminate) absorption by free carriers.

If free charges at light absorption move within a permitted band and change their

dispersion law (as shown for holes transitions 2b, 2c, and 2d between the sub-bands

in the valence band), the absorption spectrum has structural features in the form of

highs and lows alternating absorption, and it is the selective absorption by free car-

riers. The selective absorption by free charge carriers can take place without phonon

participation, and it can be direct. Studies show that contribution to absorption from

the free charge carriers increases strongly in the near-infrared region of spectrum.

Laws of conservation of electron energy and wave vector are executed only at

simultaneous participation in the processes of absorption at phonon scattering on ion-

ized impurities. The fact is impulse of photon in a crystal is negligibly small and does

not meet the energy transmitted to electron. However, during scattering, the impulse

of charge carrier varies widely.

Coefficient of absorption by free electrons (αn) is directly proportional to their

concentration n and to the wavelength, while it is inversely proportional to the aver-
age relaxation time τ and the effective mass mn*. Such laws have a simple physical

explanation: the greater the concentration n, the greater the probability of electron-

photon interactions; the greater the wavelength λ, the lower the energy of photons,

and, therefore, a change in electron wave vector module, which facilitates the imple-

mentation of conservation impulse law.

The absorption by impurities is also shown in Fig. 8.22 (transitions 3, 3a, 3b, and
3c), including between-impurity absorption (transition 4), which takes place with a

participation of local impurity states. Impurity atoms can be changed from neutral to

the ionized state, as in transitions 3 and 3a, and, vice versa, from ionized to the neu-

tral state, as in transitions 3b and 3c. In case of between-impurity transitions, the state

of impurity levels also changes.

Spectral plots, which contribute to absorption transitions 3–3a and 3b–3c, are
spaced far enough apart for small-depth impurity states. Transitions 3–3a in this case
will contribute to the absorption in far-infrared part of spectrum, while transitions

3b–3c and transition 4will contribute to the absorption near the fundamental absorp-

tion edge. If impurity-type absorption involves deep impurity states, these transitions

will give a contribution to absorption beyond the edge of absorption, in the long-

wavelength range of a spectrum.

The absorption by excitons can be significant in certain semiconductors. Exci-

tonic transitions 5 and 5a in Fig. 8.22 are shown as conditional, because the descrip-
tion of excitons is a problem of interaction between two particles: electron and hole;
therefore the level Eexc, shown in Fig. 8.22, only conditionally represents the state as

“one particle” being electron-hole pair.

Intense light absorption, which is associated with formation of excitons

(Fig. 8.28), can be observed at lower energies, that is, at lower frequencies of light,

than interband absorption, because the binding energy of exciton is small in
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FIG. 8.28

Absorption of light: (A) by free electrons, (B) by excitons (solid curve—excitonic absorption;

dashed curve—actual absorption).
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comparison with Eg. Therefore the range of exciton absorption is located close to the

fundamental optical absorption, but differs from lower frequency absorption. Inter-

band absorption in the semiconductor, as shown in Fig. 8.28B, describes smooth

dependence of absorption coefficient on energy of photon, while the excitonic

absorption begins as a sharp sawtooth ascending energy, less than a threshold energy

of interband absorption. It should also be noted that light absorption is accompanied

by a sharp increase in photoconductivity, while during excitonic absorption of light

the photoconductivity is absent [2].

The exciton is characterized not only by its hydrogen-like structure, but also by its

wave vector, impulse, angular momentum, and so on. Consequently, the exciton is

the excited state of a whole lattice. Because of lattice periodicity, this excitation can

move from one atom to another. The size of excitons in the semiconductors is much
larger than lattice constant. For example, in the germanium crystal, radius of exciton

is 800 times larger than the Bohr radius of hydrogen atom. Such excitons with large

radius are the Wannier-Mott excitons.
If the interaction between electron and hole is large enough, the radius of inter-

acting pair can be commensurable with lattice parameter. The exciton in this case is

the excited state of individual atom that easily moves through a crystal. Such an exci-

ton of small radius is the Frenkel exciton. In semiconductors, theWannier-Mott exci-

tons are mainly observed, while the Frenkel excitons are peculiar to ionic and organic

crystals. The excitonic states are seen in the optical spectra as comparatively narrow

line near the absorption edge. Therefore, an account of electron-hole interaction can

lead to a bound state (excitons) and a nonbound state. This is a reason for alteration of

α(hν) dependence near the edge of intrinsic absorption (Fig. 8.28B).

Thus, in semiconductors during photon absorption the excitons (bound electron-

hole pairs) can be created, which randomly move through a crystal. In the event of

collisions with impurity centers, the excitons can either disintegrate creating electron

and hole or recombine and transfer into atom of excited state. In the first case, the

exciton needs thermal energy, while in the second case, either photon radiation

occurs or energy of exciton transfers to semiconductor lattice in the form of a heat.
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Phonon absorption, associated with light energy transition into the lattice vibra-
tions, occurs in the spectral range, corresponding to the phonon energy: this is the

far-infrared region, which only partially overlaps with the region of absorption

by free carriers.

Plasma absorption occurs at sufficiently high concentrations of free charge car-

riers, and it has an important feature, so-called plasma resonance. As the absorption
coefficient in the neighborhood of plasma resonance is very large, it is usually inves-

tigated not in the absorption spectrum but in the reflection spectrum.
At the frequency of plasma resonance, the minimum of reflection is observed,

whose frequency position is associated with concentration and effective mass of

charge carriers. The plasma minimum in the reflection spectrum of semiconductors

and metals can be located near (or in the middle of ) the infrared range of a spectrum.

In Fig. 8.22 it would be impossible to display as phonon, so plasma absorption as

well as energy levels shown in these figure correspond to the one-electron approx-
imation; therefore in diagrams, drawn in Fig. 8.22, the energy of lattice vibrations or

energy of plasma (mixed electrons and holes system), in principle, is impossible to

be shown.
8.6 SEMICONDUCTORS IN MAGNETIC FIELD
In this section, the influence of magnetic field on the movement of electrical charges

(electrons and holes) is examined in the conductors and semiconductors if they are

diamagnetic or paramagnetic substances. The effect of magnetization in this condi-

tions is insignificant (μ�1), but when external magnetic field B is applied to con-

ductors, and, especially, to semiconductors, many interesting and important

electronic effects occur due to Lorentz force impact on the moving electrical charges.

Free charge carriers (electrons or holes) under the influence of constant magnetic

field directed on z-axis in case of indefinitely free path of electron (with no scatter-

ing) would form its closed curve in the xy-plane perpendicular to the direction of

magnetic induction Bz. Main parameters of this trajectory are the rotation frequency

ωc¼eBz/m* with radius of orbit r ¼ υ/ωc (υ is average linear velocity) and period of
rotation T ¼2π/ωc. Thus, it is possible to assume that the effect of magnetic field is

reduced to rotation of velocity vector projections in the plane xy without changing
average modulus of velocity.

According to thermodynamic equilibrium state, all directions of linear velocity of

charge carriers are equiprobable; therefore, magnetic moment of closed orbits is

compensated. In addition, electronic spins in covalent bonds are also compensated,

so the total spin moment practically equals zero. Only in case of very large value of

external magnetic field, this spins compensation may be violated. This phenomenon

can be observed as the paramagnetism of electronic gas in metals and semiconduc-

tors. However, even at these conditions, the change in electron energy in the external

magnetic field is negligible.
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This situation varies, when external magnetic field acts on the conductor (or the

semiconductor) that is found in thermodynamically nonequilibrium conditions,
when, due to many reasons (electrical field gradient, temperature gradient, lighting)

a directed movement of electrical charges takes place. At that, mobility of electrons

is usually higher than the mobility of holes.

The mechanism of charge transfer (drift, diffusion) and the velocity of electrons

(holes) flow is also important. It should be noted that this velocity is not equal for all
charge carrier flow: some of them are relatively slow (“more cold”) charge carriers,

while others are much faster (“more hot”) charge carriers. In case of nondegenerated

semiconductor, distribution of charge carrier on their velocity is given by the Max-

well law:

f υð Þ¼ β

π

� �3=2

υ2 exp �αυ2
� �

,

where β¼m*/2kBT while m* is effective mass of charge carrier and kB is Boltzmann

constant.

The distribution function for velocity f(υ) is shown in Fig. 8.29. There are three
velocities, peculiar in this case: the most probable velocity υmax, the average velocity

hυi, and the mean square velocity
ffiffiffiffiffiffiffiffi
υ2h i

p
. As shown in Fig. 8.29, Maxwell distribu-

tion of charge carriers is asymmetric as to most probable υmax, because with increas-

ing velocity the relative number of charge carriers decreases slower. Note that

magnetic force influence is related exactly to the mean square velocity.

Galvanomagnetic effects. At the joint action of electrical and magnetic fields on

conductors and semiconductors, a number of kinetic phenomena occur, such as dif-

ference in electric potentials, electrical conductivity change, and thermal conductiv-

ity change. Besides, some changes in electrical and thermal properties can be seen as

in the longitudinal direction (along which electrical field is applied), so in the trans-
verse direction. Such phenomena are usually called the galvanomagnetic effects
(Fig. 8.30).
f (u/umax)

u/umax
<u>

<u2>umax

FIG. 8.29

Charge carrier Maxwell distribution on velocity in nondegenerate semiconductors.
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Basic galvanomagnetic effects.
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When placed in the magnetic field conductor, a transverse potential originates,

known as Hall’s effect, while the longitudinal resistance change in magnetic field

is the magnetoresistive effect (this effect, sometimes, is also called Gauss effect).
The appearance of transverse difference in temperature in magnetic field is the

transversal galvanothermomagnetic Ettingshausen effect, while the longitudinal

difference in temperature is the galvanothermomagnetic Nernst’s effect. The self-

induced compression of a channel with conducting plasma under magnetic field is

the pinch effect [3].
Relative to magnetic field, galvanomagnetic effects are divided into even and

odd. The effect is called as “odd,” if its direction changes when magnetic field

switches its sign to opposite. Hall’s effect and transversal galvanothermomagnetic

effect belong to “odd” effects. In case switching magnetic field direction, the sign

of effect does not change, then such effect is “even” that includes magnetoresistance

effect and longitudinal galvanothermomagnetic effect.

All galvanomagnetic phenomena can be studied as in the adiabatic so in the iso-
thermal conditions. The effect is adiabatic, if the studied sample cannot exchange its

energy with the environment; therefore, in sample the temperature gradient (rT)
occurs. In case of isothermal conditions, on the contrary, the energy exchange takes

place, and rT¼0. Thus, Hall’s effect and magnetoresistance effect are the isother-

mal ones as they are usually considered under the isothermal conditions.

It should be noted that galvanomagnetic effects can be described by the move-

ment of charged particles, considering the crossed electrical E and magnetic B fields.

As is known from electrodynamics, in such electromagnetic conditions the Lorentz

force occurs, acting on electrical charge:

FLor ¼ e E+ υdB½ 	ð Þ
In the crossed fields (E?B) charge carriers move along a cycloid that is a result of

adding of two kinds of particle motion:

• rotation in a circle of radius r0¼m*E/eB2 under crossed electrical and magnetic

fields;

• moving in electrical field with drift velocity υd¼uE, where u is the drift mobility.

Thus the imposition of magnetic field to a conductor, in which electrical current

flows, changes the trajectory of charge carriers; at that, the greater their
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“twisting” in circular orbit, the stronger the magnetic field. The criterion of magnetic

field value is a ratio between radius of curvature r0 and middle free path λ of charge
carrier.

If radius r0 of electron’s trajectory curvature is much greater than mean free path

λ (r0 ≫ λ), then in such fields the middle free time (relaxation time) is less than

period of rotation. In this case, relaxation time is valid only on a part of electron com-

plete rotation in magnetic field, that is, electron’s circular orbit is disconnected.

Therefore electron movement is distorted only a little, and such magnetic field is

called as weak.
Conversely, if r0 ≪ λ, then the magnetic field is strong, because it twists charge

carriers so much that they significantly change their trajectory. Under this condition,

relaxation time is greater than the rotation period, and, therefore, charge carrier has

enough time to make several complete rotations in the magnetic field; hence scatter-

ing mechanism of charge carriers will be different from that in a weak magnetic field.

The concept of weak or strong field depends not only on “external” factor (mag-

nitude of magnetic field B), but also on the mobility of charge carriers in crystal, that

is, on peculiar properties of conductor (or semiconductor). It may be that the same

magnetic field for one value of mobility looks as weak, but for another it is strong.

For example, in the germanium at rather high temperatures (400K), the mobility of

electrons is un�0.3m2/Vs and the magnetic field strength of 10kOe meets the cri-

teria of a weak field. However, the same magnetic field for germanium at low tem-

perature (about 10K), when the mobility of electrons is high (ue�100m2/Vs), is

considered as a strong field.

In metals under normal conditions, mobility of electrons typically is

ue � 0.01m2/Vs. Therefore, galvanomagnetic effects in metals as a rule correspond

to the criterion of weak magnetic field.

When joint action of magnetic and electrical fields is examined, it should also

take into account the distribution of charge carrier on their velocity and their energy.
Usually, in many experiments, only mean velocity of electrons is taken into consid-

eration. However, in the magnetic field the difference between fast (“hot”) electron

behavior and slow (“cold”) electron behavior might have important meaning.

Hall’s effect was discussed in short previously in Section 5.2. This effect is the

appearance of Hall’s difference in potential when placing a conductor or semicon-

ductor with a current in the crossed electrical E and magnetic B fields. In conditions

of joint action of electrical and magnetic fields perpendicular to each other, the

mobile charge carriers are turned by the Lorentz force in the third direction—

perpendicular to the directions of both fields, see Fig. 5.3 in Section 5.2. In the

previously considered case (electrical field Ex is directed along the sample while

magnetic induction vector B is perpendicular to sample), electron bends aside by

Lorentz force FLor¼e[υdB] from the initial direction of movement to one of lateral

edges of sample. This corresponds to imagination about turning of trajectory of elec-

tron under magnetic field acting.

When charge carriers deviate to lateral edges of a sample, the transverse electrical

field Ey occurs. If the sample in this direction is open circuited, then the redistribution
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of charges results in a prohibitive force—field intensity in the direction of y-axis
(axes are indicated in Fig. 5.3). This process will go on as long as electrical field

Ey becomes large enough to compensate the force that causes deviation of charge

carriers to lateral edges.

In equation (5.9), it needs to substitute: ELor ¼0; from this the expression for Hall

transverse electrical field follows:

Ey ¼ υxBz ¼RHjxBz:

It can be seen that Hall’s field is directly proportional to current density jx and to

magnetic induction Bz. The constant of proportionality RH is Hall’s coefficient (or

Hall’s constant); in weak magnetic fields, it does not depend on magnetic

induction value.

Hall’s constant is independent of scattering mechanism: RH¼ (ne)�1. After trans-

formation it is possible to obtain: Ey¼ (1/neec)jx. Since charge of electron “e” and

light velocity c are well known, while values of j and B are measured directly, this

formula allows to determine the number of electrons per unit volume ne both in the

semiconductor and in the conductor. For this reason, Hall’s effect is widely used in

the investigations of semiconductors.

In other words, in n-type semiconductor major charge carriers are electrons.

Deviating from the electrical field direction by Lorentz force, they create on the lat-

eral surface of sample (to which Lorentz force is directed) a negative space charge. In

p-type semiconductors, for same reason, the holes create a positive space charge on

the side surface of a sample. Experimentally measured sign and magnitude of Hall

potential between sample side surfaces open a possibility to determine not only sign

of majority charge carriers, but also their concentration.

In the case of mixed conductivity, when in charge transfer as both electrons and

holes are involved, an analysis of Hall’s effect is difficult. As it can be seen from the

shown formula, Lorentz force has the same direction for electrons and holes. There-

fore, electrons and holes deviate to one side. However, mobility and concentration of

electrons and holes are different; in this case, in the created space charge electrons

and holes cannot completely compensate each other. In the degenerated semiconduc-

tors, as in metals, those electrons are involved in electrical conductivity located in

highest levels of energy. Therefore, in this case, it is possible to ignore electron dis-

tribution in energies.

If one compares Hall’s effect in semiconductors and metals, it should be noted that

concentration of electrons in metals is higher in several orders of magnitude than in

semiconductors. Therefore, the Hall field in metals is much less than in semiconduc-

tors. Therefore, in the Hall sensors of magnetic fields, only semiconductors should be

used. As Hall’s effect is widely used in magnetic field measurements, it should be

noted that the largest value of Hall field Ey can be obtained in nondegenerated doped
semiconductors, provided when the concentration of majority charge carriers is, at

least, in order of magnitude higher than the concentration of minority charge carriers.

Among the different effects discussed, there are also the anomalousHall’s effect,
the quantum Hall’s effect, and the spin Hall’s effect.



FIG. 8.31

Hall resistance dependence in strong magnetic field: quantum numbers n correspond to

distance between Landau levels; see also thermomagnetic effect in Fig. 8.38.
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Electrical field appearance in conductive material perpendicular to direction of

current (which passes through a sample) may be observed even in the absence of

magnetic field; this phenomenon is called the anomalousHall’s effect. It is quite sim-

ilar to Hall’s effect, but occurs without external magnetic field. Anomalous Hall’s

effect can be observed in conductive materials having intrinsic magnetization.
If the flat conductor is placed into the strong magnetic field (this is the case of

two-dimensional [2D] electronic gas), the quantum effects become apparent that

results in appearance of quantum Hall’s effect with quantization of Hall resistance

(Fig. 8.31). In much more strong magnetic fields, the fractional quantum Hall’s

effect manifests itself, which is associated with radical restructuring of internal struc-

ture of 2D “electronic liquid.”

The magnetoresistance (or magnetoresistive Gauss effect) is the change of elec-

trical resistance in a conductor when magnetic field is applied. In general, under

magnetic field influence the effect of current change should be observed keenly.

Therefore, any conductive material, to some extent, has to show magnetoresistance.

However, relative change of resistance in semiconductors can be hundreds of times

more than that in metals [7].

The quantitative characteristic of resistance change in magnetic field is the factor

Kρm ¼ ρ Bð Þ�ρ 0ð Þ
ρ 0ð Þ ,

where ρ(B) is resistance in applied magnetic field and ρ(0) is resistance in the

absence of magnetic field.

Magnetoresistivity of conductive material depends on sample orientation in the

magnetic field. This is because magnetic field does not change the projection of

charged particle velocity along magnetic field direction, but through Lorentz power

only twists free path of carrier in plane, perpendicular to magnetic field. This
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explains why transverse magnetic field shows stronger impact on resistance than the

longitudinal one.

Magnetoresistance is discussed earlier in the metals (see Section 5.2). Without

magnetic field, the charge carrier moves between collisions along a straight line.
In the external magnetic field (perpendicular to current), free path of electron

becomes a cycloid with the length l. Therefore, at free time (time between two col-

lisions) the way along electrical field will be lx� l cos φ, that is, less than l in the Ex

direction. This corresponds to the decrease in drift velocity (i.e., to decrease inmobil-

ity), and, therefore, to resistance increase. Therefore, the relative difference between

resistance at magnetic field’s presence and resistance when magnetic field is absent

is the magnetoresistance.

In doped semiconductors with one type of charge carriers, taking into account

statistical distribution of velocities, theory gives the following expression for kinetic

coefficient of magnetoresistance:

Kρm ¼Cu2B2,

where u is mobility, B is magnetic induction, and C is a factor that depends on scat-

tering mechanism. Based on this formula, the effect of magnetoresistance is the even
effect (B2). Resistance measurement in magnetic field makes it possible to find

charge carrier mobility, if scattering mechanism is known.

Based on the magnetoresistance effect, the magnetic field sensors are created. To
select materials for such sensors, charge carrier mobility u is of crucial importance:

as seen from this formula, magnetoresistance is proportional to u2. Therefore, sen-
sitivity of magnetoresistive sensors is entirely dependent on the mobility of charge

carriers. Because un>up only electronic semiconductors have an advantage. How-

ever, parabolic dependence of magnetoresistance on induction makes calibration

of magnetometers (that use Gauss effect) difficult.

At present, in the nanostructured “magnetic” semiconductors, the giant and the

colossal magnetoresistance effects are found.

The transversal galvanothermomagnetic effect (Ettingshausen effect) is the

occurrence of temperature gradient in the direction perpendicular as to magnetic

field B so to current density vector j, which flows toward the applied electrical

field E.

r?T¼A? j�B½ 	,
where A? is kinetic coefficient of transversal galvanothermomagnetic effect. The

sign of temperature gradientr?T varies with magnetic field direction, so this effect

is the odd one.

The physical nature of the Ettingshausen effect is close to the magnetoresistance

effect: various influences of Hall field and magnetic Lorentz force on the fast and
slow charge carriers. For charge carriers whose velocity is greater than average

velocity, the magnetic component of Lorentz force exceeds the influence of Hall

transverse electrical field Ey, so “hotter” charge carriers will deviate to one of the

edges of a sample. For charge carriers whose velocity is less than average velocity,
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the influence of Hall field is stronger than Lorentz force, so “colder” charge carriers

deviate to opposite edge.

Obviously, faster charge carriers, accumulating near one of edges, will give their

energy to the crystal lattice, and that this edge becomes heated. The opposite edge

that accumulates slower charge carriers cools down, as at returning to thermody-

namic equilibrium the “colder” charge carriers will pick up the energy from crystal

lattice. Thus, along the direction that is transverse to both magnetic and electrical

fields (along Hall’s field Ey), the transverse temperature gradient r?T arises.

The longitudinal galvanothermomagnetic effect (Nernst’s effect) is also associ-
ated with diverse influence of Hall’s field and Lorentz force on the charge carriers

moving with different velocities.

Twisted by the magnetic field, slower charge carriers will be stronger than faster

charge carriers. Due to various deviations of the “warmer” and the “colder” charge

carriers, their contribution to energy (i.e., energy transferred along electrical field) in

the direction x is different for opposite edges of sample. Faster (“warmer”) charge

carriers are accumulated near the sample edge along x direction in which they move

and heat it. Slower (“colder”) carriers, because of their further slowing by the mag-

netic field, will assemble on opposite faces along the x direction, causing its cooling.
Thus, along the direction of electrical field, longitudinal temperature gradient

occurs:

— kT¼Ak jxB,

where Ajj is kinetic coefficient of longitudinal galvanothermomagnetic effect. The

sign of longitudinal temperature gradient is not dependent on the magnetic field

direction.

The compression effect (pinch effect of current channel narrowing) is the self-

compression of electrical discharge, that is, the channel of plasmic electrical current
becomes squeezed into a “cord.” This effect can be observed in conductional envi-

ronment and it is due to action of own magnetic field (induced by the same current).

During plasma compression, the charge carriers form a quasistationary narrow

current channel, in which repulsive pressure of plasma is balanced by contracting

magnetic pressure; then usually in this case oscillations arise with final break of a

current. The Pinch effect is investigated mainly while discharge occurs in the gas,

but it has some importance for plasma formation in solids, particularly, in case of

highly degenerated electron-hole plasma in the semiconductors, where the pinch

effect can be used to study peculiarities of charge carrier transport.

Depending on current direction in the plasma column, it is possible to distinguish

the z-pinch, when plasma compression occurs in longitudinal current in plasma with

the azimuthal magnetic field creating, and the θ-pinch, when magnetic field is cre-

ated by external current and interacts with induced currents in plasma. Compression

of plasma is observed not only in cylindrical current flows, but also in thin layer con-

figurations of flat plasma current.

The mechanism of compression effect can be considered with the example of

z-pinch. Power lines of magnetic field, generated by current, have the form of
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concentric circles, whose plane is perpendicular to the axis of current. The resultant

electrodynamic force that acts on volume unit of a medium with current is radially

directed to axis of current channel and causes its compression. The squeezing effect

of current can be explained as a consequence of Ampere law as to magnetic attrac-
tion of separated parallel filaments with a current, in which electrical current passes
in the same direction. According to the value of current, the magnetic pressure on

movable plasma is so great that current channel starts to reduce its section, and this

is the pinch effect.

In stationary condition, there should be a balance between kinetic pressure

(which seeks to expand plasma “cord”) and electrodynamic force that compresses

it. The equilibrium condition, in general, is:

�dp

dr
¼ 1

c
jH,

where j is current density, H is magnetic field at distance r from the axis of plasma

cord, p is pressure, and c is light velocity. Relationship that links current strength

with average pressure in the plasma cord is

I2 ¼ 200pR2,

where I is current, p is average pressure in cross section of plasma cord, and R is

radius of plasma cord [8].

Therefore, the pinch effect appears in the current channel, such as a cylinder filled

by the conducting material. Electrical field is applied to the opposite ends of a cyl-

inder and acts along its axis. Magnetic field lines have the form of concentric circles,

whose plane is perpendicular to the axis of the cylinder. Magnetic power is directed

to the cylinder axis and tends to compress conducting medium.

The pinch effect takes place both in the solid-state plasma (assuming equal con-

centration of charge carriers of opposite signs) and in the low-temperature plasma. In

semiconductors, pinch has a magnetothermal character. The point is that, as a result
of magnetic compression and thin plasma cord appearance (which focuses almost all

current), almost all power is released in the channel of a cord. When duration of cur-

rent pulse is long enough, the temperature of crystal lattice in the pinch channel

increases, and equilibrium concentration of plasma also increases. In case of strong

heating of a lattice, the equilibrium plasma that is formed by thermal ionization plays

a significant role in the overall balance among carriers. This stage of pinch effect is

called as magnetothermal. In the case of very high power, the magnetothermal pinch

goes into the thermal pinch, which has the nature of electrical breakdown, accom-

panied by the melting of crystal lattice in location of plasma cord.

As already noted, the pinch effect can occur only in the bipolar plasma, when in
semiconductors mobile charge carriers are present with different sign of charge car-

riers (electrons from the conduction band and holes from the valence band). In the

monopolar plasma, Coulomb forces of space charge prevent even low spatial redis-

tribution of charge carriers. Main factors that prevent strong compression of

electron-hole plasma are the ambipolar diffusion, as well as the recombination of
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bulk carriers. For this reason, the pinch effect can occur only in the semiconductors

with very high mobility of charge carriers and large time of their recombination; with

the aim of pinch effect investigation and application most commonly InSb, Ge, and

BiSb are used.

Thermomagnetic effects. Magnetic field can change not only electrical conduc-

tivity. As the thermal conductivity is also associated with the flow of charge carriers,

in a magnetic field at the presence of temperature gradient some thermomagnetic

phenomena should appear due to distortion of charge carrier trajectory.

In Section 8.4, some thermoelectric effects are considered (Thomson’s, See-

beck’s, and Peltier’s effects). Therefore, next only the specifics of thermal and elec-

trical interactions in semiconductors will be considered. Physical basis of

thermomagnetic effects is the interaction of charge carriers of conductor (or semi-

conductor) with magnetic field when external electrical field is not applied to a

semiconductor.

Thermomagnetic phenomena, as shown in Fig. 8.32, are the effects of transversal

electrical field appearance (Nernst-Ettingshausen transverse effect), the longitudinal
electrical field occurrence (Nernst-Ettingshausen longitudinal effect), the transverse
temperature gradient (Righi-Leduc effect), and the longitudinal temperature gradient

(Mudgee-Righi-Leduc effect) originations.
The transverse electrical field (Nernst-Ettingshausen effect) appears in semicon-

ductor in the direction, perpendicular to both magnetic field B and temperature gra-

dientrT. This effect is proportional to temperature gradient and to magnetic field B:

E? ¼A?t 
 rT 
B,
where A? t is kinetic coefficient of transverse effect that depends on intrinsic prop-

erties of material. In the metals and degenerated semiconductors, this effect is very

small, because the value E? strongly depends on degeneration. For this reason, inves-

tigation of transverse electrical field, originating in magnetic field and temperature

gradient in sample, is used mainly during study of nondegenerated semiconductors.

Physical meaning of transverse electrical field appearance at temperature gradi-

ent and magnetic field is as follows. Thermal velocity of those charge carriers that

move from the hot end is higher than velocity of charge carriers that diffuse in the

opposite direction; therefore, they have different relaxation times. As magnetic
FIG. 8.32

Main thermomagnetic phenomena in semiconductors.



FIG. 8.33

Illustration to Nernst-Ettingshausen effect.
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component of Lorentz force acts differently on fast and slow carriers, they also are

bended by the magnetic field at different angles. Thus, the flow of charge carriers to

the sides of a sample will not be the same, thereby transverse electrical field occurs

(Fig. 8.33).

The transversal Nernst-Ettingshausen effect occurs with the same reason as

Hall’s effect, that is, it is a result of charged particle deviation by the Lorentz force.

The difference, however, is that in case of Hall’s effect the stream of particles occurs

due to their drift in the electrical field, because of charge carrier thermal diffusion.
An essential difference also is the fact, that, unlike Hall’s effect, the sign of E? is

independent of charge carrier sign. Indeed, when drifting occurs in the electrical
field, the change in a sign of charge carriers leads to the change in the direction

of a drift, which gives the change in the sign of Hall field. In case of transversal

Nernst-Ettingshausen effect, the diffusion flow is always directed from the heated

end of a sample to its cold end, regardless of charge carrier sign. Lorentz force direc-

tion for both positive and negative particles is mutually contradictory, but the direc-

tion of flow of electrical charge in both cases is the same.

In metals and semiconductors, Nernst’s effect is caused by charge carrier relax-
ation time (determined by electron interaction with crystal lattice), as well as by

charge carrier energy (or velocity), and, therefore, this effect is very sensitive to scat-
tering mechanism. During the investigation of transverse effect, the nature of charge

carrier mobility can be established: if mobility is known, it is possible to discover

charge carrier scattering mechanism.

Relaxation time for fast electrons is greater than that for slow ones; for this rea-

son, one edge of a sample charges negatively (i.e., transverse effect has positive sign:

E?>0). This case shows that scattering of charge carriers occurs on the acoustic
phonons. If conditions of electron movement in a sample are such that relaxation

time of charge carrier decreases with the increase in velocity, the opposite edge

of sample charges negatively, thus Nernst’s effect has a negative sign (E?<0). This

case is typical for the mechanism of charge carrier scattering on the ionized impurity
atoms. It should be noted that the sign of Nernst’s effect does not depend on the car-
rier sign, but depends on the mechanism of their scattering.

Nernst’s effect is actively used in the investigation of Cooper pairs in supercon-
ductors. For example, in superconducting amorphous films Nb0.15Si0.85 through to
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extremely small free path, electron contribution to Nernst’s effect is negligibly small.

At that, the contribution of Cooper pairs is quite significant; therefore experiment

permits directly measuring their contribution. By such a way, the existence of Cooper

pairs (and, correspondingly, the local superconductivity existence) was proved at

temperatures significantly higher than the point of phase transition to

superconducting state.

The longitudinal electrical field of Nernst-Ettingshausen occurs along the tem-

perature gradient rT in the transverse magnetic field. However, as noted earlier,

even in the absence of magnetic field (B¼0) along longitudinal temperature gradient

rT a thermoelectromotive field exists: EB¼0 ¼ αB¼0rT. For this reason, the addi-
tional field, occurring along longitudinal direction at magnetic field application, can

be described as

Ek ¼Ek Bð Þ�Ek 0ð Þ¼Ak 
 α 0ð Þ 
rT 
B2,

where Ajj t is kinetic coefficient of longitudinal effect, and α(0) is thermoelectric

coefficient. In weak magnetic fields, the square dependence of Ejj on magnetic field

is seen.

The physical nature of Nernst-Ettingshausen longitudinal effect is explained by

the fact that magnetic field, deflecting electrons, reduces their average velocity, and,

thus, reduces the energy transfer in this direction. At magnetic field absence of

(B ¼0), thermoelectromotive field is determined by a difference of fast υ1 and slow

υ2 electrons along temperature gradient: υ1(0)�υ2(0). In the magnetic field this com-

ponent changes, at that, its change is dependent on Hall’s effect, and, therefore, on

relaxation time τ.
Thus, in the n-type semiconductors, thermoelectric power increases, if relaxation

time decreases with increasing electron energy (scattering on acoustic phonons). The

peculiarity of thermoelectric power value, depending on scattering mechanism, in p-
type semiconductors is same as in n-type semiconductors.

For example, if τ2 for slow electrons is greater than for fast electrons (τ1), then the
relative velocity change

υ1 Βð Þ
υ1 0ð Þ >

υ2 Βð Þ
υ2 0ð Þ :

Then α(B), which is determined by the difference, will be greater than α(0). Thermo-

EMF in the magnetic field increases. If the relaxation time increases with increasing

energy,
υ1 Βð Þ
υ1 0ð Þ <

υ2 Βð Þ
υ2 0ð Þ and, consequently, α(B)<α(0), that is, the thermo-EMF in the

magnetic field decreases.

Thus, in the electronic semiconductors, thermoelectric power increases if the

relaxation time decreases with increasing electron energy (scattering by acoustic

phonons), and decreases if the relaxation time increases with the increase in the elec-

tron energy (scattering on the ionized atoms of the impurities). The nature of the

change in magnitude of thermo-EMF in dependence on scattering mechanism for

hole-type semiconductors is the same as for electron-type semiconductors.
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The transversal temperature gradient —?T (Righi-Leduc effect) occurs in the

magnetic field in semiconductors when heat flow exists in them. The value of tem-

perature gradient is proportional as to magnetic field so to longitudinal (“basic”) tem-

perature gradient rjjT:

r?T¼Akt 
B 
rkT,

where Ajj t is kinetic coefficient of transverse effect.

In a certain sense, this effect is the thermal analog of Hall’s effect; at that, the role

of external electrical field E plays heat flow rjjT, directed in the same line, while

instead of transversal electrical Hall field the transverse temperature gradient

r?T arises.

This effect, like other thermomagnetic phenomena, is due to the fact that free path

of charge carriers is bent in the magnetic field by Lorentz force. In the process of their

diffusion, charge carriers transfer a heat; in the absence of magnetic field, this heat

flow is directed from the hot end to the cold end of a sample.When the magnetic field

is switched on, the diffusion flux is bent by Lorentz force at a certain angle, and, due

to this mechanism, the transverse temperature gradient occurs.

The physical nature of heat transfer is similar to the nature of electrical charge

transport: it is conditioned by the fact that fast (“hotter”) charge carriers under the

influence of magnetic field are deflected to one side, while the slow (“colder”)

charge carriers to the opposite direction. Therefore one edge of a sample is heated,

while the opposite edge of sample is cooled.

Righi-Leduc thermal transverse effect is positive in p-type semiconductors while

in the n-type semiconductors it is negative.

The longitudinal temperature gradient —jjT (Mudgee-Righi-Leduc effect)

occurs in the magnetic field toward existing temperature gradient. This effect is

the change of electronic contribution to the thermal conductivityΔξ due to reduction
of charge carrier free path along the heat flow by twisting of their trajectories (chang-

ing velocity in the direction of temperature gradient).

When contributions into heat flow from “hotter” and “colder” charge carrier

change, the temperature difference along the direction of heat flow also changes.

Thus, the additional (to existing) temperature gradient occurs. The longitudinal

effect is described as thermal conductivity ξ change due to heat transfer by electrons:

Δξ=ξ¼ ξ 0ð Þ� ξ Bð Þ½ 	=ξ 0ð Þ:
Theoretical calculations show that change in thermal conductivity depends on the

square of magnetic field and is proportional to existing temperature gradient without

the magnetic field:

Δξ¼AM 
B2 
—T,

where AM is kinetic coefficient of additional longitudinal temperature gradient. In

semiconductors, this longitudinal effect is much greater than that in metals. In this

way, thermal conductivity measurements in the magnetic field can separate elec-

tronic part of thermal conductivity from its phonon part.
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As can be seen from these descriptions of various galvanomagnetic phenomena,

these effects are very sensitive to charge carrier interaction with lattice defects; there-

fore, these phenomena are used to study mechanisms of scattering of charge carriers
in semiconductors. The kinetic factors of thermomagnetic effects can be expressed

through a combination of appropriate magnetoelectric coefficients, which, however,

are dependent on the value of magnetic field B.
The research of thermomagnetic phenomena in semiconductors is used to deter-

mine the type of conductivity, the mobility of charge carrier, as well as to make clear

mechanisms of charge carrier scattering. In the magnetic electroconductive material,

at present, such research is used to clarify Neel and Curie points. All explanations of

thermal conductivity change under the influence of magnetic field are based on con-

sideration of electron flow and how this flow is deflected by the Lorentz force.

Magneto-optical effects. Usually these effects are studied and used in the strong
magnetic fields. Effects will be considered when parallel monochromatic light falls

perpendicular to the surface of solid; light is partially reflected and partially passes

through material without absorbing. (The light that is absorbed in the semiconductor

gives rise to different photovoltaic processes: internal photoelectric effect, Dember

effect, and other effects discussed earlier in Section 8.4.)

Magnetic field, applied to the semiconductor, gives birth to a variety optical

effects (Fig. 8.34).

The photoelectromagnetic effect (Kikoin-Noskov effect) is due to the bipolar

diffusion from illuminated surface of semiconductor. When an illuminating semi-

conductor is exposed by magnetic field directed perpendicular to the light propaga-

tion in a crystal, the electromotive force arises, as in case of Dember effect. Diffusive

stream of excess (light-generated) electrons and holes moves deep into the semicon-

ductor due to the gradient of concentration, and it is turned bymagnetic field to oppo-

site sides of a sample.

The photoelectromagnetic effect looks like Hall’s effect, but in case of Hall’s

effect the magnetic field turns the flow of charge carriers caused by the external elec-

trical field. The difference of photoelectromagnetic effect from the Hall’s effect lies

in the fact that electrons and holes are single-directional diffusion fluxes, so that mag-

netic field deploys them to various edges of a sample. A situation occurs when
FIG. 8.34

Main magneto-optical effects in semiconductors.



FIG. 8.35

Illustration to the photoelectromagnetic effect.
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electron-hole pairs are separated not only by different diffusion velocities, but also

by oppositely directed magnetic forces.

If magnetic field H is directed along the axis z (Fig. 8.35), while the light beam
and the diffuse stream of charge carriers are directed along the y-axis, the magnetic

field deflects electrons and holes into different directions, causing spatial charge sep-

aration. If the ends of a sample are close circuited, the current jx appears; if these ends
are open, the photo-EMF occurs.

Unlike the Dember effect, the photoelectromagnetic effect is not caused by the

obligatory difference in the mobility of electrons and holes. The photoelectromag-

netic effect can be observed as in case of the intrinsic absorption of light as well

as in case of the impurity-type light absorption. Photomagnetic voltage is propor-

tional to magnetic induction and to luminous flux, and inversely proportional to con-

centration of equilibrium carriers. This effect is observed at any value of mobility of

electrons and holes, and by this property this effect differs significantly from the

Dember effect. At equal conditions, the photoelectromagnetic voltage is higher in

weakly doped and intrinsic semiconductors.

By investigation of photoelectromagnetic effect characteristics, it is possible to

obtain information about the band structure parameters and the states of impurities

in the semiconductors. Photoelectromagnetic effect opens the possibility to deter-

mine, first, the lifetime of charge carriers, and, second, the rate of surface recombi-
nation. Moreover, this effect can be used to study these important parameters of

semiconductors even in case of short lifetimes of charge carriers.

Most of the photomagnetic effects listed in Fig. 8.34 are caused by the quantiza-
tion of energy levels of electrons and holes in the strong magnetic field. In case of

such quantization, electronic spectrum of semiconductors cannot be considered as

quasicontinuous. This phenomenon is related to the cyclotron resonance in semicon-

ductors. It is possible to create such conditions in a crystal that are similar to the con-

ditions in a cyclotron. If one would place a crystal in the constant magnetic field and

irradiate it by high-frequency electromagnetic radiation, that frequency is equal to

the cyclotron frequency, and the resonance in electromagnetic radiation absorption

will be observed.

From the frequency of resonant absorption, it is possible to find cyclotron fre-

quency ωc¼eB/m* using effective mass of charge carriers m*. It should be noted
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that mass, found from cyclotron frequency, matches the effective mass of charge car-

riers only for spherical surfaces of constant energy. If constant energy surface is the

ellipsoid, the components of effective mass tensor in the main axes of ellipse equal to

m*xx, m*yy, and m*zz. In this case, effective mass m*, calculated from cyclotron fre-

quency ωc, is called the cyclotron effective mass that depends on the angle between

magnetic field direction and the axes of constant energy of ellipsoid.

Therefore, very important information can be obtained about the form of disper-

sion law in the permitted bands of electron energy. The Schr€odinger equation solu-

tion implies that the movement of electrons in plane, perpendicular to magnetic field,

is quantified. Corresponding energy levels are Landau levels. The distance between
Landau levels with quantum numbers n and n +1 will meet the energy:

ΔE¼ℏωc ¼ℏeB=m∗:

Thus electrons in the conduction band (and holes in valence band) in a strong mag-

netic field are not characterized by the quasicontinuous spectrum. The spectrum of

permitted bands in this case is converted into discrete Landau levels; at that, the dis-
tance between levels is determined by magnetic induction B and by the value of

effective mass m* of charge carriers. The quantization of electronic energy in the

magnetic field leads to a number of resonant and magneto-oscillation phenomena,

some of which are listed in Fig. 8.34. The effects of spectrum quantization can be

seen experimentally, if a peculiar condition is met:

ℏωc > kBT,

that is, at very low temperatures and very strong magnetic fields.

By substituting to this formula all constants given that ωc¼eB/m*, it is possible
to find the magnetic induction:

B Gsð Þ¼ m∗=mð Þ104T:
At liquid helium temperature, the effect of electronic spectrum quantization in the

magnetic field can be found at B>40kGs if m*�m. In case when m*¼0.1m, the
effect of quantization is probable in the magnetic field of B >4 kGs. It is clear that

research on magneto-oscillations and resonance effects is possible only at low tem-

peratures with the use of strong magnetic fields. Dispersion law in magnetic field is

shown in Fig. 8.36.

Dispersion law looks like a number of parabolas; for the branch with quantum

number n ¼0 at energy ℏωc/2 sharp peak is seen above the origin g0(ε) correspond-
ing to the bottom of the conduction band in the absence of magnetic field. The func-

tion of density of states is the sum of hyperboles, and each of them meets parabola’s

dispersion law. Near the size of energy that corresponds to Landau parameter k ¼0

the density of states turns into infinity like δ-function. It can be shown that number of

states in any finite energy interval is finite.

The important feature of band structure of semiconductor in the magnetic field is

a shift of band extremes. The bottom of the conduction band rises on the value ℏωc/

2¼eℏB/(2m*n) while the bottom of the valence band goes up on ℏωc/2¼eℏB/(2m*p).
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FIG. 8.36

Function of density of states in a strong magnetic field; bar-dashed curve shows function of

density of states in the absence of a magnetic field.
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The quantization in magnetic field results in a number of magneto-optical effects due
to the interband impurities and the intraband optical transitions. Next the most impor-

tant of magneto-optical effects are listed with their brief description.

The interband magneto-absorption is seen as interband light oscillations in the

magnetic field. This effect is caused by the transitions between Landau’s levels in the

valence band as well as in the conduction band.

In the case when light frequency changes, the absorption coefficient at direct light

transition oscillates, if the energy of photon is larger than the energy of bandgap.

Maximums in the absorption spectrum correspond to the transitions between Landau

levels in different areas with a selection rule Δn¼0. These oscillations were

observed in germanium, indium antimonide, and other high-charge mobility semi-

conductors. If the oscillation peaks dependent on magnetic induction are obtained,

then, by extrapolating to value B¼0 it is possible to find the bandgap. This is one of
most accuratemethods of its determination. Moreover, from the slope of straight line

ℏω(B), the reduced effective mass of charge carriers can be determined:

m∗
rð Þ�1 ¼ m∗

nð Þ�1
+ m∗

p

� ��1
,

that is, if one of the masses, m*n or m*n, is known, it is possible to find another.

If the transitions are indirect in the range of interband magnetoabsorption, the

number of steps is observed (that becomes eroded with increasing temperature). Indi-

rect absorption involves phonons, so the selection ruleΔn¼0 will not be mandatory.

The magnetoabsorption by impurities occurs during optical transitions of elec-

trons and holes from the ground state to the excited state (Zeeman effect on impurity

levels), as well as during the transitions between impurity states and the Landau

levels in the permitted bands.

The spectrum of magnetoabsorption shows oscillations, such as during interband

transitions (Fig. 8.37). From the distances between peaks in magnetoabsorption



FIG. 8.37

Magnetic absorption spectrum of GaAs/AlGaAs perpendicular to electrical field (103–

104 V/cm) at magnetic field (8T) at liquid helium temperature.
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oscillation spectrum, it is possible to determine effective mass of charge carriers in

the permitted bands, to which these transitions are related (at that, the interband mag-

netoabsorption gives only reduced effective mass).

The magneto-optical effects, which include the magnetogyration and the gyra-

tion of the plane of polarization (Faraday effect), occur on the free charge carriers

(interband) and determined by the difference in the optical paths of two opposite cir-

cular polarization of electromagnetic waves [8].

The effect is observed when the plane-polarized wave passes through a crystal

placed in the constant magnetic field, which is parallel to the direction of wave prop-
agation. As a result, the plane of light polarization, after passing through crystal,

becomes turned on the angle φ that depends on the distinction of light frequency from

the cyclotron frequency ωc and on the thickness of a crystal. Near the cyclotron fre-

quency, the angle φ changes its sign to opposite.

When electromagnetic wave frequency is large (ω ≫ ωc), the angle φ is inversely

proportional to the square of frequency and directly proportional to magnetic field:

φ¼B/(ω2m*2). Experimentally obtained dependence of φ(B) or φ(ω) allows to find

the effective mass of charge carriers.
Recently, Faraday effect has been registered in multilayer graphene (Fig. 8.38). It

is assumed that the rotation angle will be about 0.01 radians, but in fact it was found

to be 0.1 radians (about 6°). The magnitude of angle in terms of a single layer of

atoms shows that graphene is ahead of all its “opponents.”

Both Faraday effect and related magneto-optical Kerr effect are widely used in

the optical communications, data storage devices, and computing systems. Discov-

ered peculiarities of graphene make it possible to create unique devices. In practice,

however, fairly large angles of rotation of polarization plane (45°) are required, the



FIG. 8.38

Faraday effect in graphene.
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implementation of which requires about 10 layers of graphene. However, this mate-

rial absorbs infrared radiation leading to weakening in signal of devices.

The birefringence (double refraction) that occurs in thermomagnetic field (Voigt

effect) can be also considered as the effect related to Faraday effect on free charge

carriers. This effect arises at such circumstances when the magnetic field is perpen-
dicular to the direction of light propagation.

After passing through the semiconductor, placed in the magnetic field, the line-
arly polarized light turns into the elliptically polarized light. At that, the phase shift θ
appears between components of electrical vector E|| and E?, which can be measured.

Comparing angle φ (plane of polarization rotation in Faraday effect) and angle θ (in
Voigt effect), it is possible to find the value φ/θ¼ωc/m*. Thus, the study of Faraday
effect and Voigt effect permits direct determination of charge carrier effective mass.

Faraday and Voigt effects can occur not only at intraband transitions, but also

during the interband transitions. The interpretation of experimental results in this

case is more complicated than in case of free charge carrier intraband transition.

In case of interband magneto-absorption (at interband Faraday effect), observed

oscillations are dependent on photon energy at constant magnetic field. The spectrum

of the magnetoabsorption for indirect transitions is stepped, while in case of Faraday

effect oscillations look as a series of highs, providing advantage to accuracy of

measuring.

The magnetoplasma phenomena are seen in the crystal, placed in constant mag-

netic field when there is an interaction of light with crystal at the frequency close to

plasma frequency. The manifestation of this class of phenomena is different—

depending on the method of experiment.

Basic methodology of experiment is reflected light monitoring near the plasma

frequency of a crystal placed in the magnetic field, and to measure the rotation of

light polarization plane.
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While exploring plasma reflection spectra without magnetic field, it is possible to

obtain the ratio of charge carrier concentration to effective mass n/m*, if the plasma

frequency ωpl and dielectric permittivity are known. The error in the effective mass

m* determination in this case largely depends not on the accuracy of plasma reso-

nance measurement, but on the accuracy of Hall measurements (to determine carrier

concentration n) and on the accuracy of permittivity measurement. If plasma reflec-

tion is studied at constant magnetic field, the effective mass can be determined

directly by the shift of plasma minimum without knowledge of charge carrier

concentration.

The magnetoplasma resonance method can be used as a contactless rapid method

for determining concentration and mobility of electrons in the thin film samples and
in mesostructures deposited on high-resistive substrates. Generally, the magneto-

plasma effect in semiconductors is experimentally investigated in the infrared region

of spectrumwhenωτ ≫ 1. The frequency of plasma resonanceω2
pl ¼ ne2 m∗ε0εrð Þ�1

is determined using concentration of electrons n and does not depend on the size of a
sample. Measured frequency dependence of magnetoplasma reflection in the mag-

netic field (that is directed perpendicular to plane of sample) permits determining as

the effective mass m* so the relaxation time τ of electrons.

In experiments with ultra-high frequency (UHF), the dimensional resonances

(helicon) can be seen that arises at the circumstances when thickness of a sample

is equal to integer half-waves. Measurement of wavelength at resonance is used

to determine charge carrier concentration. At that, the thickness of a sample should

be much greater than the depth of skin layer at zero magnetic field.

Optical phenomena in the crossed electrical and magnetic fields. At these con-
ditions, oscillations of light absorption for interband transitions can be observed. In

case of allowed direct transitions, the highs of optical absorption oscillations in mag-

netic field are shifted to lower energies, when perpendicular electrical field is

applied.

When studying magnetoabsorption and oscillations in the crossed fields, it is pos-

sible to find the sum (m∗n +m∗p), while by observing the oscillations in magnetic

field it is possible to find reduced effective mass m*r. Thus the joint study of these

effects allows the direct determination of m*n and m*p. Note that such experiments

should be provided at the conditions of not too large magnetic fields.

Different electrical properties at oscillations, on their physical nature, are adja-

cent to the magneto-optical phenomena in strong magnetic fields, because these

effects are caused by the quantized states of charge carriers in the bands conditioned

by strong magnetic field:

• oscillations of magnetic susceptibility (de Haas-Van Alphen effect);

• oscillations in light transparency in crystals (Shubnikov-de Haas effect);

• oscillations of ultrasound absorption in crystals placed in magnetic field;

• thermoelectromotive power oscillations in magnetic field.

Oscillations of magnetic susceptibility and thermoelectric power are caused by the

change of thermodynamic potential in the magnetic field. Oscillations in light
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transmission while magnetic field changing are observed in degenerated semicon-

ductors and caused by sharp change in the density of states in permitted bands while

the Landau quantum level passes through the Fermi level. Observations of oscilla-

tions can give information on the dynamic properties of charge carriers in the vicinity

of the Fermi level, that is, to restore the shape of Fermi surface in metals and degen-

erated semiconductors.
8.7 NANOSCALE AND QUANTUM-DIMENSIONAL EFFECTS
The dependence of properties of a solid on its size is observed in many cases. For

example, in piezoelectrics the frequency of piezoelectric resonance and magnitude

of dielectric constant depend on the size of a sample. Similarly, the magnetic perme-

ability of ferromagnetic films and the dielectric permittivity of ferroelectric films

strongly depend on their thickness.

As for the electrical conductivity of low-dimensional nanosized materials, in

addition to quantization effect of electronic energy spectrum, the wave properties

of particles begin to get affected. The coherence length of electronic wave in a solid
at normal temperature has a magnitude of several nanometers. Therefore, at dis-

tances of 1–10nm, the wave properties of electrons begin to be detected. This is

expressed by the fact that when a substance is taken in small quantities, it cannot

always be clearly attributed to isolators, conductors, or semiconductors. For exam-

ple, some chemical elements taken in an amount of, say, 20, 50, and 100 atoms

will consistently pass the stages of isolator, semiconductor, and conductor,

respectively [9].

Dimensional effect occurs if the length of a body at least in one dimension

becomes comparable with some critical magnitude lcr. For classical dimensional

effects lcr is the classical value, such as the diffusion length, the length of the free

run of electrons, etc. During charge carrier movement or oscillation in the semicon-

ductor nanostructures, the wave nature of electrons and the discreteness of energy

spectrum vividly manifest themselves. There is a quantummode of transfer of charge
carriers, in contrast to the classical regime when free path of electrons is much smal-

ler than the size of a system and electrons are regarded as classical charged particles.

This section deals with the basic fundamental physical phenomena that determine

transfer of charge carriers in the nanosized structures. As the size of nanostructures is
comparable to free path of electrons, charge carriers can freely pass through nano-

structure without scattering on defects, impurities, phonons, etc. In such structures,

the phase of noninteracting electron waves is maintained throughout the path and

therefore effects of phase interference are observed.

Potential wells, barriers, and tunneling. To analyze the properties of quantum

systems, their energy models should be used. Nanoparticles in their discrete spectrum
can be compared with atoms. Based on known energy distribution, the method of

potential curves allows determining dynamic parameters of moving particle [10].
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According to classical mechanics, the particle can overcome the potential barrier

only if its energy exceeds the potential energy on the top of a barrier. The quantum

particle behaves completely differently: the difference from zero probability exists
to penetrate the barrier, even if energy of quantum particle is less than the height of

potential barrier. Such quantum-mechanical effect is the isoenergetic tunneling.
From the point of view of classical physics, in case of a tunneling effect, the

law of energy conservation is violated. But for quantum physics of the tunneling

effect, it is possible to overcome the “deficit” of particle energy over a short time
Δt¼ℏ/(2ΔE) in accordance with the uncertainty relation. Therefore, in terms of

quantum physics, if during this time the particle can tunnel through the barrier, then

law of conservation of energy is not violated. The point to be noted is that after

the tunneling the particle retains its energy. The tunneling effect lies at the basis

of tunnel diode operation and is widely used in other nanoelectronic devices.

Another feature of a quantum particle behavior in the potential well of nanosize

and atomic size is the discreteness of energy spectrum. Discreteness of energy spec-
trum of electrons is the basis of functioning of many nanoelectronic structures. The

configurations of real potential wells and barriers in the “microworld” depend on the

geometric features of fields that form of these wells.

Behavior of microparticle in potential well can be determined by solving

Schr€odinger equation under corresponding initial conditions. This is a differential

equation: for its solution it is necessary to know how potential energy U of micro-

particles depends on coordinates, that is, the need to set the function U(x, y, z). Here
and thereafter, it will be assumed that this function does not depend on time (since

microparticle is in the stationary state).

To find out main features of microparticle behavior in the potential well, it is

enough to consider the 1D case U(x) and the potential well of rectangular shape
(Fig. 8.39A). The width of potential well is denoted by l, and its depth is U0. In this
FIG. 8.39

One-dimensional potential well: (A) energy spectrum of microparticle in potential well;

(B) wave functions Ψ (x) for three states of microparticles (n¼1, 2, 3) in potential well (dotted

line shows distribution function in case of infinitely deep well).
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model, the width of barriers that limits potential well to the right and to the left is

infinite. The depth of well U0 can vary from a finite value to infinity (if the well

would be considered as indefinitely deep).

The solution of Schr€odinger equation (result of which is graphically illustrated in
Fig. 8.39B) enables determining the energy spectrum of microparticle, that is, a com-

plete set of its energy values E and the wave function Ψ (x), whose module square

jΨ (x)j2 is the probability density of finding microparticle at point x.
It can also be shown that on the width of well l it is possible to put the integer

number of de Broglie half-waves: l�n(λ/2). For the infinitely deep well, the wave

function is expressed in the terms of trigonometric functions: through cosines in case

of odd n (n¼1, 3, 5) and sinus in case of even n (these solutions in Fig. 8.39B are

shown by the dashed curves). It can be seen from the figure that in this case the ampli-

tude of de Broglie wave at points x¼�1/2 vanishes. Therefore when U0!∞, the

microparticle can neither penetrate inside the barrier nor go beyond the boundary of

the well [11].

However, if the depth of well is finite, then the amplitude of de Broglie wave at
the points x¼�1/2 does not vanish for any n and has continuation beyond the bound-
ary of barrier.

This important result is shown in Fig. 8.39B by solid curves in the shaded areas.
That is, microparticle in the potential well of ultimate depthU0 can penetrate beyond
the boundary of barrier for energies E less than U0, which contradicts the law of

energy conservation of classical physics and never observed in the “macroworld.”

In addition, Fig. 8.40, which shows the probability density for three different

values of n, implies that the energy spectrum of quantum particle is discrete, with
FIG. 8.40

Probability density jΨ (x)j2 to find microparticle at different points x of potential well of

ultimate depth.
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its minimal energy not equal to zero (E1>0). This energy is called zero energy and
usually is denoted as E0. Zero energy is peculiar to any quantum systems: physical
vacuum, quarks in hadrons, nucleons in atomic nuclei, electrons in atoms, and atoms

in molecules and crystals.

The probability to find microparticle at different points inside the well, as seen

from Fig. 8.40, greatly varies. There are some points, where the probability of

“visiting” by particle shows the maximum: they are called the parochial (xp). There
are also points in which the particle is never seen, these are nodes (xp). Such behavior
is not a characteristic of macroparticles [10].

It should be noted that the probability of penetration by microparticle beyond the

boundary of barrier (x¼� 1/2) is not equal zero, but it only gradually decreases with

the increasing distance from boundaries of barrier (shaded areas in Fig. 8.40).

The most important result is that, if the barrier width is not infinite, then proba-

bility of its penetration by microparticle beyond boundary of barrier (tunneling

effect) is different from zero.

Quantum dimensional effects in the electronic structures are observed when the
role of critical length lcr is played by electron de Broglie wavelength (λe) when the

size of a structure at least in one dimension has the order of λe. Thus, the quantum-

dimensional effects are conditioned by wave nature of electrons. In the nanosized

regions, the behavior of electrons is determined by the reflection of electronic waves

from the boundaries of such areas, as well as the interference of electronic waves or

the passage of waves through potential barriers. The quantization of the energy of

electrons might be spatially limited in their displacements, or the passage of electrons

through nanometer dielectric layers is quantized, or the electrical resistance of nano-
wires has quantum peculiarities, and others.

De Broglie wavelength for electron that has effective massm* and moves in crys-

tal with velocity υ has following meanings: λe¼ℏ/p¼ℏ/m*υ, where p¼m*υ is the

impulse. Thus, the greater the de Broglie wavelength, the less effective the electron

mass. In most metals, it is almost same as in vacuum: mef�me so that de Broglie

wavelength is relatively small. However, in some semiconductors, the effective mass

of electron can vary widely. At room temperatures (�300K), in silicon mef¼0.9me

and λe¼8nm, in gallium arsenidemef¼0.07me and λe¼30 nm. Thus in semiconduc-

tors the size of de Broglie wave has a nanoscale, and hence the quantum-dimensional

effects are technologically easier to implement in semiconductors.

The density of states g(E) determines the number of quantum states of electrons
per unit of volume (or area, or length, depending on dimension of object) referenced

to single energy interval. According to this definition, the density of states is equal to

dn(E), that is, the number of states in the energy ranges from E to E+dE:

g Eð Þ¼ dn Eð Þ=dE:
The knowledge of density of states g(E) and probability of their filling by electrons

w(E) allows determining the distribution of electrons of a system in quantum states

and to describe many electrical, optical, and some other properties of a system. The

electrons are characterized by a half-integer spin; therefore the probability of their
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filling quantum states is determined by statistics of Fermi-Dirac, which is based on

Pauli principle.

The energy spectrum of electrons E(k) as the density of their quantum states are

most important characteristics of a quantum object, which determine its electronic

properties and the response to external influences [11].

The energy spectrum characterizes the dependence of energy of a particle on its

impulse: E(p) or, equivalently, the energy dependence on wave vector E(k), as the
impulse and wave vector are bound by simple relation p¼ℏk (module of wave vector

is determined by inverse wavelength: k¼2π/λ). The energy spectrum represents a set

of possible values of particle’s energy in given conditions. If energy is quantized,

then energy spectrum is called the discrete (quantum), but if energy can accept con-

tinuous series of values, then the spectrum is called the continuous.
The “infinite” crystal quantum properties are characterized by 3D long-range

ordering of atoms. From the point of view of nanophysics, even a crystal having

1-micron size already looks “infinite,” because in all directions its regular crystalline

lattice consists of thousands of atoms being many times larger than the de

Broglie wave.

Metals and semiconductor crystals are filled with 3D electronic gas, in which

electrons can move freely in any direction. The energy of electron in the 3D gas is:

E¼ mef υ
� �2

2
¼ p2

2mef
¼

p2x + p
2
y + p

2
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� �
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¼
ħ2 k2x + k

2
y + k

2
z

� �

2mef
,

where p and k are quasi-impulse and quasi-vector of electron, respectively, andmef is

electron’s effective mass (for simplicity it is considered as isotropic). The spectral

dependence of E(k) looks like quasicontinuous, as the energy levels are as much

as electrons held in the 3D crystal (1014–1022cm�3).

In Fig. 8.41B, the dependence of energy on wave vector components near the

bottom of conduction band is given, and in Fig. 8.41C, the density of quantum states

of electrons g(E) for unbounded (3D) crystal is described by parabola: g(E)�E1/2.
FIG. 8.41

Electronic spectrum of unlimited size crystal: (A) model of sample; (B) dependence of

electron energy on quasivector components; (C) dependence of quantum density of states

g(E) on electron energy E.



FIG. 8.42

Two-dimensional (2D) nano-object (thin layer): (A) schematic representation of thin layer

limited along x-axis; (B) potential holes for electrons in this layer; (C) dependence of state

density on energy in case of infinitely deep quantum well.
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Near the bottom of the conduction band, the density of states is small, but it grad-

ually increases with the increase in E, reaching saturation. From Fig. 8.41B, it is evi-

dent that in limits of the same band the functions E(k) and g(E) are quasicontinuous,
and therefore properties of 3D crystals under the influence of fields change

continuously.

The quantum well corresponds to two-dimensional (2D) object. Usually this is

a thin layer of crystal whose thickness d is commensurate with de Broglie wave-

length (d�λ). The system of electrons in such a layer is called the 2D electronic

gas. Fragment of such a layer is presented in Fig. 8.42A. The motion of electrons in

this layer is limited by the segment dx in the direction x but is not limited in the

directions y and z.
Moving in the x direction, the electron is not able to leave thin layer, as its output

work (equal, e.g., in aluminum arsenide �4.5eV) is much greater than thermal

energy (0.026eV at room temperature). Therefore, the motion in x direction is legit-
imately regarded as a movement in the 1D deep enough rectangular potential well

with the width dx (Fig. 8.42A). The energy of such motion is quantized and charac-

terized by quantum number n ¼1, 2, 3, …

If the quantum well is infinitely deep, then on its width dx the integer quantity of
half-wave λn/2 will be spaced. This means that only those states of electron motion

would be stationary, which will correspond to standing wave formed by de Broglie

waves falling and reflected from the walls of a well (dotted curves in Fig. 8.42). The

values of En are called quantum-dimensional levels [9].
The motion energy along the y and z is not quantized and is determined by the

same expressions as for free particle (or for volume). Therefore the total electron

energy, taking into account that effective mass of electron mef is the same for move-

ments in all directions, can be represented as



FIG. 8.43

One-dimensional (1D) nano-object (quantum wire): (A) model representation; (B) energy

dependence on wave vector; (C) density of states dependence on energy.
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where the quantum number n¼1, 2, 3, ….

Consequently, the energy spectrum of electron in a quantum well of 2D nano-

object will be discrete-continuous. Each dimensional level of En corresponds to a

set of possible energy values due to free motion of electron along the axes y and

z. This set of energies E is the 2D sub-bands of dimensional quantization. The depen-

dences E(ky,kz) and g(E) are shown in Fig. 8.43B and C.

The graph of E(ky,kz) dependences is the paraboloid system; the bottom of nth
paraboloid corresponds to the level E¼En. The dependence of g(E) is straightfor-
ward. Each dimensional sub-band makes equal contribution mef/πℏ

2 to the density

of states. Strictly speaking, the model of infinitely deep rectangular potential well

is valid only for the motion of electron in the “isolated” thin film with nanosized

thickness d. Such a separate model—flat-parallel film of nanometer thickness—is

difficult to implement. In practice, in the nanosized structures such nanolayers are

formed inside the crystal so that charge carrier movement is limited in one dimen-

sion; therefore it is possible to assume that these carriers are in the 1D potential well.

An example is the electrons in the nanometer layer of narrowband semiconductor

between two layers of broadband semiconductor.

Practical examples of quantum wells with 2D electronic gas may be conductive

channels in the unipolar transistors (metallic oxide-semiconductor structures on sil-

icon) and narrowband layers in heterostructures from compounds AIIIBV (required

for injection lasers). Systems of closely spaced equilibrium quantum wells, which

make electronic tunneling possible, form the superlattices that are the heterostruc-

tures made of two or more different materials. In these heterostructures, an important

role belongs to the transition layer, that is, the boundary between two materials.

All elemental materials of which semiconductor heterostructures are made (Zn,

Cd, Hg, Al, Ga, In, Si, Ge, P, As, Sb, S, Se, Ti, Ti) are located in the central part of the
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periodic table of elements and belong to groups II–VI. In the middle, there is silicon,
which, in the technology of electronic materials, occupies the same important place

as the steel in manufacture of structural materials. In addition to silicon, electronics

often deal with semiconductor AIIIBV compounds and their solid solutions, as well as

with AIIBVI compounds. Of the compounds of the type AIIIBV, the most often used is

GaAs (gallium arsenide) that forms solid solutions AlxGa1�xAs. The use of such

solid solutions allows creation of heterostructures with a continuous (rather than

abrupt) change in the relative content of elements of group III. In such heterostruc-

tures, the width of the bandgap also changes continuously.

For the manufacture of heterostructures, it is very important to reconcile the

parameters of crystalline lattices of two contacting materials. If two materials that

have different gratings of crystal lattices, they are grown on one another, then, with

increasing thickness of layers, large mechanical stresses and deformations can occur

in the area of the interface that can cause occurrence of microcracks in layers.

Mechanical stresses and deformations appear irrespective of whether the transition

between two layers is smooth or not. In order to reduce deformations, the permanent

gratings of two materials must differ at least. That is why in the application of het-

erostructures, the solid solutions of AlAs-GaAs system are most often used, because

aluminum and gallium arsenides have almost identical lattice parameters. In this

case, GaAs in a form of single crystals is the ideal substrate for heterostructure

growth. Another natural substrate is the indium phosphide, InP, used in combination

with solid solutions of GaAs-InAs, AlAs-AlSb, and other semiconductors of

AIIIBV type.

The progress in the creation of thin-layer heterostructures is due to the emergence

of practical technologies for the growth of thin layers by methods of molecular beam

epitaxy (MBE), metal-organic vapor phase epitaxy (MOVPE), and liquid phase epi-

taxy. These methods provide opportunity to grow heterostructures with a very sharp

boundary [3].

The quantum wire (quantum thread) is a 1D nano-object. The motion of the

electrons is limited along the axes x and z by sizes dx and dz, respectively, but
not limited along the axis y (Fig. 8.43). Square cross section of quantum wire is

only a comfortable model for calculation but does not violate the generality of rea-

soning. It is important that potential well for free electrons in a quantum wire

(thread) is 2D.

The motion of electron is associated with the axis y but its energy must be quan-

tized in 1D potential wells dx and dz. The total electron energy is

E¼ ħ2k2y
2mef

+Emn ¼
ħ2k2y
2mef

+
ħ2π2n2

2mef d2x
+
ħ2π2m2

2mef d2z
,

where m, n¼1, 2, 3,… and Emn is the energy of dimensional levels. The position of

each of them depends on two quantum numbers m and n and on the quantities dx and
dz while in the direction of wire (y) spectrum is continuous. The conduction band in

the quantum wire is divided into 1D sub-bands (Fig. 8.43B). The density of states per

unit length g(E) has a series of sharp peaks (Fig. 8.43C) corresponding to



FIG. 8.44

Zero-dimensional (0D) nano-object (quantum dot): (A) model of quantum dot; (B) density of

states dependence on energy.
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dimensional levels. This means that most electrons in sub-bands have energy near

corresponding dimensional level.

Most methods for producing quantum wires are based on the fact that in a system

with 2D electronic gas (usually on basis of heterostructure) by one or another tech-

nological way the motion of electrons in one of directions is limited. The conductiv-

ity of quantum wires can have important features. The most interesting case is short
wire with a length that is less than the length of free run of electrons (the latter is

determined by scattering on impurities and defects of wire). In this case, the electron,

having flown from one contact of a quantumwire, reaches to another contact without

collisions, similar to a projectile released from a cannon. Such analogy has led to the

consideration of structures in which there are no collisions of electrons, which are

often referred to as ballistic ones.

The quantum dot is zero-dimensional (0D) nano-object, where the motion of

electrons is limited in all three dimensions: x, y, z. Fig. 8.44A shows a convenient

model for calculations; in fact, the shape of quantum dot is usually different

from cubic.

Potential well for a quantum dot is 3D. The energy of free electrons should be

quantized for movements in all three dimensions. The energy spectrum of electrons

in quantum dot is quite discrete, as in a separate atom. Energy is defined by the

expression:

E¼ ħ2π2l2

2mef d2x
+
ħ2π2n2

2mef d2y
+
ħ2π2m2

2mef d2z
,

where l, m, n¼1, 2, 3, …, as well as dx, dy, dz are dimensions of the dot in three

directions. The energy spectrum of electrons consists of separate dimensional levels

of Elmn, which resembles the spectrum of isolated atom. The energy Elmn depends on

three quantum numbers l, m, n and sizes dx, dy, dz. The graph of the density of states
g(E) for the quantum dot has a type of delta function: g(E)¼∞, if E¼Elmn
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(E coincides with dimensional level) and g(E)¼0, if E 6¼ Elmn (i.e., E lies in the gap

between dimensional levels).

The nanocrystals can serve as an example of quantum dots, grown on the surface

of epitaxial layer of another material. In the Introduction to this book, one quantum

dot is shown (Fig. I.5), the islet from Ge atom is grown on Si surface while its image

is obtained by atomic-force microscopy [10].

Historically, first studied quantum dots were microcrystals of cadmium selenide

(CdSe). Electrons in such microcrystal are in 3D potential well so that they have sev-

eral stationary levels of energy with a characteristic distance between them (exact

expression for energy levels depends on the shape of the quantum dot). While elec-

trons make transitions between the energy levels of a quantum dot, the photons can

emit, similar to transition of electron between the energy levels of an atom. It is pos-

sible also to arouse (“throw”) the electron into the highest energy level and obtain the

radiation from transition between levels (luminescence). In this case, unlike actual

atoms, the frequencies of transitions are easy to control, changing size of a micro-

crystal. Once again note that observations of CdSe nanoclusters (“microcrystals”)

luminescence served as the first opening of quantum dots.

The length of optical wave in CdSe clusters (and fluorescence color) depends on

the size of these clusters. It is determined that fluorescence of CdSe nanoclusters cor-

responds: for size of �400nm—purple; �450nm—blue; �500nm—green;

�600nm—yellow; and �700nm—red. Observed blue shift of absorption band

begins with nanoparticles of 10�12 nm in size. In the semiconductor clusters absorp-

tion of photons generates electron-hole pairs, while their recombination is accompa-

nied by fluorescence. In other words, the decrease in the size of semiconductor

nanoparticles is accompanied by a shift in the absorption band in the high-frequency

region.

At present, many experiments are devoted to quantum dots formed in 2D elec-

tronic gas. In 2D electronic gas, electron motion perpendicular to the plane is limited;

therefore, the region on plane can be isolated by means of gate metallic electrodes

superimposed on heterostructure. Quantum dots in the 2D electronic gas can be con-

nected by the tunnel contacts to other regions of the 2D gas, and electrical conduc-

tivity through a quantum dot can be studied.

Ballistic conductivity of nanoscale conductors. The conductance (G) of ordinary
wire with a circular cross section equals G¼1/R¼σS/L, where S¼πr2 is cross-

sectional area, L is length of wire, r is its radius, and σ is specific electrical conduc-

tivity. This formula is valid, if r and L are much greater than the mean free path of

electrons λe. In these conditions, the motion of electron in the conductor has a dif-

fusive character, and trajectory of its motion is the broken line (Fig. 8.45A).

If λB>L and λe>r (Fig. 8.45B), then the electron flies from one contact to another

practically without collision with atoms of crystalline lattices. Such a mode of move-

ment is called ballistic. The moving electron does not feel resistance to its motion in

conductor’s volume [9].

In Fig. 8.46A, ballistic conductor 3 with quantum-sized diameter is placed

between two metal contacts 1 and 2. Suppose that temperature is of the order of



FIG. 8.45

Schematic representation of diffusion-type (A) and ballistic-type (B) electron motion in a

conductor.

FIG. 8.46

Spatial (A) and energy (B) presentation of ballistic conductor (3) and contacts to it.
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several degrees Kelvin and all electrons in contacts on energy diagram of Fig. 8.46B

are located below Fermi levels EF1 and EF2. If the potential U is applied between the

contacts, then energy levels of metal 2 are reduced by a value of eU with respect to

levels of metal 1. In this case EF1�EF2¼eU. The current can be generated only by

electrons that have energy in the range from EF1 to EF2. It is only these electrons that

from contact 1 that have the ability to move to free levels of contact 2.
If conductor (or semiconductor) 3 is characterized by N-dimensional subzones,

and it is ballistic (i.e., it has quantum-dimensional section S), then its electrons

are located in the dimensional subzones. Only those electrons of subregions can par-

ticipate in the transfer of a current that are located in the range from EF1 to EF2. In this

case, the conductance is G¼ 2e2N/h, while the resistance is R¼h/2e2N.
Thus, unlike the classical wire, the resistance of ballistic quantum wire does not

depend on its length L. The number N is determined by a distance between subzones,

and this distance increases when the intersection of wire S decreases. If one gradually
reduces the diameter of a wire, then from the interval EF1–EF2 will in turn, one after

another, the dimensional sub-band deviate. With the departure of each of sub-band,

the conductance G shows a jump decrease by 2e2/h. When there is not a single sub-

band in the interval EF1–EF2, the conductivity G will vanish.

The quantity 2e2/h is called the conduction quantum while reciprocal value

h/2e2¼12.9kΩ is the quantum of resistance. In fact, the quantization of resistance

is conditioned by dimensional quantization of energy. To monitor the effect of



496 CHAPTER 8 Semiconductors
quantization of resistance, the sufficiently low temperatures (�1K) are required. At

higher temperatures, jumps of conductance G become blurred or disappear because

of thermal motion in the contacts it “throws” electrons at the level where E>EF. It

should be noted that resistance measured in these conditions is the resistance in con-

tacts. In the ballistic nanowire, there is no scattering of electrons. Consequently, it

should not have any electrical resistance.

It should be noted that functioning of many instrumental structures of nanoelec-

tronics is determined by the features described earlier of energy spectra of quantum-

dimensional elements. In this case, it is important that quantization of energy is

observed only when the size of objects has the order of de Broglie wave (at least

in one dimension).

Resonance tunneling. Usual tunneling effect, as already noted earlier, is micro-

particle passage through a potential barrier, whose height U0 is greater than the

energy of a moving particle. At the same time, not every time does the particle with

this energy pass through the barrier. There is a certain probability of its passage

through the barrier, called the coefficient of transparency.
The greater the magnitude of transparency coefficient, the smaller the width of

the barrier l and the difference between its heightU0 and energy of particle E, that is,
the smaller “deficit” of particle energy inside the barrier; U0�E. In a nanosized

structure, this effect can be manifested, for example, in the passage of electrons

through thin layers of dielectric.

The tunneling time is very small: ℏ/(U0�E)�10�15 s, which can be estimated

using the uncertainty relation: ΔE 
Δt � ℏ/2. Tunneling effect has essential proba-

bility, if the barrier width l is comparable to de Broglie wavelength of electron. It

defines the boundaries of functioning elements in the integrated circuits, constructed

on the basis of traditional principles. However, if tunneling effect is considered on

the basis of principle of device, it can increase its speed to hundreds of terahertz. For

example, some single-electron devices work only on this principle.

Important features show the so-called resonance tunneling effect, which mani-

fests itself in the two- or multidirectional periodic structure (Fig. 8.47A), and looks

like the sharp increase in probability of particle passing through barriers, if its energy

coincides with any dimensional energy level of potential well that separates the bar-

rier (Fig 8.47C).

Resonance tunneling through a series of barriers only occurs if the width of wells

and barriers is of the order of de Broglie wavelength. In this effect, the time of elec-

tron passage of structure includes, in addition to time of tunneling, the time of elec-

tron life in the well, that is, the time τ of its life on the resonant level. For example,

according to estimations, for double heterostructure consisting of layers Al0.3Ga0.7As

(5nm)-Ga0.7As(7nm)-Al0.3Ga0.7As(5nm) at the barrier height of 0.2eV the time is

τ�10�11 s. Thus, tunneling time provides the operation of corresponding devices in

the terahertz range. It should be noted that the value of τ decreases also with further

reduction in structure size [12].

Two-barrier structures are of great interest to electronics, because they can oper-

ate at ultrahigh-frequency (microwave) devices in the range of hundreds of gigahertz



FIG. 8.47

Structure (A) and energy diagrams (B, C) resonance tunnel diode.
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(GHz) and switches with a delay time less than 1ps (picoseconds). These devices are

created on the basis of two-barrier structure—resonant-tunnel diode and transistor.

Moreover, multibarrier structures, called superlattices, are developed and used

widely.

Superlattices. As is known, there are various possibilities for creating p-n junc-

tion, but they all were implemented in the same semiconductor, doped in different

ways—acceptors and donors. In the light of subsequent presentation, such junction

can be called the homojunction, for example, the pSi-nSi.
The following heterojunctions occur at the contact of two different chemical

components of semiconductors. In this contact not only the bandgap changes, but

also other fundamental properties change: band structure, effective masses of charge

carriers, their mobility, and physical-chemical and optical properties.

Heterojunctions can be sharp and smooth. In a sharp heterojunction, the change in

chemical composition occurs at a distance of the order of lattice constant. In an ideal

heterojunction, there are no defects and boundary states at interface. The possibility

of obtaining monocrystalline heterojunctions, that is, the close contacts of various

chemical compositions of semiconductors carried out in single crystal is associated

with development of technological methods of epitaxial growth of semiconductor
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crystals, that is, the formation of uniformly oriented layers of crystals of one sub-

stance on the surface of another substance.

The heterostructure is the combination of several heterojunctions in a single-

crystal structure that forms part of a semiconductor device. In the case of many layers

of alternating crystals, the planar periodic structure is formed, which is called the

superlattice. The characteristic dimensions of the layers in heterostructures and

superlattices are nanometers, and therefore corresponding semiconductor devices

belong to relatively new generation of electronic devices—nanoelectronics [11].

Superlattices are crystalline structures in which, apart from the periodic potential

of crystalline lattices, there is another periodic potential, the period of which far

exceeds the constant lattice, but corresponds to the nanoscale.

The most widely used are the semiconductor superlattices. They consist of layers
of two semiconductors, differing in either chemical composition or type of conduc-

tivity. Superlattices are made, for example, with the help of MBE technology, which

allows build-up layers of any compound and thickness. Period of repetition of layers

lies from several nanometers to tens of nanometers (for comparison, lattice constant

of crystals Si and GaAs is about 0.5nm).

Two types of semiconductor superlattices are widely used: the composite and the
doped (it is appropriate to note that there are also superlattices made of metals, super-

conductors, and dielectrics).

The composite superlattices are heterostructures made of different chemical com-

position layers having different widths of bandgap, but with the close values in the

magnitude of lattice parameters. For example, composite superlattices are AlxGa1�x

As-GaAs, InxGa1�xAs-GaAs, InxGa1�xAs-InP; ZnS-ZnSe; and many others. Addi-

tional periodic potential in them is created by the periodical changing of the width of

bandgaps.

The doped superlattice is a periodic sequence of layers of the n- and p-type of

same semiconductor. Donor atoms in n-layers supplies electrons, which bind to

acceptor atoms in the p-layers. Embedded in the crystal lattice charges of ionized

acceptors and ionized donors create obviously the need for superlattice additional
periodic potential.

This potential crucially changes the band structure of semiconductor on the basis

of which superlattice was created. Therefore superlattice can be considered as a new,

synthesized semiconductor that does not exist in nature and has unusual properties.

The choice of composition materials for layers can broadly vary the band structure of

the superlattice. The combination of methods for obtaining materials with a modified

zone structure is at the basis of the so-called band engineering.
Energy diagram of superlattice (its potential profile) is given as an example in

Fig. 8.48A for the composite superconductor AlxGa1� xAs-GaAs in the direction per-

pendicular to layers. Due to periodic change in the bandgap ΔEe¼EC1.2�EV1.2 a

sequence of rectangular quantumwells separated by the barriers is created. The wells

are formed in a narrowband semiconductor: for electrons, in the conduction band,

and for holes, in the valence band. It should be noted that there are superlattices with

much more complex profile, for example, in the structures GexSi1�x-Si or GaAs-Ga.
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Energy charts of simple composite (A) and modulated-doped (B) superlattices: d—period of

superlattice.
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In Fig. 8.48B, the potential profile of modulated-doped superlattice is shown. In

this case, the donor impurity is implemented only in the wideband material. Elec-

trons from donor levels pass into the quantum wells, spatially separating by ionized

donors. The alternation of charges causes periodic bends of the edges of bands.

Fig. 8.48A and B shows the minibands on which the valence band and the conduction

band are divided [12].

Fig. 8.49 shows potential profile of doped superlattice. The charges of ionized

donors and acceptors create a sequence of potential wells for electrons and holes.

The electrons and holes are spatially separated: the holes are located in the potential
wells of valence band of p-layer, while the electrons are in the potential wells of con-
duction band of n-layer. Bindings show miniband; Eg is the width of bandgap of out-

put semiconductor, andΔEef is the effective width of superlattice bandgap. To obtain

doped superlattices GaAs is often used.
FIG. 8.49

Energy charts of doped superlattice: ΔEef—effective width of suppressed band gap; d—

its period.
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To construct energy spectrum of electrons in the superlattice, Schr€odinger equa-
tion can be solved (as in case of a bulk crystal) by taking into account the additional

periodic potential. Using the results of band structure calculations, it is possible to

make qualitative conclusions about energy structure of superlattice. Its potential is

periodic, so the dimensional levels are split into bands. Spectrum has band

character—in the band as many levels as the wells in structure. As the period of

superlattice is much larger than the usual lattice constant, the superlattice bands rep-

resent a finer splitting of energy band of ordinary semiconductor that are called the

minibands. The splitting of the conduction band and the valence band into minibands

is shown by the hatching in Figs. 8.48 and 8.49.

The smaller the width of the well, the greater the distance between minibands and

the more effective the bandgap ΔEef, and the smaller the width of the barrier the

wider the miniband. Thus one can rebuild the energy spectrum of superlattice by

a simple change in the thickness of layers, which is easy to accomplish in the

MBEmethod. The graph of states density g(E) has a stepped form, like for a quantum

well, but with another form of steps.

Electronic gas in superlattices differs in the fact that electrons and holes are spa-

tially separated. Generated by light electron-hole pairs (equilibrium carriers) become

also spatially separated, which prevents their recombination and increases their life-

time to �10�3 s.

In modulated-doped composite superlattice, a wideband semiconductor (e.g.,

AlGaAs) is doped with donor impurity. The electrons from donor levels of barrier

pass into the wells in the conduction band of the narrowband semiconductor (e.g.,

GaAs, Fig. 8.48B). Ionized donors (impurity centers) remain in the barriers while

2D electronic gas with high density and mobility of electrons is formed in the wells.

High mobility is because the density of electrons in the narrow-gap layer is greater

than the density of centers of dispersion, and donor impurity centers are located in

wide-gap layers.

The effect of increasing mobility is especially significant at low temperatures,

when the main contribution to electron dissipation makes their scattering on impu-

rities. High-mobility electrons allow creating high-speed devices on superlattices,

such as transistors with high-conductive channels. The switching time of such tran-

sistors can be picoseconds.

Thus semiconductor superlattices are solid-state structures in which, besides 3D

periodic potential of crystalline lattices, there is additional 1D potential, the period of

which substantially exceeds lattice constant. The presence of such a potential sub-

stantially changes energy spectrum so that superlattices have a number of interesting

properties that are absent in ordinary semiconductors.

Superlattices represent a unique opportunity to almost randomly modify their

band structure. The features of the superlattice luminescence (possibility of rearran-

ging the emitted wavelengths, the excitonic nature of radiation up to room temper-

ature, the strong limitation of impurity capture, the femtosecond kinetics, etc.) are

used to create a new generation of light-emitting devices. Acoustic properties of

superlattices are characterized by the presence of selective reflection of phonons.
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Semiconductor superlattices are characterized by essentially nonlinear transport

properties due to the presence of very narrow minibands in their energy spectrum.
8.8 SUMMARY

1. Semiconductors are materials whose conductivity occupies intermediate

position between conductors and insulators; semiconductors are different

from conductors by strong dependence of conductivity on impurity concen-

tration, temperature, and different types of radiation. The main property of

these materials is exponential increase in electrical conductivity with tem-

perature rise. Near absolute zero semiconductors are close to insulators.

2. Semiconductors are crystals with a bandgap in electronic spectrum, which is

in the range of 0.1–2.5 electron-volts. For example, gallium arsenide can be

grouped under wide-gap semiconductors, while indium arsenide is a narrow-

gap semiconductor. Among semiconductors there are some chemical elements

(germanium, silicon, selenium, tellurium, arsenic, etc.), several alloys, and

compounds. Almost all inorganic materials of the surrounding world are

semiconductors. In nature, the most common semiconductor is silicon that

occupies almost 30 percent of the earth’s crust.

3. Semiconductors have conducting as well as dielectric properties. In semi-

conductor crystals, atoms are usually joined by covalent bonds (i.e., pair of
electrons bounded with two atoms); these electrons require a certain level of

internal energy to release from atom that characterize the difference between

semiconductors and dielectrics. This energy can be applied by energy fluc-

tuations in crystal (room temperature thermal energy level is 0.026eV).

4. The analysis of Schrodinger equation for electrons in crystal (Bloch

theorem) shows that electronic wave function depends on the wave vector k
that module has a dimension of inverse length; by this way, the quasi-impulse

p¼ℏk can be introduced in a consideration. This concept is very useful for

examining many problems in electronic theory of solids.

5. In crystalline semiconductors, spatial atomic structure has long-range order-

ing, that is, the position of individual atoms (or groups of atoms) is repeated

periodically within volume of crystal. Accordingly, the potential field is

periodically changed with distance, divisible to period of structure. The

compact recording of this condition is: U(r)¼ U(r+na), where a is period of

structure and n is integer. In the simplest case—chain of identical atoms—this

period coincides with the distance between atoms.

6. Wave functions of free electrons are also periodical functions of potential

field—there are plane waves whose amplitude is modulated with potential

period (so-called Bloch waves). The minimal possible length of electronic
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wave is 2a, the maximal is 2L, where a is lattice parameter and L is length of

linear chain of atoms. Thus the length of electronic waves is located in the

range: 2a � λ � 2L.

7. The length of electronic waves in a crystal is discrete, and it can vary with

multiplier of 2a. Wave clearness means that wave vector k¼2π/λ and impulse

p¼ℏk¼h/λ are discrete quantities. Wave vector is within �π/a � k �+π/a;
at that, signs “�” and “+” take into account that two identical waves can exist

that move in opposite directions. If one expands the main range of wave

vector by adding left and right sections of π/a, then new values of k do not arise,
because all of them are included in the main range. In this regard, the main

range of wave vector (�π/a � k �+π/a) is coerced zone of wave vectors.

8. In 3D space, the coerced zone occupies reduced volume, and, unlike actual

physical space, the space of impulses has dimension of inverse length. This
space is called the reciprocal lattice. Geometric configuration of coerced zone

and all reciprocal lattices is uniquely determined by the direct lattice structure,

which defines spatial position of atoms in crystal. The number of wave vector

values within the zone is defined by the number of atoms N and their valence,

that is, each valence state of each atom contributes one permitted value to the

wave vector. For group IV semiconductors (Ge, Si), this number is

�1022cm�3.

9. The energy of electrons in the permitted bands is single-valued function of

wave vector and impulse. Taking into account the discontinuity of wave

vectors and impulses, as well as a huge number of allowed states, it can be

argued that energy of electrons is unambiguous, a quasicontinuous function of

impulses, and wave vectors. Electronic energy spectrum of crystals, that is,

distribution of electrons on energies in permitted bands, is usually described in

the impulse space, that is, in reciprocal lattice. Dispersion law E(p) for free
electrons in allowed energy bands is quite different from dependence E(p) for
electrons moving in vacuum.

10. Inertial property of electron is characterized by its mass, but accelerating force

finding for electrons in the periodic structure of crystal is rather difficult task;
therefore, the difference is compensated by replacement of real mass m to

effective mass m* (effective mass is inertial mass of electron moving in

potential field of a crystal).

11. As temperature of semiconductor rises, the number of free electrons and holes

increases, and, therefore, resistivity of semiconductor (that contains no

impurities) decreases. It is assumed that semiconductors are crystals

in which electronic bandgap energy is less than 2–3eV. The electron-hole

conduction mechanism is found in the intrinsic semiconductors

(i.e., without impurities). This conductivity of semiconductors is also

called as intrinsic.
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12. The hole appears as a space in the electronic shell of atom, when one of bonds

between electrons and atomic core becomes broken; this causes the transition

of bonding electron from the neighbor atom to the atom with empty bond. To

the atom, from which electron goes away, another electron jumps from the

neighbor atom, and so on (moving through covalent bonds in lattice). Thus this

is the movement of “positive charge” without moving of host atom. Such

positive charge is the hole. Usually hole mobility in semiconductors is lower

than electron mobility.

13. Some impurities in semiconductors (donors) can easily release electrons while
other impurities (acceptors) can capture electrons from atoms of semicon-

ductor. Introduction of such impurities, even in small quantities, in a large

degree increases the number of free carriers, and, thus, increases the

conductivity of semiconductor.

14. In semiconductors under the influence of thermal fluctuations free charge carriers

are generated continuously, producing electrons and holes that determine con-

ductivity. Also electrons and holes recombine continuously. Under the influence
of these two processes (generation and recombination), the semiconductor

acquires the equilibrium concentration of free charge carriers. The value of

equilibrium concentration of electrons and holes in semiconductor depends on

temperature and on the type and concentration of introduced impurities.

15. Various external influences, such as light illumination that excites photo-

electric effect, can essentially increase the concentration of electrons and

holes. However, if the impact of foreign influences (light, radiation, etc.)

stops, the excess concentration (imbalanced) carriers will decrease rather

rapidly, tending to the equilibrium value (due to recombination).

16. The rate of recombination of excess charge carriers characterizes the lifetime τ
of charge carriers. The value of τ can be controlled technologically; at that,

lifetime can be reduced 1000 times by imbedding special impurities in the

semiconductor that leads to appearance of deep energy levels in the forbidden

band. However, these deep levels increase not only the rate of recombination,

but the rate of generation of charge carriers as well.

17. Free charge carriers are always in a state of chaotic random movement that

occurs with high velocity. Under normal conditions, average velocity of this

chaotic traffic is 105–106 m/s. If electrical field is applied to this chaotic

movement, superimposed directed drift of charge carriers occurs. The average

drift velocity in a rather weak electrical field is proportional to the field. In the
strong electrical field, drift velocity of charge carriers becomes saturated: drift

velocity cannot surpass chaotic velocity of thermal motion.

18. If concentration of free charge carriers in the semiconductor is distributed

heterogeneously, the diffusion appears: the flow of charge carriers is from the

region with higher concentration to the region of lower concentration.
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19. Near the border that divides crystal and environment, a certain force exists

(work function) that prevents electrons to leave crystal and fly out. The energy

that electron requires to overcome effect of work function is approximately a

few electron-volts. In semiconductors, the value of work function depends on

the type of semiconductor and on the level of its doping. Also, it depends on

the spectrum of surface states, that is, the surface energy levels that always

exist on the surface of the semiconductor. The negative surface charge

increases the level of work function, the positive surface charge reduces it.

20. The width of potential barriers in a semiconductor depends on the level of

doping. For low-doped semiconductors potential barrier equals from hundreds

to thousands of atomic layers (tens of micrometers), while in heavily doped

semiconductors this width is only several atomic layers (thousandths parts of a

micrometer).

21. Between two parts of semiconductor crystal, one of which is doped by donors

and another by acceptors, a potential barrier appears: the p-n junction. In the

absence of external voltage, the height of this barrier approximately equals to

the bandgap Eg of semiconductor. External electrical bias field when “+” is

applied to p-region of junction and “�” to n-region (reverse voltage) increases
the height of a barrier. In this case through the p-n junction only very small

“reverse” current can flow. Therefore, the diode with p-n junction at inverse

bias shows very high resistance. In case of direct bias field (“+” of external

voltage is applied to n-region while “�” is applied to p-region of diode), the

height of barrier is reduced. The density of “direct” current through the diode

increases sharply with increasing voltage, and can reach very high values.

22. The light absorption—a decrease in intensity of optical radiation during its

passing through crystal and interacting with crystal—causes light energy

transformation into other forms of energy. Absorption coefficient does not

depend on light intensity, but it is different for various wavelengths. Based on

exponential law of light intensity attenuation in depth of sample, the indicator

of photon absorption can be interpreted by parameter α while value α�1 is the

middle free path of photon in crystal.

23. The internal photoelectric effect is due to the fact that in case of semicon-

ductor surface illumination the number of generated free electron-hole pairs

greatly increases. Increased concentrations of electrons and holes, in turn, lead

to conductivity increase. The photovoltaic effect (Dember effect) is the

bipolar diffusion of charge carriers that generate the EMF conditioned by

different mobility of electrons and holes in case of light absorption.

24. Mechanisms of light absorption vary in different spectral intervals. The

intrinsic (or fundamental) absorption is due to electronic transitions between

allowed energy bands. Absorption by free charge carriers is conditioned by

electron (or hole) transitions between allowed bands (or sub-bands). The
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doping absorption is due to electron (or hole)-allowed transitions between

bands and impurity levels in the forbidden band. Light absorption by impu-

rities can be explained as electron (or hole) absorption at their transitions

between impurity states in the forbidden band. The absorption by excitons is
conditioned by the appearance of electron-hole pairs that makes significant

contribution near fundamental absorption edge, because energy of exciton

state is smaller. Absorption of light by crystal lattice in semiconductors can

also lead to the absorption by phonons. The plasma absorption is the light

wave energy absorption by electron-hole plasma that results in plasma tran-

sition on the higher quantum state.

25. The combined effect of electrical and magnetic fields in the conductors and

semiconductors leads to some galvanomagnetic effects, at which the differ-

ence in electrical potentials occurs, or temperature change in electrical and

thermal conductivities is observed.

26. Hall’s effect is occurrence of transversal potential when placing conductor (or
semiconductor) in the crossed electrical and magnetic fields. This effect is

widely used for measuring magnetic fields, as well as for determining charge

carrier concentration in semiconductors and metals.

27. Electrical resistance of conductor or semiconductor changes in magnetic field:

this is the magnetoresistance (Gauss effect). The physical cause of magne-

toresistance is the change of charge carrier velocity in longitudinal direction

(along current flow). Based on the magnetoresistance effect, many types of

magnetic field sensors are elaborated.

28. In a semiconductor placed in the magnetic field, the following are also

observed:
• temperature gradient occurrence in the direction perpendicular to magnetic

field B and to current density vector j: this is transverse galvanothermo-
magnetic effect that can be explained by combined influence of Hall

magnetic field and Lorentz force influence on fast and slow charge carriers;

• longitudinal galvanothermomagnetic effect caused by a diverse influence

of Hall magnetic field and Lorentz force on charge carriers, moving with

different velocities.
29. The pinch effect is a self-compression of electrical discharge that can be seen in

the electroconducting environment, and is conditioned by the action of its own

(generated by same current) magnetic field. This effect is the only characteristic

of such conductive environments in which mobile charge carriers (electrons and

holes in semiconductors) are presented in approximately equal quantities.

30. The thermomagnetic effects (being conditional by electronic thermoconduc-

tivity) are a flow of charge carriers caused by temperature gradient. Magnetic

field bends the trajectories of carriers, prompting electrical and thermal

gradients.
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31. The electrical thermomagnetic effects include:
• transverse electrical field in a magnetic field that arises in case of tem-

perature gradient presence (this effect is used for investigation of nonde-

generated semiconductors);

• longitudinal electrical field that arises because a magnetic field, deflecting

moving electrons, reduces their average velocity and thus reduces the

energy transfer in this direction;

• transverse temperature gradient that occurs in a magnetic field in a con-

ductor, in which there is the heat flow; while magnetic field is switched on,

the flux diffusion is deflected by Lorentz force at some angle; this effect is a

thermal analog to Hall’s effect;

• longitudinal temperature gradient that occurs in magnetic field toward

existing temperature gradient because charge carriers along diffuse heat

flow twist their trajectory on some angle and change charge carrier velocity

in the direction of temperature gradient.
32. In semiconductors, illuminating by light, in the strong magnetic field some

effects occur:
• photoelectromagnetic effect that is conditioned by bipolar diffusion from

illuminating surface of semiconductor; generated by light diffuse streams

of excess electrons and holes are turned by magnetic field to opposite sides

of sample (similar to Hall’s effect);

• interband magnetoabsorption that occurs due to light intrinsic absorption

in magnetic field (these are transitions between Landau’s levels in the

valence band or in the conduction band);

• magnetoabsorption by dopings that occur during optical transitions of

electrons and holes from the ground state to the excited state, as well as

during transitions between impurity states and Landau levels in

permitted bands;

• turning of polarization plane (Faraday magneto-optical effect) by free

charge carriers and interband transitions, determined by a difference in

optical paths of two opposite circular polarization of

electromagnetic waves;

• birefringence—Voigt effect, related to Faraday effect of free charge car-

riers; the research of Faraday and Voigt effects directly determines

effective mass of charge carriers.
33. If an illuminating semiconductor is placed in constant magnetic field, the

interaction of light with crystal at the frequency close to plasma frequency

produces various magnetoplasma phenomena.

34. In magnetic field the oscillations of different electrical properties can appear

in semiconductors: oscillations of magnetic susceptibility, light propagation,

ultrasound absorption, and thermoelectromotive power.



5078.8 Summary
35. The dimensional effects occur, if the body length at least in one dimension

becomes comparable with some critical magnitude lcr. For classical dimen-

sional effects, the lcr is a classical value, such as the diffusion length, the length
of the free run of electrons, etc. However, during charge carrier movement in

nanostructure semiconductors the wave nature of electrons and discreteness

of energy spectrum vividly manifest themselves. The quantummode of charge
carrier transfer occurs; in contrast to classical regime, in nanostructures free

path of electrons is much smaller than the size of a system, and electrons are

regarded as classical charged particles.

36. The quantum-dimensional effects in the electronic structures are observed

when the role of critical length lcr is played by de Broglie wavelength for

electrons λe, at that, the size of structure at least in one dimension has the order

of λe. Quantum-dimensional effects are due to wave nature of electrons. In the
nanosized regions, the behavior of electrons is determined by the reflection of

electronic waves from the boundaries of such areas, as well as by interference

of electronic waves or by passage of waves through potential barriers. The

quantization of electrons energy is spatially limited their displacements, as

well as the passage of electrons through nanometer dielectric layers and

quantization of electrical resistance of nanowires, and others.

37. The quantum well corresponds to 2D object. Usually this is a thin layer of

crystal, whose thickness d is commensurate with de Broglie wavelength

(d�λ). The system of electrons in such a layer is called the 2D electronic gas.

The quantum wire (quantum thread) is 1D nano-object. Motion of the elec-

trons is limited along two axes, but not limited along one wire axis. The

potential well for electrons in the quantum wire (thread) is 2D. The quantum
dot is 0D nano-object, where motion of electrons is limited in all three

dimensions.

38. The ballistic conductivity in the nanoscale conductors gives a chance to find

the quantity of quantum of conduction (2e2/h) and its reciprocal value the

quantum of resistance: h/2e2¼12.9kΩ. The quantization of resistance is

conditioned by dimensional quantization of energy, but to monitor the effect

of quantization of resistance sufficiently low temperatures (�1K) are

required.

39. The resonance tunneling is characterized by very small time, ℏ/(U0�E)�
10�15 s, which can be estimated using uncertainty relation: ΔE 
Δt � ℏ/2.
Tunneling effect has essential probability, if barrier width l is comparable to

de Broglie wavelength of electron. It defines the boundaries of functioning of
elements of integrated circuits, constructed on the basis of traditional prin-

ciples. The tunneling effect now is the basic principle of many devices: it can

increase their speed to the terahertz region. For example, only on this principle

some single electron devices can work.
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40. The superlattices are crystalline structures in which, apart from the periodic

potential of crystalline lattices, there is another periodic potential, the period
of which far exceeds lattice constant, but corresponds to the nanoscale

dimensions.

41. The semiconductor superlattices are solid-state structures in which, except for
the 3D periodic potential of crystalline lattice, there is additional 1D potential,
the period of which substantially exceeds lattice constant. The presence of

such potential essentially changes energy spectrum so that superlattices show

many interesting properties that are absent in the ordinary semiconductors.

42. Superlattices represent the unique opportunity to almost randomly modify
their band structure. The features of superlattices luminescence are used to

create a new generation of light-emitting devices. Semiconductor superlattices

are characterized by essentially nonlinear transport properties due to the

presence of very narrow minibands in their energy spectrum.
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The term “insulator,” which signifies a substance that practically cannot conduct

direct electrical current, has previously been considered as a synonym to term

“dielectric.” In present-day electronics, in addition to good insulation, other proper-

ties of solid dielectrics have gained importance, namely, those that are used for the

conversion of energy or information. Among such functional dielectrics are, for

example, piezoelectrics that convert mechanical energy into electrical energy and

vice versa, which are widely used in electronic devices. Another example is pyro-

electrics that convert heat energy into electricity energy, which are used in sensitive

radiation detectors, thermal vision devices, and so on [1].

Nonlinear properties of ferroelectrics and paraelectrics, external electrical field

induced by electrets, high optical activity of liquid crystals enable the application

of such active dielectrics for modulation; detection; amplification; registering, stor-

ing, and displaying; and other types of electrical and optical conversion of signals

carrying information. In view of a possibility to use some dielectrics as the

“active” (converting) elements in electronics, one should identify and describe their

properties considering not only their exclusive electrical characteristics but also their

capability to manifest various electrical, optical, mechanical, and thermal effects.

These materials are important also for the miniaturization of microwave and

telecommunication equipment. For these reasons, regarding materials science,

the electronic industry shows considerable interest in ferroelectrics, paraelectrics,
Electronic Materials. https://doi.org/10.1016/B978-0-12-815780-0.00009-8
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piezoelectrics, and pyroelectrics, precisely because of their new applications in

instrumentation engineering and electronics, as well as owing to significant progress

in the field of modern microelectronic and nanoelectronic technologies [2].

Polar dielectric materials, applied in the electronic equipment, sometimes are

referred to as “smart” or “adaptive” materials in literature, whereas Russian-

language literature prefers the term “active” dielectrics. These materials are partic-

ularly relevant to modern and future instrumentation based on micromachining. In

this trend, group technology of microelectronics is used for a variety of technical

fields. Based on modern equipment, micromachining is organically connected with

microelectronics and nanoelectronics.

Among contemporary applications of active dielectrics, the following areas of

particular relevance should be noted [3]:

• ferroelectric and paraelectric thin films, integrated with semiconductors;

• microsystems that combine sensors, processors, and actuators;

• microwave microelectronics, based on active dielectric components;

• nanodielectrics that have some perspectives for sensors and memories.

Once again, dielectrics are termed as active if they can covert energy or information.

Active (or adaptive, or controlled) dielectrics may easily react to the changes in tem-

perature, pressure, mechanical stress, electrical and magnetic fields, light illumina-

tion, and even smell. Active dielectrics can be classified as ferroelectrics,

piezoelectrics, electrets, quantum electronics components, superionic conductors,

and others.

Electromechanical and electrothermal properties have been given priority for the

application of active dielectrics. In particular, mechanical properties such as elastic-

ity, which defines the practical use of crystals in piezoelectronics, acoustoelectro-

nics, acousto-optics, and so on, are focused. The discrete structure of crystals can

be overlooked with regard to its elastic properties; hence, the crystal is considered

as a continuous homogeneous medium (continuum approximation). This approach

is justified to frequencies below 1012Hz, which is much greater than the frequency

of operation of conventional electronic devices (up to 1011Hz).

The most important scientific and technical fields of piezoelectric effect applica-

tion are [4] as follows:

(1) piezoelectronics (piezotechnique of bulk acoustic waves) are used in the

development of piezoelectric receivers, piezoelectric transformers, and

piezoelectric motors, phone cards, adaptors, microphones, piezoelectric

resonators, and piezoelectric filters;

(2) acoustoelectronics (piezotechnique of surface waves) are applied in

microelectronic data converters: delay lines, filters, sensors of external

influences, convolvers, and so on;

(3) acousto-optics involves the interaction of optical waves with acoustic waves

and are used in developing deflectors, optical filters, and other optical devices.



5119.1 Simplified description of primary effects
The progress in these areas of technology depends on the search for more effective

materials on the development of new technologies and on methods of improvement

of piezoelectric properties.
9.1 SIMPLIFIED DESCRIPTION OF PRIMARY EFFECTS
The classification of basic physical effects that are manifested in different active

dielectrics is given in Table 9.1. With the purpose of simplification and visibility,

the “impact-response” method of analysis is used.

The impact on a material is realized by externally applying various fields: elec-

trical, mechanical, and thermal. In case of dielectrics, first, the application of elec-

trical field is the most important. However, electrical field in metals and highly

doped semiconductors is screened by free carriers and usually equals zero. There-

fore, only in wide-gap semiconductors and dielectrics, electric field can make a sig-

nificant impact. Table 9.1 shows the classification of the main effects that occur as a

result of influence on materials under different fields [1,5].

The responses of a material are physical effects, induced by the impact.

“Trivial” (or conventional) responses are those of physical nature that corre-

sponds to the impact nature. For example, electrical field determines electrical cur-

rent (charge transfer) and electrical polarization (charge separation), which are

described by conductivity σ and permittivity ε, respectively. These responses are

shown on the main diagonal of Table 9.1. Such effects can be observed not only

in active dielectrics but also in any dielectrics. Dielectrics that are characterized

by only the “trivial” effects can be called as “regular”; they play a technically impor-

tant and well-defined role.

However, when electrical field is applied, the responses might have not only elec-

trical nature (electrical current or polarization) but also mechanical nature
Table 9.1 Primary Effects in Active Dielectrics, Classified by the
“Impact)Material ) Response” Method

Impact

Response

Electrical Mechanical Thermal

Electrical field
E

Polarization
P¼ε0χE
Induction
D¼ε0εE

Inverse piezoeffect
x¼dE
Electrostriction
x¼RE2

Electrocaloric
effect
P¼ξδT

Mechanical stress
X

Direct
piezoeffect
E¼dX

Strain
x¼sX

Elastothermal
effect
δT¼ηX

Temperature
change
δT

Pyroelectric
effect
P¼γδT

Thermal expansion
x¼αδT

Heat capacity
δQ¼CδT
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(deformation), thermal nature (change of substance temperature), and others. Partic-

ular attention is given to materials in which the nondiagonal (“cross”) effects are
strongly pronounced. These effects are, primarily, the piezoelectric effect that char-

acterizes electromechanical properties of dielectrics that have internal polar direc-

tions. The pyroelectric effect is also concerned with the cross effects. If these

effects are greatly inhibited, it enables the relevant material to be considered as active

dielectrics, which includes pyroelectrics and piezoelectrics, as well as many other

corresponding magnetic and optical counterparts. As a rule, crosselectrical and opti-

cal effects are most clearly manifested in ferroelectrics.

Impact usually is the vector field: electrical, magnetic, and high-frequency elec-

tromagnetic field (light), but impact may also have scalar nature (heat), and it may be

the second-rank tensor, for example, mechanical stress. It should also be noted that

many phenomena, which represent considerable interest both for physics and tech-

nical use of dielectrics (especially in electronics), occur in case of joint impacts of
several factors such as light and electrical field, mechanical stress and light, and so

on. These effects are not shown in Table 9.1.

Usually dielectric and magnetic properties of substances are independent. The

exceptions are ferroelectric-ferromagnetics (ferroics), in which a subsystem of

ordered spins (magnetism) is strongly associated with spontaneously polarized lat-

tice (a subsystem of ordered dipoles). In these substances, different magnetoelectri-

cal effects may be pronounced. For example, the magnetic field can displace

ferroelectric Curie point and affect the permittivity, whereas the electrical field

can control frequency and quality factor of ferromagnetic resonance. However, pres-

ently, these effects are mainly a subject of research laboratories. It should be noted

that different magnetomechanical and magnetothermal phenomena (magnetostric-

tion, piezomagnetic, and other effects) are substantial only in those dielectrics that

have ferromagnetic or paramagnetic properties simultaneously. For example, the

magnetocaloric effect in some paramagnetics is quite significant and it is used in

cryogenic technology to obtain ultralow temperatures.

Principal effects that occur in dielectrics under the influence of the electrical field

have been discussed in Chapter 7. It should be noted that the strong electrical field

polarization (Fig. 9.1A) and conductivity (Fig. 9.1B) become nonlinear, so that sim-

ple linear relations, as shown in Table 9.1, become more complicated. Regarding

electromechanical responses (Fig. 9.1B), it should be noted that there are two

responses: one effect by its nature is odd and linear (piezoelectric effect), whereas

the second is even and quadratic (electrostriction). Similarly, electrothermal

responses are characterized and shown in Fig. 9.1D: in addition to total quadratic

effect of energy loss for all substances, a linear electrocaloric effect exists in the polar

crystals.

When the intensity of impact exceeds a certain threshold, dielectrics may pass

into the irreversible state such as electrical breakdown, mechanical disruption, melt-

ing, sublimation, or a combination of these. It is appropriate to note that Table 9.1, in

total, is applicable only to polar (active) dielectrics.



FIG. 9.1

Linear and nonlinear dielectric responses to electrical impact: (A) polarization;

(B) conductivity; (C) piezoelectric effect and electrostriction; and (D) quadratic effects of

dielectric loss and linear electrocaloric effect [1].

5139.1 Simplified description of primary effects
Bonding diagram for elastic, electrical, and thermal effects. Elastic, thermal,

and electrical properties of polar crystals are interdependent. This diagram appears

as two triangles, connected by their apexes (Fig. 9.2). Nine lines, connecting apexes,

represent the nine linear effects that may be observed in the polar crystals [6].

Three lines of this diagram, connecting the apexes of inner and outer triangles,

represent separately thermal, electrical, and mechanical interaction. The line, which

connects the right apexes of triangles, symbolizes the equation ΔQ¼CΔT, which
FIG. 9.2

Graph of electrical, mechanical, and thermal properties of bonding in the polar crystal.
After W.O. Cady, Piezoelectricity, Amazon com, New York, 1946.
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describes the relationship of basic thermal parameters of the crystal: ΔQ and ΔT are

the changes of heat and temperature, whereas C is the specific heat. The line, con-

necting the upper apexes of triangles, indicates electrical parameters of the crystal in

case of electrically induced polarization: Pi¼ε0χijEj. The line, joined to the left

apexes of the diagram, symbolizes mechanical properties of the crystal (Hooke’s

law): Xkl ¼cklmnxmn, where Xkl and xmn are stress and strain tensors, whereas cklmn
is the elastic stiffness tensor.

The six edges of two triangles in a diagram represent linear effects, thus reflecting

the connection of thermal, elastic, and electrical properties in the polar crystal. In

particular, the lower (horizontal) lines indicate thermoelastic effects, for instance,

xmn¼λmnΔT, where λmn is the thermoelastic tensor of mechanically clamped crystal.

In case of mechanically free crystal, any type of stress is absent; hence,

xmn¼αmnΔT, where αmn is the tensor of thermal expansion coefficient. Depending

on the implementation of this process—adiabatically (ΔQ¼0) or isothermally

(ΔT¼0)—as well as depending on the mechanical conditions of the crystal, which

might be mechanically free (Xkl¼0, which means allowing strains) or mechanically

clamped (xmn¼0, which means banned strains), thermoelastic effects can be

described by different linear equations. Moreover, two opposite directions of these

effects are possible: the primary influence might be thermal (change in heat or tem-

perature), whereas the response is mechanical (change in strain or stress). Alterna-

tively, the primary influence may be the mechanical impact on the crystal, whereas

reaction is the change in temperature or heat. For example, during stretching, cooling

occurs in the crystal, whereas during compression, heat is produced in the crystal. As

a result, eight linear equations might describe all thermoelastic effects—

interrelations between ΔQ, ΔT, Xkl, and xmn.
The left side of the diagram (Fig. 9.2) corresponds to linear electromechanical

phenomena. If the initial perturbation of the equilibrium state is mechanical defor-

mation, xmn (the crystal is free), or mechanical stress, Xkl (the crystal is clamped), the

open-circuit electrical response to this influence will be the electrical field:

Ei ¼himnxmn or Ei ¼giklXkl, respectively. In case of closed-circuit conditions, electri-

cal response is due to the occurrence of polarization: Pj ¼ejmnxmn or Pj ¼djklXkl. Thus

depending on boundary conditions, a direct piezoelectric effect is described by four
linear relationships. Inverse piezoelectric effect meets a similar situation for two

mechanical boundary conditions (free or clamped crystal), as well as two electrical

conditions (open circuit and closed circuit). The piezoelectric effect might be not

only direct but also inverse. Thus, the left side of the diagram symbolizes eight linear
equations that describe linear electromechanical effects: interrelations of Ei and Pj on

one hand and between Xkl and xmn on the other hand.

The right side of the diagram (Fig. 9.2) describes eight electrothermal effects in
the polar crystal. The pyroelectric effect occurs when the disturbance factor is ther-

mal influence, whereas the response is of electrical nature. Depending on thermal

conditions (adiabatic with ΔQ¼0 or isothermal with ΔT¼0) and electrical condi-

tions (open circuit and closed circuit), four possible equations describe the pyroelec-

tric effect: Pi¼γi ΔT, Pi¼γ0i ΔQ, Ej¼γ00j ΔT, and Ej¼γj000ΔQ, where different
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pyroelectric coefficients correspond to various boundary conditions. The electroca-

loric effect is the inverse of the pyroelectric effect, and it may also be described

through four different linear relationships—depending on the boundary conditions.

One important consequence of the relationship between electrical, thermal, and

elastic effects in the polar crystal is the appearance of secondary effects. The path of
one of these effects, denoted by an arrow, is seen in the diagram. In this example, it is

possible to observe the secondary pyroelectric effect that occurs under certain

boundary conditions: due to thermally induced expansion of the free crystal, electri-

cal polarization appears through the piezoelectric effect.

Another consequence of the relationship shown is the dependence of thermal,

electrical, or mechanical processes, present in the polar crystals, on the boundary

conditions. For example, in the open-circuit pyroelectric, specific heat CE differs

from specific heatCP obtained in the closed-circuit crystal. In the samemanner, there

is a difference in specific heat of mechanically free (CX) and mechanically clamped

(Cx) crystals. Similarly, the elastic stiffness, according to Hooke’s law, for polar

crystals depends on electrical conditions: the elastic stiffness of open circuit

(cPklmn) differs from that of closed circuit (cEklmn). Although Hooke’s law is studied

in the polar crystal, its elastic stiffness depends on the isothermal (cTklmn) or adiabatic
(cSklmn) conditions.
9.2 PIEZOELECTRIC EFFECT
Piezoelectric effect was discovered by Pierre and Jacques Curie in 1880. The first

technical application of piezoelectrics became well known in the year 1920 when

P. Lanzheven created ultrasonic transducer for transmitting and receiving signals

in water, which became the prototype of modern ultrasonic transducers used cur-

rently for navigation in submarines as well as to detect shoals of fish and for other

purposes. Sometime later, B. Cady developed piezoelectric filters for use in telecom-

munication applications [6].

The area of practical application of instruments and devices that use the piezo-

electric effect in their designs is constantly expanding. Some products such as

watches, cameras, mobile phones, televisions, computers, and piezolighters have

become the objects of everyday life. Many electronic devices are not possible with-

out piezoelectric elements. There are radiators and antennas of sonar; frequency sta-

bilizers in computers; electronic devices for reference time; power line filters and

delay lines in radio and telephone communications; sensors to measure acceleration,

vibration, and acoustic emission nondestructive testing; piezotransformers and

piezomotors; medical ultrasound imaging and medical instruments for various pur-

poses; and so on [7].

Piezoelectric materials include bulk ceramics, ceramic thin films, multilayer

ceramics, single crystals, polymers, and ceramic-polymer composites. In recent

years, many types of piezoelectric films have been developed and tested for different

microsystems and microelectronic components. Film and bulk piezoelectrics can
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also be used in microwave MEMS devices. New relaxor-ferroelectric ceramics and

crystals exhibit extremely high efficiency of piezoelectric energy conversion, which

is of interest, in particular, for medical imaging devices and for other applications

such as special drives for industrial nondestructive testing.

In dielectrics, although the electrical field is applied, different electromechanical

effects occur: the “free” crystal under the influence of field is deformed, whereas in

the “clamped” crystal, elastic stress occurs. The physical causes of electromechan-

ical effects are the microscopic displacement of electrical charges in the applied

electrical field because electrical polarization is obviously accompanied by the

mechanical effect. The dependence of electrically induced mechanical strain on

the electrical field is determined by the symmetry of dielectric structure.

In dielectrics with a centrosymmetric structure, sign of their deformation in the

applied electrical field (compression or tension) is independent of field polarity. This

effect is called electrostriction, which occurs in all dielectrics without exception. In

most dielectrics, mechanical stretching is observed in the direction of the applied

field; however, this effect of electrostriction is usually very small.

In dielectrics with a noncentrosymmetric structure, a more pronounced effect is

observed: the piezoelectricity. It is assumed that the reason for this effect is the intrin-
sic electrical moment existing owing to structural peculiarities: it is the internal inter-
action of electronic shells of ions or molecules, which results in their shift. In the

event of the piezoelectric effect, if the electrical polarity of externally applied elec-

trical field is changed, the sign of electrically induced mechanical deformation

reverses. Moreover, in the noncentrosymmetric dielectrics, an opposite effect is

observed: external mechanical stress causes electrical polarization.

Thus the piezoelectric material is capable of converting mechanical energy into

electrical energy, or, conversely, electrical energy into mechanical energy. The first

of these effects is the direct piezoelectric effect, whereas the second is the inverse

effect [8].

In case of the direct piezoelectric effect, under the influence of mechanical stress

X (or the elastic deformation of x caused by mechanical stresses), noncentrosym-

metric dielectrics (piezoelectric) generate electrical polarization, as shown in

Fig. 9.1B and C. Because the electrical conductivity of the piezoelectric material

(which is usually a good insulator) is very small, its polarization is expressed in

the form of induced electrical charges that appear on the surface of the deformed

piezoelectric material. The density of these charges is described by the polarization

P, and the direction of the polarization vector is selected from the mark “�” to the

mark “+,” as shown in Fig. 9.1B and C. Polarization P is proportional to electrical

induction D, as shown in Fig. 9.1G.

If mechanical stress is not applied (X¼0), no free charges exist on the surface of

the piezoelectric material. Therefore it is electrically neutral, as shown in Fig. 9.3A.

The piezoelectric material becomes polarized as a result of positive (stretching)

deformation when x>0 or negative (compression) deformation when x<0. When

mechanical stress changes its sign (such as when compression changes to stretching,

as shown in Fig. 9.3B and C), the sign of the mechanically induced electrical



FIG. 9.3

Explanation of direct (A, B, C, H) and inverse (D, G, H, E) piezoelectric effects.
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polarization P supersedes. In case of the direct piezoelectric effect, polarization is

directly proportional to strain:

P¼ ex,

where e is the piezoelectric strain constant.

Inverse piezoelectric effect occurs when the electrical field deforms the noncen-

trosymmetric crystal structure, as shown in Fig. 9.3I and F. The sign of the electri-

cally induced strain varies with the sign of electrical influence, as shown in

Fig. 9.3H. Further, deformation (strain) varies linearly with electrical field:

x¼ dE,

where d is the piezoelectric modulus.
The most simplified explanation of the direct piezoelectric effect in the α-quartz

(SiO2) is presented in Fig. 9.4. The generally accepted model of hexagonal quartz

structure is the hexagon with positive silicon ions and negative oxygen ions that form

a noncentrosymmetric structure. Some forms of hexagon deformation can produce

electrical polarization. If deformation is absent, no polarization is observed, as

shown in Fig. 9.4A [6,9]. The stretching of a model cell in the horizontal direction

induces charges and electrical field, as shown in Fig. 9.4B; this is the direct longi-
tudinal piezoelectric effect. Further, the “�” charge dominates on the left side of a

cell, whereas the “+” charge appears on the right side of a cell. The upper and lower



FIG. 9.4

A simplified model of the piezoelectric effect in quartz: (A) deformation is absent;

(B) stretching of a model cell in the horizontal direction; (C) compression of a model cell in the

horizontal direction.
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parts of the concerned cell have no generated charges: they remain neutral (no trans-

verse effect).

A similar result might be obtained by the compression of the concerned cell in the

horizontal direction, as shown in Fig. 9.4B: in the vertical direction, no longitudinal

effect is seen compared to that seen in the upper and lower parts of the cell. However,

due to horizontal compression, the transverse piezoelectric effect occurs again on the
left and the right sides of the cell. The point is that the horizontal direction of the

selected cell is polar, whereas the vertical direction is nonpolar. Fig. 9.4C demon-

strates that a change in the sign of mechanical impact gives rise to the change in pie-

zoelectric polarity, as it should be in the case of linear effects.
Therefore a simple model, shown in Fig. 9.4, describes the longitudinal piezo-

electric modulus, when electrical response has a direction same as that of mechanical

influence. In this case, the highest value of piezoelectric modulus (dmax) is deter-

mined. In various directions of the quartz crystal, modulus d has another value,

whereas the piezoelectric response distribution might be rather complicated, as

shown in Fig. 9.5.
FIG. 9.5

Longitudinal piezoelectric modulus of quartz: (A) planar distribution, Curie cut is shown by

strokes [6], (B) spatial distribution of modulus (guide surface—indicatrix [10]).



5199.2 Piezoelectric effect
From Fig. 9.5, one can see that the piezoelectric effect in quartz is absent in the

vertical axis of a cell; in Fig. 9.5A, it is denoted as axis 3 (this three-order axis of

quartz is nonpolar). Similarly, the piezoelectric effect cannot be observed along other

three nonpolar axes that are indicated as 2,20, and 200). The highest possible piezo-

electric effect is seen along the three polar axes 1, 10, and 100. The cut of a quartz

crystal, made perpendicular to this direction, is the Curie cut. There is decreased pie-
zoelectric activity slanting to Curie cut planes, and its distribution in a plane is

described as d¼dmax cos3φ, where φ is the plane angle.

Spatial distribution of piezoelectric modulus in the polar coordinates is described

as d¼dmax sin
3 θ cos3φ, where θ is azimuth angle. This spatial pattern, as shown in

Fig. 9.5B, appears as almond grains: six surfaces joined in the center. In the Z-axis, as
well as in the three Y-axes, the piezoelectric effect in quartz does not occur. Through
the radius vector directed from the center of the figure as a certain angle, the size of

piezoelectric modulus can be determined in any cut of quartz. It is obvious that the

highest possible effect occurs along any of the three X-axes.
The main feature of the piezoelectric effect is its linearity, and this important fact

enables to distinguish inverse piezoelectric effect from electrostriction. In any

dielectric, external electrical field produces the deformation that is characterized

by its quadratic dependence on the field:

x¼RE2,

where R is the constant of electrostriction, as shown in Fig. 9.6A. It is seen that strain

in case of electrostriction does not change its sign with change in electrical field

polarity.

Except quadratic type of x(E) dependence, electrostriction is different from the

piezoelectric effect1 also by a fact that electrostriction has no retroactive mechanoe-

lectrical effect. Regarding the linear piezoelectric effect, one can see the direct and

inverse effects.

In compliance with such an electrically induced (artificial) piezoelectric effect

(possible in any solid dielectric), one can suppose that the usual piezoelectric effect

also would be explained as the “linearized electrostriction,” as shown in Fig. 9.6B. In
case of piezoelectric effect, no external field is applied, but the internal (spontane-

ous) distribution of electrical charges can be roughly characterized as “bias effective
1Comments. Linear electromechanical effect (which is a peculiar property of polar structures) can

sometimes be interpreted as linearized electrostriction, as shown in Fig. 9.6B. Suppose the external

direct electrical field (bias field Eb) is applied to usual centrosymmetric crystal (which is nonpiezo-

electric at E ¼ 0), the applied electrical field changes the original symmetry of the crystal due to elec-

trical polarization: conditioned by electrostriction, strain xb occurs that corresponds to the bias field Eb.

In this way, under external direct voltage, the structure of the crystal turns into the polar structure
(becomes noncentrosymmetric). In that case, the imitation of linear electromechanical response can

be observed: on a wing of electrostriction parabola: in the presence of bias field, alternating (sinusoidal)

electrical field E’ generates practically linear mechanical response: х0 � d0Ε0, where d0 is the electri-
cally induced piezoelectric module. Calculations show that d0 � 2Qε0

2ε2E0, where ε is the permittivity

and Q is the electrostriction.



FIG. 9.6

Comparison of inverse piezoelectric effect (Inv) and electrostriction (El): (A) parabolic and

linear field dependences of strain; (B) in bias field Eb the quasilinear dependence x0(E0)
imitates the piezoelectric effect.
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internal crystal field, Eb.” However, in the noncentrosymmetric crystal, this

“imaginary field” looks large, whereas the externally applied voltage can only give

rise to a slight change in “spontaneous mutual displacement” of ions but cannot

change the overall direction of internal polar arrangement of a crystal. This assump-

tion might be advanced according to the conception that the fundamental reason for

intrinsic polarity of the crystal is the asymmetry in electronic density distribution

along polar bonds between ions that have quite different electronegativity.

Electrostriction differs from the piezoelectric effect by a fact that it has no oppo-

site effect, that is, this effect is exceptionally electromechanical, but not mechanoe-
lectrical. In case of the direct piezoelectric effect, induced electrical moment

(polarization) occurs due to charged particle displacement in the noncentrosym-

metric dielectric. However, in the centrosymmetric dielectric, any displacement of

charged particles under the influence of mechanical force does not result in the polar-

ized state of dielectric just due to the presence of a symmetry center in its structure:

any electrical moments, created by the displacement of positively and negatively

charged particles, are compensated. Therefore, electrostriction has no opposite

effect.

Although the symptom of piezoelectric properties is necessarily due to the pres-

ence of noncentrosymmetric structure, the observation of electrostriction has no

restrictions in symmetry, and it is manifested in all dielectrics.
In most cases, electrostriction effect is quite small that it cannot be considered—

not only in technical application but also in dielectric research (relative deformation

due to electrostriction rarely exceeds 10�8). However, recently, such active dielec-

trics have been discovered (relaxor ferroelectrics), which demonstrate the “giant”
electrostriction when the strain in the external field reaches 10�4–10�3, that is, sur-

pass even best piezoelectrics. Such electrostrictive materials are very important in

technical applications because they do not show hysteresis in their strain-field

characteristics.
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Typically, in solid-state physics, mechanical and electrical properties are studied

as independent. However, in piezoelectrics, owing to their special structure, electri-

cal and mechanical properties are mutually conditioned. Piezoelectricity and electro-

striction are the electromechanical effects that are close to each other by their

physical nature. The piezoelectric effect refers to special electromechanical proper-

ties of certain dielectrics that have a polar structure (maximal effect is seen just in

polar directions).

Electromechanical parameters of crystals include piezoelectric modules, electro-

mechanical coupling coefficients, and piezoelectric Q-factors (mechanical and elec-

trical), which indicate energy loss in the piezoelectric transducers. In addition to the

aforementioned parameters, in accordance with one or another technical application

of piezoelectric materials, other “quality factors” are applied to compare different

piezoelectric materials to select them for certain practical applications.

Therefore, as already noted, internal polarity of noncentrosymmetric crystals

enables the conversion of mechanical energy into electrical energy (direct piezoelec-

tric effect) or, the converse, electrical energy into mechanical energy (inverse pie-

zoelectric effect). All these effects are described by different linear relationships
with dependence on the combination of various boundary conditions, under which

polar crystals are used or studied.

Next, the idealized electrical and mechanical boundary conditions, under which

the polar crystal might be applied or studied, are considered.

Electrical boundary conditions:
When E50, the polar crystal is electrically free,which means that the entire sur-

face of the crystal is equipotential. If the electrical induction is D¼ε0E+P, then in

the electrically free crystal, D¼P. In case of the static procedure of piezoelectricity
study (or application), the condition E¼0 can be realized by entirely metallized crys-

tal. In practice, this condition is performed by a shorting of electrodes deposited on

the piezoelectric. Under dynamic testing, when mechanically or thermally induced

polarization is variable in time, the condition E¼0 leads to electrical current, that is,

the crystal is the source of current.

When D50, the polar crystal is electrically disconnected, D¼ε0E+P¼0. In the

static case, implementation of this condition in research requires extremely low con-

ductivity of the piezoelectric: only in this case, piezoelectric polarization P is totally

compensated by mechanically induced electric field: ε0E¼�P. In case of dynamic
excitation of the polar crystal, the condition D¼0 is true, for example, for acoustic

waves that have longitudinal polarization.

Mechanical boundary conditions:
When X5 0, the polar crystal is in a mechanically free state, in which all com-

ponents of stress tensor are equal to zero. In the static studies, this condition can be

realized by providing a total freedom for crystal deformation. Under the dynamics
condition, X¼0 can be realized with the same caution and, in addition, the polar

crystal should be explored at frequencies below its mechanical resonances.
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When x 50, the polar crystal is mechanically clamped. Theoretically, to provide
this condition in the static experiment, the crystal must be surrounded by an

“infinitely rigid” shell that is “rigidly stuck” to the crystal. Such studies are either

impossible or impractical. During experiments, mechanical clamping is realized

by introducing the dynamic method using high-frequency range studies: frequencies

higher than those of all electromechanical resonances of the crystal. In this case, the

inertia of the crystal by itself prevents deformation; hence, the condition x ¼0 is

satisfied.

These are only idealized boundary conditions, and any approach to their imple-

mentation can be special when setting research goals: the study of electromechanical

properties of the crystal. In practice, piezoelectric crystals are used in the interme-
diate conditions: they are partially clamped—partially free, not entirely short circuit

nor entirely open circuit but are loaded into a certain impedance value. However, the

listed idealized boundary conditions should be assumed as a basis for piezoelectric

effect study [11].

For short circuit and mechanically clamped crystal description of the direct pie-

zoelectric effect, the equation is

Pi ¼ dijk Xjk, (9.1)

where Pi is the component of polarization, Xjk is the component of mechanical stress

tensor (second-rank tensor), and dijk is the component of piezoelectric module (third-

rank tensor). From relation (9.1), it follows that the dimension of piezoelectric mod-

ule is [d]¼ [P]/[X]. Considering that [P]¼C/m2 and [X]¼N/m2, for dimension of

piezoelectric stress coefficient, we have: [d]¼C/N. Themodule dijk is the component

of the third-rank tensor; hence, the indices i, j, and k in the expression mean summa-

tion. In the expanded record of Eq. (9.1) for the crystals of lowest symmetry tensor,

dijk could have 27 components (listed in Table 9.2A). In fact, due to the symmetry of

elastic stress tensor (Xjk ¼Xkj), the tensor of the piezoelectric module is symmetric as

the last two indices: dijk ¼dikj, whereby the number of independent components is

reduced to 18, as it can be seen in Table 9.2B.

For a more convenient abbreviatedmatrix representation of the third-rank tensor,
it is better to use the same form of the matrix applied in Chapter 2 in case of fourth-

rank tensors of elastic stiffness and compliance. The first subscript for dijk has the
values i¼1, 2, and 3, but two others indexes j and k should be changed into the

indexes n¼1, 2, … 6 in compliance with rules given in Table 2.1A. Appropriate

new designations of piezoelectric stress coefficients are given in Table 9.2B. In

the matrix notation, the equations of the direct piezoelectric effect are

Pi ¼ din Xn: (9.2)

The right side of these three equations has not nine but six terms. It is obvious that the

number of independent piezoelectric coefficients for low-symmetry crystals really is

not 27, but 18.

The higher the symmetry, the smaller is the number of nonzero components in the

matrix. For example, in Table 9.2C, a matrix of quartz piezoelectric coefficients is

shown, whereas in Table 9.2D, components of barium titanate crystal piezoelectric



Table 9.2 Various Records for Piezoelectric Modulus Components

(A)

X11 X12 X13 X21 X22 X23 X31 X32 X33

P1 d111 d112 d113 d121 d122 d123 d131 d132 d133

P2 d211 d212 d213 d221 d222 d223 d231 d232 d233

P3 d311 d312 d313 d321 d322 d323 d331 d332 d333

(B)

X1 X2 X3 X4 X5 X6

P1 d11 d12 d13 d14 d15 d16

P2 d21 d22 d23 d24 d25 d26

P3 d31 d32 d33 d34 d3 d36

(C) Quartz Piezoelectric Modulus Components

d1n ¼
d11 d12 0 d14 0 0
0 0 0 0 d25 d26

0 0 0 0 0 0

2
4

3
5, where:

d11 ¼�d12

d25 ¼�d14

d26 ¼ 2d11

8<
:

(D) BaTiO3 Piezoelectric Modulus Components

d1n ¼
0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

2
4

3
5, where: d24 ¼d15

d32 ¼d31

�
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module are given as examples. Each of those components is a proportionality factor

between the components of polarization Pi and the components of stress Xn. Piezo-

electric modules of different crystals and textures can vary significantly in their mag-

nitude and sign; for example, the main components of the piezoelectric modulus of

ADP (ammonium hydrogen phosphate) are: d14¼�1.34�10�12C/N and

d36¼20�10�12C/N (all other components of matrix are zero).

It is seen that the unit of piezoelectric module in system SI is very small. There-

fore in practice, the more convenient unit pC/N (picocoulomb) is used, where 1

pC¼10�12 coulomb. In such units in barium titanate, d33¼150 pC/N,

d31¼70pC/N, and d15¼250pC/N, whereas d24¼d25 and d32¼d31, as shown in

Table 9.2D. In the quartz crystal, the components of piezoelectric module are much

less: d11¼2.3pC/N, d12¼�d11, d14¼2.7pC/N, d25¼�d14, and d26¼�2d11.
The upper part of Fig. 9.7 shows physical interpretation of the main quartz pie-

zoelectric coefficients. For example, from Eq. (9.2), along axis 1, one component can

be selected

P1 ¼ d11 X1 + d12 X2 + d13 X3 + d14 X4 + d15 X5 + d16 X9: (9.3)

As it follows from Table 9.2, for quartz, piezoelectric module components

d13¼d15¼d16¼0, so that Eq. (9.3) can be simplified:

P1 ¼ d11 X1 + d12 X2 + d14 X4:



FIG. 9.7

Geometric patterns that explain the longitudinal, transverse, and shear piezoelectric

effect in quartz: (A) physical interpretation of the main quartz piezoelectric coefficients;

(B) total matrix of piezoelectric module components; (C) two types of shear piezoelectric

effects (longitudinal shear LS and transverse shear TS).
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Stress tensor component X1 characterizes compressive or stretching stress along axis

1. Therefore, piezoelectric modulus component d11 corresponds to the longitudinal
piezoelectric effect because polarization occurs along the same direction in which

mechanical stress is applied. Longitudinal effect is sometimes referred to as the

L-effect.
The same physical meaning have components d22 and d33 (Table 9.2B): they

characterize the longitudinal piezoelectric effect along axes 2 and 3, respectively.
If the indices in piezoelectric matrix |d | are the same, these components describe

one of the three longitudinal piezoelectric effects. However, in the quartz crystal,

the L-effect occurs only along axis 1, whereas in the barium titanate, this effect exists

only along axis 3 (Table 9.2C and D).
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Piezoelectric coefficient d12 corresponds to transverse piezoelectric effect. In

fact, elastic tension is applied along axis 2, but piezoelectric effect is observed along

axis 1 that is perpendicular to axis 2. As it is seen from Table 9.2B, the components

of transverse matrix are also piezoelectric coefficients d12, d21, d13, d31, d23, and d32.
They describe the appearance of polarization along one of the three axes (1, 2, or 3)
at the influence of stretching-compression stresses along the axis perpendicular to

the axis of response.

In Fig. 9.7B, the total matrix of piezoelectric module components is shown. Fur-

ther, due to the L-effects, the T-effects occupy the left half of the matrix. For example,

piezoelectric coefficient d14 (shown in the upper part of Fig. 9.7A) describes piezo-

electric polarization that arises under the influence of shear stress. Quartz crystal, as
seen from matrix of its piezoelectric coefficients (Table 9.2C), has three nonzero

shear components: d14, d25, and d26. The physical meaning of d14 is illustrated in

Fig. 9.7A: the pair of forces, applied along axis 2, induces polarization along axis

1. From Table 9.2, it is clear that in quartz, d14¼d123+d132 (d123¼d132), because
stress matrix is symmetrical, and the shear stress components are X23¼X32.

In the barium titanate, the nonzero shear piezoelectric coefficients are d15 and d24
(Table 9.2D), whereas, for example, in potassium dihydrogen phosphate (KDP) crys-

tals, only one nonzero shear coefficient exists: d31. The method to distinguish

between the two types of shear piezoelectric effects (longitudinal shear LS and trans-
verse shear TS) is shown in Fig. 9.7C. The coefficients d14, d25, and d36 correspond to
LS-components, which are characterized by polarization vector that is parallel to the

shear axis and perpendicular to the shear plane. The coefficients d15, d16, d24, d26, and
d34 и d35 correspond to the transverse shear effect (TS). In such case, polarization

vector is perpendicular to the shear axis and lies in the plane of shear [11].

Expressions (9.2) are only one of the four possible definitions of the direct pie-

zoelectric effect peculiar to the electrically free (E¼0) and mechanically clamped
crystal (x¼0): Pi ¼dinXn. A combination of other idealized boundary conditions

leads to other three piezoelectric equations:

Pi ¼ eimхm
Ej ¼�gimxm
Ej ¼�hjnXn

(9.4)

Here and subsequently exactly, matrix notation of the third-rank tensor is used: eim,
gin, and hjm. All these piezoelectric coefficients, as din, characterize the properties of
noncentrosymmetric crystals and textures. The units of different piezoelectric coef-

ficients can be determined from Eq. (9.4):

d½ � ¼ C=N½ �; g½ � ¼ Vm=N½ �;

e½ � ¼ C=m2
� �

; h½ � ¼ V=m½ �:

According to the discussed boundary conditions, when din is measured indepen-

dently, the component acting on the piezoelectric stress tensor Xn is determined,

as well as the component of the resulting polarization Pi. This method corresponds
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to the static measurement of piezoelectric coefficient; just by this way, the piezoelec-

tric effect was first discovered. In the event that the piezoelectric coefficient eim
should be determined directly, piezoelectric crystal will be as electrically free

(E¼0); hence mechanically free (X¼0), that is, the deformation x and the density

of induced electrical charge are measured.

Each of the four piezoelectric coefficients: din, eim, gin, and hjm can be calculated

from any other factor, if elastic parameters (cmn or smn), dielectric parameters (εij and
βij—dielectric “tightness,” inverse tensor to εij), and piezoelectric parameters are

known. For example, from Eq. (9.3), it follows that Pi ¼dinXn, where Xn ¼cmnxm
and Pi ¼dincmnxm. Comparing with expressions (9.4), it is possible to get one of con-

straint equations for piezoelectric coefficients:

em ¼ dincmn: (9.5)

In these and others, similar relationship conditions at which components cmn and smn
were obtained cannot be ignored: for the short-circuit (E¼0) or the open-circuit

(D¼0) cases, inasmuch as cEmn 6¼ cDmn and s
E
mn 6¼ sDmn. In others, relationships between

piezoelectric coefficients and the tensor components εij and βij are included, which
are different in mechanically free (εXij, β

X
ij, i.e., X¼ 0) and mechanically clamped (εxij,

βxij, i.e., x¼ 0) crystals or textures.

While studying the direct piezoelectric effect, considering electrical freedom of

crystal, elastic stiffness should be included in Eq. (9.5) with the upper index E. This
means that it is determined at E¼0. Hence, the given ratio should be written as:

eim ¼ dinc
E
mn: (9.6)

While determining the eim from the direct piezoelectric effect, piezoelectric is elec-

trically free (E¼0), so that another equation of elastic compliance is indicated:

din ¼ eims
E
nm: (9.7)

The remaining relationships that tie together piezoelectric coefficients, including

formulas (9.5)–(9.7), are contained in following, more comprehensive, value, which

considers conditions of dielectric and elastic parameters determining:

din ¼ ε0ε
Χ
ijgjn ¼ eims

E
nm ¼ ε0ε

x
ijhjms

E
mn;

eim ¼ ε0ε
x
ijhjm ¼ dinc

E
nm ¼ ε0ε

X
ijgjnc

E
nm;

gim ¼ βXij=ε0
� �

dim ¼ hims
D
nm ¼ βxij=ε0

� �
ejns

D
nm;

hin ¼ βxij=ε0
� �

ejn ¼ gimc
D
mn ¼ βxij=ε0

� �
djmc

E
mn:

This section concludes with the examples of piezoelectric coefficient matrixes that

are most studied and widely used in engineering piezoelectrics; quartz and barium

titanate piezoelectric coefficients are shown previously in Table 9.2B.
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For Rochelle salt crystal at t¼ (�18 … +24) °C:

din ¼
d11 d12 d13 d14 0 0

0 0 0 0 d25 d26
0 0 0 0 d35 d36

2
4

3
5:

For KDP crystal above 150K:

din ¼
0 0 0 d14 0 0

0 0 0 0 d25 0

0 0 0 0 0 0

2
4

3
5, where d25 ¼ d14:
9.3 INVERSE PIEZOELECTRIC EFFECT
The voltage, applied to any dielectric, always results in its deformation because dur-

ing electrical polarization, all charged particles are displaced. Therefore in all dielec-

trics, the quadratic electromechanical effect (or electrostriction) is seen to occur, but

this effect usually is very small. However, in some solid dielectrics, namely, in crys-

tals having a noncentrosymmetric structure, usually a much larger electromechanical

linear effect is observed that is the inverse piezoelectric effect:

xm ¼ dmjEj, (9.8)

where m¼1, 2, …, 6; j¼1, 2, 3 according to matrix notation. Eq. (9.8) includes the

same piezoelectric modules as in the case of direct piezoelectric effect (in Eq. 9.3)

and with the same components that were previously listed.

Direct and inverse piezoelectric effects occur only in 20 of possible 32 classes of

crystals, and each is characterized by a peculiar symmetry group. These groups con-

sist of a set of symmetry elements, allowed only in certain combinations. Crystals,

which have a center of symmetry, cannot exhibit piezoelectricity. There are 11 such

classes (of the possible 32). Thus, nonpiezoelectric classes of crystals are 11; from

the remaining 21 classes of crystals, 20 are piezoelectric ones. All of them belong to

the noncentrosymmetric crystal.

It is obvious that there is one class, which, being noncentrosymmetric, does not

show the piezoelectric effect (as it turns out, in the linear case).

Note. This “mysterious” noncentrosymmetric but nonpiezoelectric class of crys-

tal, in reality, becomes piezoelectric but in the strong electrical field. The description
of the inverse piezoelectric effect by a simple linear relation x¼dE in the

strong electrical field should be considered only as the first term of odd series:

x¼dE+d0E3+d00E5+…. Really, in a weak electrical field for noncentrosymmetric

class 4.2, the first term of this series is d¼0, but already the second term of this

series, namely, the d0 is nonzero. Thus in a strong electrical field, a nonlinear (but

odd) piezoelectric effect in this “mysterious” class actually exists.

Table 9.3 lists all piezoelectric classes [11]; symbols of these classes are given in

the international classification (reflecting the main elements of symmetry) and spec-

ify the number of nonzero tensor components of elastic stiffness (or compliance) in



Table 9.3 The Number of Components of Basic “Material” Tensors of Piezoelectric Crystal C sses

Crystal
Symmetry

Syngony of
Lattice

Number of
Nonzero
Components
εij

Number of
Independent
Components
εij

Number of
Nonzero
Components
cmn

Number of
Independent
Components
cmn

Number of
Nonzero
Components
din

Number of
Independent
Components
din

1 Triclinic 9 6 36 21 18 18

2 Monoclinic 5 4 20 13 8 8

m 5 4 20 13 10 10

222 Orthorhombic 3 3 12 9 3 3

mm2 3 3 12 9 5 5

4 Tetragonal 3 2 16 7 7 4

422 3 2 12 6 2 1

4 3 2 16 7 7 4

4mm 3 2 12 6 5 3

42m 3 2 12 6 3 2

3 Trigonal
(rhombohedral)

3 2 24 7 13 6

32 3 2 18 6 5 2

3m 3 2 18 6 8 4

6 Hexagonal 3 2 12 5 7 4

6 3 2 12 5 6 2

622 3 2 12 5 2 1

6mm 3 2 12 5 5 3

6m2 3 2 12 5 3 1

23 Cubic 3 1 12 3 3 1

43m 3 1 12 3 3 1

∞m Polarized
ceramics

3 2 16 7 5 3

5
2
8

C
H
A
P
T
E
R
9
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o
la
r
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ie
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c
tric
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all classes, as well as the number of nonzero tensor components of piezoelectric coef-

ficients (according to the matrix shown in Table 9.2B).

It is seen that with increase in the number of elements of crystal symmetry, the

independent components of tensors become smaller. The number of nonzero com-

ponents of piezoelectric coefficients is gradually reduced in the last classes of pie-

zoelectric crystals, finally, with only one independent component. Such

piezoelectrics are the easiest objects to study.

It is pertinent to recall that matrix of elastic stiffness cmn (and inverse matrix of

elastic compliance smn) is symmetrical as to the diagonal components of matrix with

6 � 6 elements; therefore, in general, the number of independent components in it is

21, which is typical for triclinic crystals. When the number of symmetry elements of

crystal increases, the number of zero elements of matrix also increases while the

number of independent component reduces; for high symmetrical cubic crystals

in the matrix of elastic constants, there are only three independent components of

21 nonzero components [11].

For example, the presence of axis 4 leads to the following relationships:

c11 ¼ c22,c13 ¼ c23,c44 ¼ c55,c16 ¼�c26,

c14 ¼ c15 ¼ c24 ¼ c25 ¼ c34 ¼ c35 ¼ c36 ¼ c45 ¼ c46 ¼ c56 ¼ 0:

Thus, the crystals of point groups 4 and 4 have 7 independent elastic constants (from

16 nonzero components).

As for the centrosymmetric crystals (these classes of symmetry in Table 9.3 are

not shown), all 18 components of piezoelectric coefficients equal zero, that is, they

have no electromechanical linear effect (piezoelectricity) but they have quadratic

effect—electrostriction.

Polarized piezoelectric ceramics are widely used in modern technology—this is a

texture, characterized by the axis of symmetry of infinite order (∞) and by plane of

symmetrym passing through this axis. The polar axis of symmetry is turned along the

direction of electrical field that has been applied from outside to create artificial

polarization in ceramics. Designation ∞.m of polarized texture corresponds to polar

vector symmetry and consistent with “symmetry of cone.” After turning off the

polarizing field, the induced polarized structure is maintained for a long time, and

it has a set of elastic constants and piezoelectric coefficients that correspond to

the tetragonal crystal of class 4mm (Table 9.3).

Normally, nonpolarized (isotropic) ferroelectric ceramics are synthesized with

the “symmetry of a ball” that is the highest possible symmetry of solids. As it

was mentioned, this symmetry is converted into the noncentrosymmetric texture

with “symmetry of cone” by the mentioned “electrical polarization.” In this technol-

ogy, which involves a strong electrical field at increased temperature, ferroelectric

domains present in ceramics usually are oriented randomly and acquire preferential

orientation along the applied field, thus forming stable unipolar texture of domains.

Eq. (9.8) describes the inverse piezoelectric effect for mechanically free (x¼0)

and open-circuit (electrically free, D¼0) sample and is only one of the possible
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descriptions of linear electromechanical interaction in the noncentrosymmetric crys-

tals and textures. Under various boundary conditions listed earlier, the inverse pie-

zoelectric effect can be described by four equations:

xm ¼ dmjЕj; Xn ¼ enjEj;

xm ¼ gmiPi; Xn ¼ hniPi,
(9.9)

where dmj, gmi, enj, and hni are the same piezoelectric coefficients that are used pre-

viously to describe the direct piezoelectric effect. The ratios between these param-

eters are given in the previous section.

The inverse and direct piezoelectric effects enable the determination of piezo-

electric coefficients experimentally. To measure piezoelectric module component

dim, for example, it is necessary, first, to measure the electrical field applied to

the piezoelectric: E¼U/l (where U is the electrical voltage supplied from low-

impedance power and l is the thickness of the sample). Second, using dilatometer,

induced mechanical deformation Δl is determined, from which dimensionless rela-

tive deformation x¼Δl/l can be found.

In accordance with Eq. (9.9), using the inverse piezoelectric effect, gmi and hni
can also be experimentally determined. In these experiments, the piezoelectric

should be polarized with electrical current as the source, thus having a very high

internal electrical resistance, which provides for piezoelectric E � 0. In case of

the coefficient gmi, the determining experiment must be provided at free piezoelectric

strain, whereas the determination of hni deformation should be excluded; the mea-

sured parameter is the stress.

The necessity of piezoelectric effect description by four different coefficients is
justified by different cases of technical applications. For example, when there is a

need for selecting the piezoelectric material for ultrasound emitter that is generally
used in the sonar and echo sounder, it is necessary to generate mechanical deforma-

tion under the influence of electrical voltage. In this case, to evaluate effectiveness of

various piezoelectric materials, it is necessary to compare them accordingly with the

largest piezoelectric module used in equation: x¼dE.
In case of the ultrasound receiver that uses the direct piezoelectric effect, require-

ments for piezoelectric are different: maximal voltage from mechanically clamped

piezoelectric, that is, the “force sensor”: e¼gX. Hence, the best piezoelectric is that
in which the factor g¼d/X is large. In the other case, for instance, in piezoelectric

adapters, the important coefficients are h and e.
All the listed equations of the piezoelectric effect, which characterize different

connections between mechanical parameters x and X and electrical parameters P
and E, may be represented by the diagram—piezoelectric square—shown in

Fig. 9.8, in the corners of which parameters x, X, P, and E are located.

In the left vertexes of the square, themechanical parameters (stress and strain) are

placed and their linear relationship is represented by a straight line, symbolically

characterizing different views of Hooke’s law: x¼ sX or X¼cx. The right vertexes
in the square (Fig. 9.8) represent the electrical parameters (electrical field E and



FIG. 9.8

Diagram explaining different piezoelectric descriptions depending on electrical and

mechanical boundary conditions.
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polarization P), whereas the connecting line characterizes purely electrical effects:
P¼ε0χE and E¼ (ε0χ)

�1P.
In the horizontal lines of the diagram, as well as the diagonals of the square, the

several linear equations describe all direct and inverse piezoelectric effects. Near the

straight lines of these “connections,” equivalent piezoelectric coefficients are shown.

The ratio, located near the arrow on the link, must be multiplied by the parameter

closest to it. For example, the top line of the piezoelectric square represents piezo-

electric equations P¼dE and X¼hP, whereas the bottom line corresponds to equa-

tions x¼dE and E¼hx.
Piezoelectric contribution to permittivity (εEM) induced by electrical field polar-

ization and electrical induction are described by the equation D¼ε0εE¼ε0E+P,
where ε0 is electrical constant and ε is relative permittivity. To describe polarization

of mechanically free piezoelectric, it is necessary to also consider the direct piezo-

electric effect: P¼�ex, where e is the piezoelectric constant and x is the mechanical

deformation:

D¼ ε0εE + ex: (9.10)

Electroelastic contribution to stress X is characterized by the same piezoelectric con-

stant e: according to Hooke’s law (X¼cx,where c is the elastic stiffness), the inverse
piezoelectric effect gives additional stress:

X¼ cx�eE:

Under this condition, any mechanical stress in piezoelectric is absent (X¼0); hence

from the previous equation, it follows:

x¼ eE=c:

By substituting this expression in Eq. (9.10), the following can be obtained:

D¼ ε0εE+ e2=c
� �

E¼ ε0ε + e
2=c

� �
E: (9.11)
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Electric induction dependence D on the electrical field E for free (X¼0) and clamped (x¼0)

piezoelectric.
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From expression (9.11) and Fig. 9.9, it follows that mechanical response to the

applied electrical field enhances the dielectric induction. In the clamped piezoelec-

tric, in which deformation is impossible (x¼0), external field E1 inducesD1¼ε0ε
xE.

In the free piezoelectric (X¼0) at the same field E1, the induction is bigger:

D2¼ε0ε
XE. The piezoelectric reaction appears to be an additional mechanism of

polarization because it mimics corresponding contribution to dielectric constant.

If piezoelectric is free, its permittivity equals to ε¼εX, whereas in mechanically

clamped piezoelectric, ε¼εx. From Eq. (9.11), the next relationship between εx

and εX follows:

εX ¼ εx + e2=ε0: (9.12)

Comparison of permittivity in the free and clamped piezoelectrics is shown in

Fig. 9.10. For example, well-studied ferroelectrics are selected. The piezoelectric

crystal Rochelle salt is studied over a wide temperature range; permittivity of free
FIG. 9.10

Temperature dependence of the dielectric permittivity for free (at frequency of 103Hz) and

clamped (at 1010Hz) crystals: (A) Rochelle salt, (B) barium titanate.
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and clamped crystals everywhere varies greatly. In the vicinity of ferroelectric, Curie

points that the clamping effect is particularly large: εX/εx � 50.

Barium titanate above its Curie point is found in cubic (centrosymmetric) phase

that is not piezoelectric; hence εX¼εx¼ε. However, below the Curie point

(TC � 120°C) in single-domain crystal of BaTiO3 near room temperature, the ratio

εX/εx is around 2. In the polarized ferroelectric ceramic BaTiO3, the ratio εX/εx is
slightly <2.

At lower frequency, εX is measured because the piezoelectric reaction of the stud-

ied sample has enough time to be set freely (X¼0), and it contributes to the dielectric

constant. At ultrahigh frequency that is much higher than frequencies of all piezo-

electric resonances, the own mechanical inertia of the test sample makes impossible

its piezoelectric deformation in the external field (x¼0), and the εx is determined.

Transition from increased permittivity εX obtained for free crystal (at low frequen-

cies) to the reduced permittivity εx inherent to clamped crystal (at very high frequen-

cies) is accompanied by many electromechanical resonances. As an outstanding

example, the KH2PO4 (KDP) crystal might be selected because in this case the record

ratio εX/εx � 100 is observed.
9.4 ELECTROMECHANICAL COUPLING IN PIEZOELECTRIC
Piezoelectric is a converter of energy: during the direct effect, mechanical (elastic)

energy is converted into electrical energy, and during the inverse effect, electrical

energy is converted into mechanical energy. Therefore, elastic and electrical

properties of the piezoelectric should be considered together because any change

in the electrical conditions of the polar crystal leads to the changes in its mechanical

state, and vice versa [8].

Relationship between electrical and mechanical properties of noncentrosym-

metric crystals and textures (that exhibit piezoelectricity) is characterized by the

electromechanical coupling coefficient Kcoup. This is one of the most important

parameters not only for piezoelectric materials but also for piezoelectric devices.

Electromechanical coupling coefficient can be defined as follows: the square of

electromechanical coupling factor shows how much energy supplied to the piezo-

electric (Wbr) is converted into another type of energy (Wconv):

K2
coup ¼

Wconv

Wbr

:

This definition of Kcoup resembles the definition of efficiency coefficient; however,

energy losses are not included in this expression: electrical conductivity, mechanical

damping, and dielectric losses are neglected when determining Kcoup.

In case of the direct piezoelectric effect, the crystal receives mechanical energy

that is spent not only on the elastic deformation (leading to accumulation of elastic

energy Welas) but also on the creation of electrical polarization, which causes the

accumulation of electrical energy Welec:
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K2
coup ¼

Welec

Wbr

¼ Welec

Welas +Welec

: (9.13)

In case of the inverse piezoelectric effect (as well as for electrostriction), the formula

for coupling coefficient varies:

K2
coup ¼

Welas

Wbr

¼ Welas

Welas +Welec

: (9.14)

In this case, the electrical energy given to a crystal is spent not only on the electrical

polarization but also on the elastic deformation of the piezoelectric. The difference

between these coerced relations does not mean that Kcoup is the same for the direct

and inverse piezoelectric effects: during calculation of energies, different boundary

conditions should be considered (the crystal can be free or clamped and short circuit

or open circuit).

The elastic energy can be defined as a quadratic form of the strain x or mechanical

stress X, according to various choices parameters characterizing the elastic process:

Welas ¼ 1

2
xX¼ 1

2
cx2 ¼ 1

2
sX2, (9.15)

where c is the elastic stiffness and s is the elastic compliance (tensor, inverse to c).
Accordingly, the energy of electrical polarization in the field E is expres-

sed through induction D and dielectric constant ε, or through tensor β inverse

to tensor ε:

Welec ¼ 1

2
ED¼ 1

2
ε0εE

2 ¼ 1

2

ε0
β

� �
D2: (9.16)

For mixed elastic-to-electrical processes, the contribution to energiesWelas andWelec

can also be expressed in other relationships. In addition to these relationships, elec-

tromechanical coupling coefficient is defined as the ratio of elastic energy density to

densities of elastic and electrical energies:

K2
coup ¼

W2
em

WelasWelec

:

In case of mechanically clamped (not deformed) piezoelectric, the density of elec-

tromechanical energy is Wem¼d �X �E, and for mechanically free piezoelectric, it is

Wem¼e �h �E, where d and e are corresponding piezoelectric modules: d¼P/X and

e¼P/x (tensor indices at components of modules are neglected here to simplify

records of relationships).

The developers and researchers of piezoelectric and electrostrictive materials, as

well as designers of piezoelectric devices (surface acoustic wave devices, delay lines,

filters, convolver-type signal converters, etc.), to determine Kcoup sometimes use the

change in velocity of elastic waves in piezoelectric:

K2
coup ¼

2Δυ
υ0

+
Δυ
υ0

� �2

,
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where υ0 is the elastic wave velocity without the piezoelectric effect, and Δυ is the

change in velocity, obtained due to electromechanical coupling [4].

Although Kcoup is a scalar parameter, this coefficient depends on the direction of

external influences and on other causes. For example, the polarized ferroelectric

ceramics (i.e., the texture of ∞�m symmetry) can be identified by 12 different cou-

pling coefficients, depending on the system of boundary conditions (for many forms

of piezoelectric sample), as well as on the manner of clamping and fixing. Numerical

values of Kcoup are defined by piezoelectric material properties. Most crystals,

ceramics, and textures that are used in practice have Kcoup¼0.1 … 0.5, although

in some crystals in their particular orientation parameter, Kcoup reaches a value of

0.8 … 0.95.

Electromechanical coupling becomes apparent, especially during elastic wave

excitation by the electrical field. Two types of elastic bulk waves can exist in the

homogeneous elastic medium: the longitudinal waves, in which the displacement

of particles occurs in the direction of wave propagation, and the transverse waves

in which particle displacement takes place in the plane perpendicular to the direction

of wave propagation.

Longitudinal and transverse waves are three-dimensional oscillations of the elas-

tic medium. Bulk waves are used in various piezoelectronic devices: in the mode of

standing waves in the resonant devices and in the mode of traveling waves in case of
surface acoustic waves. Some examples of bulk wave application are shown in

Section 2, Fig. 2.6, for simple piezoelectric elements made from polarized ferroelec-

tric ceramics.

It is possible to give some examples of Kcoup depending on piezoelectric sample

orientation. As shown in Fig. 2.6A, thickness-polarized piezoelectric plate, transver-

sal electromechanical coupling coefficient is

k31 ¼ d31 ε33s11ð Þ�1=2:

In case of shear strain, Fig. 2.6B, for the same piezoelectric plate coupling

coefficient is

k15 ¼ d15
ε11
s44

� ��1=2

:

Thickness-polarized piezoelectric disk with radial deformations, as shown in

Fig. 2.6C, has coupling coefficient

kp ¼ k31
2

1�σ

� �1=2

,

where σ is the Poisson’s ratio: σ¼�s12/s11. For thickness vibrations of the same disk

kt ¼ h33
ε33
c11

� ��1=2

:

Obtained relations enable the determination of the ratio between Kcoup and permit-

tivity of free and clamped crystals:
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εX ¼ εx +K2
coup ε

X; εX=εx ¼ 1 +K2
coup: (9.17)

At low frequency, when piezoelectric response has adequate time to settle and give

contribution to permittivity, the εX is measured. At high frequency (much higher than

the frequency of electromechanic resonances), the εX is determined.

Mechanical properties dependence on the electrical state of piezoelectric. From
the earlier equations and Fig. 9.11, it is shown that the elastic compliance of the open-

circuit piezoelectric crystal sD should exceed that of the short-circuit piezoelectric

crystal sE.
Indeed, piezoelectricity does not affect the elastic compliance sE in the short-

circuit crystal (E¼0). But in the open-circuit case (D¼0), compliance sD of the pie-

zoelectric plate essentially decreases, as shown in Fig. 9.11. In accordance with these

designations, deformation x can be presented as follows:

x¼ sE� d2

ε0ε

� �
X¼ sE�K2

coups
E

	 

X¼ sDX;

sD ¼ sE 1�Kcoup

� �
: (9.18)

Experimental evidence of this effect is shown in Fig. 9.12A. In the polar phase of

barium titanate (below its ferroelectric phase transition), one can see differences

between elastic compliance of open-circuit and short-circuit crystal. Above ferro-

electric phase transition, barium titanate has a cubic centrosymmetric structure;

therefore the piezoelectric effect is absent; that is why, in the paraelectric phase

sE ¼sD.
However, below phase transition, barium titanate enters into the tetragonal polar

phase that is characterized by rather strong piezoelectric effect; hence, elastic com-

pliance for various electrical conditions becomes quite different: sE >sD. The most

critically elastic compliance sD reduces at the Curie point [2].
(A) (B)

X
X

x

x1

x 1 
= 

s
E X

x2 = s
D X

x2

X1 X

FIG. 9.11

Difference in elastic compliance of piezoelectric: (A) mechanical action on the piezoelectric

plate; (B) Hooke’s law in the open-circuit (sD) and short-circuit (sE) crystals.
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Effect of electrical conditions on piezoelectric elastic property: (A) barium titanate elastic

compliance, sD—open-circuit and sE—short-circuit crystal. (B) Rochelle salt elastic

stiffness: cD—open-circuit and cE—short-circuit crystal.
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In the same way, experiments with Rochelle salt (Fig. 9.12B) show essential dif-

ference in the elastic stiffness cmn (i.e., tensor, inverse to the elastic compliance ten-

sor smn). Elastic stiffness cmn, wherem, n¼1, 2,… 6, is different for open-circuit and

short-circuit cases:

cDmn�cEmn
cDmn

¼K2
coup: (9.19)

The most impressive difference one can see in both Curie points of Rochelle salt.

These data are obtained by sound velocity measurements, and in the Curie point,

sound velocity slows down by eight times.

As elastic module together with density ρ of the piezoelectric define velocity of

acoustic waves

υsound ¼ c=ρð Þ1=2: (9.20)

Difference in the elastic module of electrically opened and shorted crystals

Δc¼cD�cE leads to the difference in sound velocity. As can be seen from

Fig. 9.12B, sound velocity in Rochelle salt (corresponding to stiffness component

c44) reduces by several times at the Curie points as compared with that at room

temperature.
9.5 ELECTROSTRICTION
In contrast to the inverse piezoelectric effect, which is characterized by linear

(“odd”) strain dependence on the electrical field, the electrostriction shows a qua-

dratic (“even”) effect. The sign of a strain at electrostriction is not dependent on

the direction of the applied electrical field, and in majority of the solid dielectrics,

the extension of dielectric (x>0) is observed along the applied field. The value of
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electrostriction usually is small, and as a rule, electrostriction is 100–1000 times

smaller than piezoelectric effect. Only in the very large electrical field, the deforma-

tion obtained by electrostriction can be compared with piezoelectric deformation (in

quartz, this is observed at field strength of 35kV/cm).

Limits by boundary conditions in case of electrostriction are the same as those for

the piezoelectric effect. Depending on whether the dielectric is electrically and

mechanically clamped or free, dependence of x or X on E or P can be described

by four equations. However, only the electrostriction inmechanically free dielectrics
will be considered here. In this case, for E¼0 andD¼0, respectively, it is possible to

obtain

xij ¼QijklPkPl +Q
0
ijklghPkPlPgPh +…;

xij ¼RijklEkEl +R
0
ijklghEkElEgEh +…; (9.21)

In these series, it is sufficient to consider only the first terms of the expansion for

polarization and for the electrical field. Only in a special case of giant electrostriction

(observed in ferroelectrics with diffuse phase transition) in the given series, three

terms of expansion might be considered:

x Eð Þ¼RE2 +R0E4 +R00E6: (9.22)

Coefficients of electrostriction Qijkl and Rijkl (i, j, k, l¼1, 2, 3) are fourth-rank ten-

sors. However, because of strain tensor x symmetry, the Qijkl and Rijkl tensors have

not 81 but 36 independent components. In practice, fourth-rank tensors can be pre-

sented as matrix components: Qmn and Rmn, where m, n¼1, 2, … 6.

The fourth-rank material tensors (elastic stiffness c and elastic compliance s)
already have been presented in a symmetrical matrix form, so that low-symmetry

crystals can have amaximumof 21 of c and s independent components. However, ten-

sors of electrostriction in case of low symmetry can have all 6 � 6¼36 independent

components. Nevertheless, in practice, this difficult case does not occur: the majority

of these components are usually equal to zero.With increase in symmetry, the number

of tensor components Qmn and Rmn is significantly reduced, but never occurs (as in

piezoelectric for din) when all accessed electrostriction tensor components turn

to zero.

In the highest symmetry material (isotropic medium), only two components of

electrostriction tensor are seen: Q11 and Q12 (correspondingly, R11 and R12), charac-

terizing longitudinal expansion and transverse contraction of dielectric in the elec-

trical field, respectively. Just this case is usually used in practice because giant

electrostriction is a characteristic of nonpolarized relaxor ferroelectrics with diffuse

phase transition [1].

The electrostriction tensorQmn is more consistent for analyses, as its components

are only slightly different in various solids, and they are weakly dependent on the

change in external conditions. Even in ferroelectrics components, Qmn only slightly

changes with temperature and frequency, and they are almost independent on the

electric field.
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Therefore, it is assumed that only the Qmn is a fundamental characteristic of the
electromechanical coupling of atoms, ions, or molecules in a given structure of

dielectric. By contrast, the components of the tensor Rmn are strongly dependent

on permittivity, and hence they are dependent on temperature and frequency of

the applied field (all these conditions substantially influences on permittivity). That

is why for ferroelectrics, in which permittivity can exceed 104, electrostriction may

reach a magnitude of deformation same as that of the piezoelectric effect: it becomes

giant for the coefficient Rmn (but not for the coefficientQmn). Giant electrostriction is

used to control hysteresis-free micromoving (in actuator) and enables to realize elec-

trical control by the electromechanical effect.

Electrical control of device parameters including piezoelectric effect electrical

controlling has some scientific and technological interest. Changing piezoelectric

properties by influence of the electrical (controlling) field is used in electrically con-

trollable delay lines, in elements based on surface acoustic waves (SAW convolvers),

and in electrically tunable piezoelectric filters.

Physical mechanisms of piezoelectric parameter control by electrical field are

different in paraelectrics and piezoelectrics, although both of them are used to control

sound velocity owing to the change of elastic compliance (elastic stiffness) in the

electric field. Fig. 9.13 shows some typical cases of sound velocity change by the

electrical bias field in different dielectrics.

The lithium niobate crystal is piezoelectric (being “hard” ferroelectric) of sym-

metry class 3m. The change in sound velocity υsound in the LiNbO3 crystal in the

electrical field equals only few hundredths of percent, but this is sufficient for effec-

tive management of SAW devices. Linearity of Δυ/υ0(E) dependence indicates that
in the polar crystal LiNbO3, the strength of intracrystalline bonding (that determines

piezoelectric properties) much exceeds the applied external controlling field.

More effective electrical control of sound velocity is available in usual ferroelec-

trics: for example, the nonpolarized PZT ceramic characteristic is shown in

Fig. 9.13B. The strength of intracrystalline bonding in PZT is comparable with that

of the controlling electrical field, which by the reorientation of ferroelectric domains

significantly affects υsound. The mechanism of sound velocity change in the applied

electrical field in this case is rather complicated. First, electrical field influences the

elasticity, which increases because of orientation of domains. Second, controlling

electrical field by electrostriction increases internal stresses between crystallites

of ceramics (that changes the dielectric constant of ferroelectric ceramics in the elec-

trical field). The tendency of ferroelectric domains to save their orientation leads to

hysteresis (aftereffect) in the characterization of controlling, which is highly unde-

sirable in practical devices.

In first two examples of the piezoelectric effect electrical controlling, as shown in

Fig. 9.13A and B, changes in piezoelectric properties are seen in noncentrosym-

metric crystal and in ferroelectric ceramics. However, the piezoelectric effect can

be also induced by electrical field in the nonpolar (centrosymmetric) dielectric. In

Fig. 9.13C, the dependence of transverse piezoelectric coefficient d31 on electrical

bias field is shown: three different centrosymmetric dielectrics are selected. In the



FIG. 9.13

Electrically tunable and induced piezoelectric effect: (A) lithium niobate crystal used in

controlled delay lines; (B) nonpolarized PZT ceramics; (C) paraelectric ceramics; (D) diffused

phase-transition ceramics [7].
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absence of electrical field, piezoelectric effect in such structures is impossible. How-

ever, as it can be seen from Fig. 9.13C and D, “piezoelectric effect” in these dielec-

trics can be electrically induced (not only electrically controlled).

The point is that owing to electrostriction, electrical field transforms the structure

of any isotropic dielectric into the noncentrosymmetric structure, and induces in it

electromechanical coupling—piezoactivity. In the dielectrics with low permittivity,

this effect is negligible and even difficult to be observed (electrostriction is very

small). However, in the dielectrics with increased permittivity, the electrically

induced piezoelectric effect is quite noticeable, although artificial piezoelectric mod-

ule is relatively small. A comparison of characteristics in titanium oxide ceramics

with ε�100 (TiO2, rutile), in calcium titanate ceramics with ε�150 (perovskite,

CaTiO3) and in strontium titanate ceramics with ε�300 (paraelectric SrTiO3) is

shown in Fig. 9.13C.

Piezoelectric modules for electrically induced piezoelectric effect can be calcu-

lated from the equation of electrostriction (9.21), omitting, for simplicity, the indices

of tensor components as in formula (9.22). Induced deformation is the even function

of polarization that can be described by rapidly convergent series
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x¼QP2 +Q0P4 +…:

In relatively small electric fields, only the first term of this series can be considered:

x¼QP2. The electrostriction x� in the alternating electrical field becomes linearized

and can be presented as “piezoelectric effect”:

x� ¼ 2QPyP� ¼ d:E�,

where parameter d acts as “piezoelectric module” caused by electrostriction Q:

dffi 2Qε0
2ε2E, (9.23)

where E¼Ebias is electrical bias field that induces piezoelectric properties.

Clearly, that electrically induced piezoelectric module is directly proportional to the

controlling field and to the square of permittivity. Therefore, it is not surprising that

such artificial “piezoelectric effect” the higher the bigger permittivity. If in dielectrics

with increased permittivity (ε¼100–300) induced piezoelectric module reaches

only � 0.3pC/N, in specially designed electrostriction ceramics PbMg1/3Nb2/3O3-

PbSc1/2Nb1/2O3 (PSN-PMN), where ε¼30,000, piezoelectric module induced by not

very largeelectrical field (Ebias¼106V/m) is close in itsmagnitude to piezoelectric coef-

ficients of commonly used in technique piezoelectric PZT ceramics (d31 ffi 500pC/N).

In addition to important technical applications (in actuators, tunable piezoreso-

nators and electrically tunable filters with resonance frequency and bandwidth man-

agement), electrically induced piezoelectric effect is interesting in a sense that it can

explain the microscopic nature of electromechanical coupling. Correspondent phys-

ical models and the thermodynamic theory of piezoelectric effect will be discussed in

the next sections.

Relaxor ferroelectrics are characterized by high permittivity (ε�20,000–40,000),
and consequently, they have very high induced polarization. Comparison of induced

polarization of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3¼PMN with a similar polari-

zation of the paraelectric material Ba(Ti0.6,Sr0.4)O3¼BST (that also has rather high

ε�10,000) is shown in Fig. 9.14. It is seen that induced polarization in PMN many

times exceeds one of the BST.

Moreover, in the relaxor ferroelectric–induced polarization Pi depends on tem-

perature (similar to the PS of ferroelectrics), as it can be seen in Fig. 9.15. Therefore

under electrical bias field, relaxor also exhibits electrically induced pyroelectric
effect; the magnitude of artificial pyroelectric coefficient in the relaxor ferroelectric
might exceed the pyroelectric coefficient of the usual pyroelectric. Moreover, in

comparison with widely used artificial pyroelectric effect in the BST type paraelec-

trics, electrically induced pyroelectric effect in PMN should be much more thermally

stable because of the less sloping dependence of Pi(T).
Artificial piezoelectric effect in relaxors is the linearized electrostriction. In fer-

roelectric materials (paraelectrics and, especially, relaxors), electrostriction is large

enough for practical applications. Explanation of this fact is shown in Fig. 9.16: elec-

trical bias field Eb produces some constant internal strain x0 at the parabolic



FIG. 9.14

Relaxor ferroelectric characteristics: comparison of electrically induced polarization Pi in

PMN relaxor and Pi in paraelectric BST.

FIG. 9.15

PMN characteristics: 1—induced by Eb¼10kV/cm polarization obtained by pyroelectric

measurements; 2—permittivity without bias field; 3—permittivity at bias field.
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dependency of strain x on field E. In addition to steady and relatively big bias field

Eb, smaller alternating electrical field E0 can be applied to a given dielectric material.
As a result, the pseudolinear “piezoelectric effect” appears, which is shown in a new

scale: x0 �E0.
It is obvious that electrically induced piezoelectric effect is a particular case of

electrostriction. As it is seen, relaxor ferroelectric shows much greater electrically

induced strain x, even in comparison with paraelectric material, in which electrically



FIG. 9.16

Explanation of linearized electrostriction: induced piezoelectric effect in high-ε
noncentrosymmetric dielectrics [3].
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induced piezoelectric effect is also large. Previously, in Fig. 9.13C, some experimen-

tal tests that are commonly used in electronic ceramic materials are shown using rel-

atively high dielectric permittivity ceramics (from ε�100 in TiO2 to ε�300 in

SrTiO3). Any piezoelectric properties in this ceramics are absent without external

bias field: only due to the bias field, these materials became artificial piezoelectric.

Piezoelectric effect appears instantly after the bias field is applied, and it disappears
immediately after the bias field is switched off. Correspondent response time is

<10�9 s but in the mentioned ceramics, the electrically induced piezoelectric effect

is small: d 	 0.3pC/N. In comparison with these materials in the relaxor ferroelec-

trics, electrically induced piezoelectricity is large, but relaxation time is longer.

Theoretical calculation for the electrically induced piezoelectric effect is given

for the artificial module d¼ 2Qε0
2ε2Ε. Here Q is the electrostriction coefficient, ε0

is the electrodynamic electrical constant, ε is the material permittivity, and E is

the bias field. It is obvious that electrically induced piezoelectricity is substantial

only in dielectrics with very high permittivity. However, in the paraelectric

material–induced piezoelectricity appears and disappears without inertia. At the

same time, in some PMN-PSN relaxor with ε 
 40,000, piezoelectric modulus

reaches d¼2000 pC/N (more than as in the best piezoelectric ceramics of the

PZT type) (Fig. 9.17).

For comparison, it might be noted that paraelectrics show the transverse compo-

nent d31 of electrically induced piezoelectric module two orders of magnitude smal-

ler than the magnitude of the electrically induced module d31 in relaxor ferroelectric.
Record high strain in electrical field shows crystalline structure of PbZn1/3Nb2/3O3-

4.5% PbTiO3 (PZN-4.5% PT). Its electrically tunable deformation is 10 times higher

than the deformation in widely used piezoelectric ceramic PZT-8 and, unlike piezo-

electric, allows large controllability without hysteresis.



FIG. 9.17

Electromechanical effect in relaxors: 1—crystal PZN-4.5% PT; 2—crystal PZN; 3—crystal

PMN-24% PT; 4—piezoceramics PZT-8.
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Therefore, electrically induced piezoelectric effect occurs while bias field is

applied and disappears immediately after field shutdown. The operation speed of

such control depends on the inertia of relaxor ferroelectric polarization, whereas

its performance is limited by the permittivity dispersion that appears at frequencies

near hundreds of kilohertz.
9.6 PYROELECTRICS AND ELECTRETS
Some of dielectrics behave in the absence of external electric field as if they are

polarized. This peculiar internal electrical state in the dielectrics can be energetically
advantageous (being associated with a particular crystal structure—the presence of

polar axis), hence metastable (which can be disturbed by external electrical influ-

ences). In the former case, internally polarized electrical state is characterized by

the spontaneous polarization (pyroelectricity), whereas in the second case, it is char-
acterized by residual polarization (electrets).

Pyroelectric effect traditionally is considered as a property of spontaneously

polarized crystal, but it is preferable to assume that the structure of the pyroelectric

crystal is such that it demonstrates electrical response when its temperature changes.

Thermal energy in the pyroelectric can be converted directly into electrical energy

owing to electrically active intrinsic structure of such crystal. Therefore, pyroelectric

and piezoelectric presents solid-state energy converter; however, piezoelectric is the

electromechanical (or vice versa mechanoelectrical) power converter, whereas pyro-

electric is the thermoelectric (or vice versa electrothermal) power converter.
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In principle, energy transformation in solid dielectric is only possible if the crys-

tal (texture or polymer) is polarized. However, in the absence of external influences,

the existence of intrinsic polarization is not evident. The point is that intrinsic polar-

ization at constant temperature should be completely compensated by the electrical

charges, which are precipitated on the surface of polar dielectric or on its electrodes.

The so-called spontaneous polarization manifests itself only when external con-

ditions change dynamically. As it was noted in the previous section, it might be the

change in stress that results in the piezoelectric polarization of polar dielectrics. The
pyroelectric polarization in polar dielectric also occurs only due to temperature
changes.

Temperature increase or decrease alters the intensity of the thermal motion of

particles in the polar dielectric, and therefore changes as the orientation of polar com-

plex (molecules); hence, the distance between them leads to a change in spontaneous

polarization. Consequently, on the surface of the polar dielectric, the uncompensated

electrical charges appear. If a pyroelectric element with electrodes is connected to an

amplifier, then the pyroelectric current flows through this device and then amplified.

In the case of open-circuit crystal, the pyroelectric voltage appears on the crystal.

Over time, however, if the temperature of the pyroelectric remains invariable, pyro-

electric current (or pyroelectric potential) decreases gradually to zero.

Pyroelectric effect has been described (but not understood) in the ancient sources,

mentioned around 2000years ago by the Greek philosopher Pliny. This effect was

observed in the semiprecious mineral tourmaline (with time, this crystal was called

as “electrical” crystal). The term “pyro-” comes from the Greek word meaning “fire”

because the effect is elicited during tourmaline heating in fire. When heating, the

electric charges are generated, accompanied by cracking sound—electrical dis-

charges. Moreover, heated tourmaline attracts objects with light. Recent measure-

ments have shown that in a rather thin (around 1mm) plate of tourmaline,

electrical potential of around 1kV is generated when temperature changes only by

10 degrees. However, it should be noted that tourmaline is still relatively weak

pyroelectric.

Regarding the electrical phenomenon, the pyroelectric effect was qualified

around 200years ago by F. Aepinus. However, the main aspects of symmetry and

physical mechanism of the pyroelectric effect have been described only in the early

twentieth century by W. Voigt. Among minerals and among artificially synthesized

crystals, pyroelectrics are relatively rare materials. The natural pyroelectric mineral

is tourmaline: NaMg[Al3B3�Si6(OOH)30] with different impurities, whereas syn-

thetic pyroelectrics are lithium sulfate (LiSO4 �H2O), lithium niobate (LiNbO3),

potassium tartrate (K4C8O12 �H2O), and many others. Semiconductors of the AIIBVI

group (CdS, ZnO, etc.) by their symmetry also relate to pyroelectrics, but the pyro-

electric effect among them is small. Interestingly, pyroelectric crystals contain sugar

(C12H12О11); this is the reason why these crystals are being used in homeopathic

medicine.

All ferroelectric materials, potentially, are pyroelectrics because they are spon-

taneously polarized. However, to use ferroelectric as a pyroelectric element, it must
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have a single-domain structure. Otherwise, the pyroelectric effect, which occurs in

many different ways in oriented ferroelectric domains, is mutually compensated.

Monodomainization of ferroelectrics (converting them into a homogeneously polar-

ized structure) can be realized in many ways including temperature polarization:

heating ferroelectric in the externally applied electrical field. Currently, to obtain

single-domain ferroelectric-pyroelectric crystal, several methods for growing crys-

tals are developed, which permits already in the process of crystal growth to get prac-

tically a single-domain structure.

Pyroelectrics are applied in electronics as uniquely sensitive uncooled tempera-

ture sensors and as detectors of radiation. Compared with semiconductor temperature

sensors, pyroelectric sensors have several advantages: they do not require cooling

(can be used at room temperature) and show the wide spectrum range of sensitivity.

Numerous technical applications stimulate rapid development of the physics of pyro-

electric. Presently, dozens of new pyroelectrics are synthesized and investigated, and

many of them have already found technical application.

Thus, it is supposed that the pyroelectric effect is caused by the temperature

change during spontaneous polarization in the polar crystals; however, a similar

effect can be artificially induced in any solid dielectric, if an external electrical field

is applied to them. Without application of an external electrical field, and in the

absence of mechanical influences, change in polarization with temperature is possi-

ble only in those crystals in which a peculiar structure is traditionally described as

spontaneous polarization.

Simplified model of pyroelectric effect. Pyroelectrics are closely connected to

piezoelectrics. In all pyroelectrics, piezoelectric effects (direct and inverse) are also

observed, but only in the pyroelectric, it is possible to observe the volumetric piezo-
electric effect, that is, the electrical response to hydrostatic pressure, and this is very
important for practical applications.

The pyroelectric effect can be explained by the simplest model of one-

dimensional polar crystal, as shown in Fig. 9.18. This model of pyroelectricity

involves a simple molecule consisting of a pair of ions separated by distance a,which
is larger than distance b of the neighboring polar unit cell. This asymmetry is

explained by a large difference in the electronegativity of positive and negative ions.

The hidden (or latent) internal polarity of pyroelectrics is no more than the ability
to provide electrical (vectorial) response to any nonelectrical scalar impacts, in a

given case—when temperature changes. To describe this ability, it is assumed that

the polar crystal has intrinsic electrical moment PS, which summarizes many elemen-

tal moments p0; that is why each unit cell is marked in Fig. 9.18B–D as simple

dipoles. A possible example of such structure is spontaneously polarized (at low tem-

peratures) pyroelectric crystal HCl; wherein Fig. 9.18A, is intended to remind the

wide-gap semiconductor of CdS (AIIBIV type crystal) belonging to pyroelectrics

of 6-mm point symmetry class.

In this one-dimensional model, one can observe not only the pyroelectric effect

but also the piezoelectric effect, which contributes to the pyroelectric response.

Indeed, mechanical stretching or compression of shown dipole chain results in the
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FIG. 9.18

One-dimensional model of the pyroelectric crystal: (A) polar file of two-ion molecules;

(B) dipole moment orientation without thermal motion (T¼0); (C and D) different degrees

of thermal disordering and thermal expansion of a dipole chain; (E) spontaneous

polarization dependence on temperature.
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change in specific electrical moment: P�Δl/l. Thus not only from general consid-

erations but also from simple model, it follows that any pyroelectric should have pie-

zoelectric properties (but opposite conclusion is not fair).

Thus, as shown in Fig. 9.18B, polar molecules are replaced by the arrows that

present single dipole moments. In the idealized state (when absolute temperature

T¼0), all dipoles are strictly oriented. As temperature increases, the thermal chaotic

motion, first, results in a partial disordering of dipoles, and, second, leads to thermal

expansion of the crystal. In mechanically free crystal, both these mechanisms give

rise to spontaneous polarization PS decrease with increasing temperature, as shown

in Fig. 9.18E. The first mechanism (polar unit disordering) is always found in any

polar crystal (clamped or free), but the second mechanism (crystal thermal expan-

sion) is possible to observe only in mechanically free crystal.

Temperature increase changes PS in the linear (“hard”) pyroelectric such as tour-
maline or lithium sulfate crystals mostly due to their thermal expansion or compres-

sion. This type of pyroelectricity is produced by the piezoelectric conversion of
thermal strain that is referred as secondary pyroelectric effect. The temperature

change of PS of the nonlinear (“soft”) pyroelectrics (which include most of the fer-

roelectrics) is caused mainly by thermal disordering of the dipole structure. Dipole

orientation alteration results in the primary pyroelectric effect.

Owing to the fast decrease in spontaneous polarization with temperature increase

in ferroelectrics near the Curie point (abrupt change in dependency: dPS/dT), exactly,
these materials are mostly used as the pyroelectric sensors. In the model, as shown in

Fig. 9.18, the elementary electrical dipole moment change is dp¼p0 (1�cos θ). As
the angle θ is small, it can be considered as being proportional to the intensity of

thermal motion: θ�kBT. Therefore the change in polarization is ΔP¼ γ(1)ΔT, where
γ(1) is the primary pyroelectric coefficient.
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For secondary pyroelectric effect, change in the proportionality of ΔP and ΔT is,

first, the result of thermal expansion linear law: Δl¼αΔT, where Δl is the linear

deformation, whereas α is the thermal expansion coefficient. Second, the linear

direct piezoelectric effect is described as ΔP¼eΔl/l, where e is the piezoelectric

strain constant. From these two formulas, it is possible to obtain a linear equation

for secondary pyroelectric effect: ΔP¼γ(2)ΔT, where γ(2) is the secondary pyroelec-
tric coefficient.

Consequently, considering the deposits from both mechanisms of pyroelectricity,

it is possible to obtain an equation for thermally induced polarization

ΔP¼ γ 1ð Þ
+ γ

2ð Þ
	 


ΔT,

where temperature T is the scalar value, but polarization is the vector value, and pyro-
electric coefficient γ is the vector. However, it is a peculiar (“material” vector) that
differs fundamentally from the “force-type” vectors (such as vectors E, D, or P).

A first-rank tensor material describes the spatial distribution of pyroelectric

response in a crystal; appropriate indicatory surface (indicatrix) is shown in

Fig. 9.19, being represented by two spheres. They are located above and below of

the symmetry plane m and can be characterized by the equation γ(φ)¼γmax cos φ.
It is evident that the spatial distribution of pyroelectric coefficient corresponds to

spontaneous polarization orientation in the polar crystal: P¼Pmax cos θ. The upper
sphere is an indicatory surface for the upper orientation of PS, whereas the bottom

sphere means only a change in sign of γi, if spontaneous polarization has the opposite
direction.

Material vector γ showsmaxim in that direction of ordinate, which coincides with

spontaneous polarization direction. Hence, the γmax might be measured in a cut of the

crystal that is perpendicular to the polar axis. The angle φ between the ordinate and

the vertical to slanting cut of the crystal determines the magnitude of the pyroelectric
FIG. 9.19

Orientation of spontaneous polarization in crystal and corresponding guide surface

(indicatrix) for pyroelectric coefficient; the black area shows the negative part of pyroelectric

coefficient.
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effect. By the radius vector drawn from the center of a figure (shown in Fig. 9.19), it

is possible to determine pyroelectric effectiveness in any slanting cut of a crystal. It is
obvious that perpendicular to ordinate, any pyroelectric effect is absent.

Pyroelectricity, as piezoelectricity, is determined by crystal symmetry. However,

if in event that piezoelectric properties, the necessary condition is the absence of the
center of symmetry in the crystal, the pyroelectric effect is possible only in the crys-

tals that have a special element of symmetry—the peculiar polar axis. It is this axis
that provides polar acentricity of a crystal, so that any pyroelectric should also have

the piezoelectric properties (but not vice versa).

Of the 20 classes of piezoelectric crystals (described in the previous section in

Table 9.4), only 10 classes are the pyroelectric ones; their designations are as fol-

lows: 1, 2, 3, 4, 6, m, 2m, 3m, 4m, and 6m. As it was noted earlier, the number indi-

cates the order of polar axis, whereas the letter m means the plane of symmetry,

which passes through the polar axis [11].

In addition to polar crystals, the polarized ferroelectric ceramics also have pyro-

electric properties: under conditions of increased temperature and under the influ-

ence of externally applied electric field, most of the ferroelectric domains

(spontaneously polarized microregions) become oriented. Thus after cooling down

to normal temperature and turning off the field, the pyroelectric texture occurs with a
group of polar symmetry ∞�m (∞ is the order of symmetry axis). Because of

mechanical strength and high chemical resistance, the polarized ferroelectric

ceramics, as well as polar crystals, are used in the pyrometry, although pyrosensitiv-

ity in the ceramics is less than that in ferroelectric crystals.

As in the case of piezoelectrics, the boundary conditions are very important for

the electrothermal effects (pyroelectric and electrocaloric). All these effects can be

described by eight different linear relationships—depending on the combination of

various boundary conditions, under which polar crystals are studied or explored.

The electrical boundary conditions for pyroelectrics are similar to those of the

piezoelectrics. The first condition corresponds to electrically free pyroelectric when
E¼0, which means that the entire surface of the crystal is equipotential. As the

inductance D¼ε0E+P, then in this case, D¼P. This electrical condition is per-

formed by the shorting of electrodes deposited on the pyroelectric; in practice, a

pyroelectric element is loaded on the input resistance of an amplifier (which has a

resistance thousand times less than the resistance of pyroelectric). The condition

E¼0 results in pyroelectric current, that is, the crystal is the source of current.

Second idealized electrical boundary condition (D¼0) means that the polar crys-

tal is electrically disconnected, D¼ε0E+P¼0. The implementation of this condi-

tion means very low conductivity of the pyroelectric; in this case,

pyropolarization δP¼γδT that occurs is compensated by the electrical field:

ε0E¼�δP, that is, the crystal is the source of voltage. Originated by pyroelectric

effect, voltage V¼El can be measured by high-impedance (static) voltmeter (l is
the thickness of pyrolectric element).
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The thermal boundary conditions are two idealized cases:

T¼const, isothermal condition means the invariable temperature, when the

crystal during its measurements (or exploitation) has enough time for energy

exchange with the environment. As a rule, the thermodynamic theory uses

exactly this approximation as a comfortable case for theoretical calculation (only

isothermal condition is supposed in theories of ferroelectric phase transition). In

practice, correspondent experiments should be provided in the quasistationary

conditions.

S¼const, adiabatic conditionmeans permanent entropy, when there is no energy

exchange with the environment during measurement or exploitation. This is the

usual case at comparatively high frequency.

Similar to the electromechanical coupling coefficient KEM in piezoelectrics, analog

power conversion factor—the coefficient of thermoelectric coupling KTE—might be

introduced for pyroelectrics (it plays the role of efficiency). In basic pyroelectric

materials, this ratio is seen in the range of 1%–4%. Such relatively low efficiency

of thermoelectric power conversion KTE is due to the physical nature of this phenom-

enon in crystals, which tend to be “electrically hard” relative to external influences.

To describe the efficiency of pyroelectric sensors that convert infrared radiation

into electrical energy, not only pyroelectric coefficient γ but also several quality
parameters are evaluated: γ/CV, γ/(CVε0ε) and γ/[CV(ε0εtgδ)

1/2], where CV is the vol-

umetric heat capacity. There are a number of options for pyroelectrics; these quality

parameters define the current sensitivity (SJ¼ γ/CV) and the voltage sensitivity
SV¼γ/(CVε0ε).

The first group of pyroelectrics are nonlinear pyroelectrics-ferroelectrics: trigly-
cine sulfate and crystals isomorphic to it (they are grown with special additives for

the purpose to obtain single-domain samples); lithium niobate and lithium tantalate

(polarized by the current bias during crystal growth); thin films of potassium nitrate

in the ferroelectric phase; lead titanate and lead zirconate-titanate polarized ceramics

with different impurities. Pyroelectric properties of ferroelectrics are mostly due to

the primary pyroelectric effect. Near Curie point (TC), when spontaneous polariza-

tion change with temperature is expressed very strongly, pyroelectric coefficient

reaches maximum; hence the pyroelectric effect can be used with maximal

efficiency.

The second important group of pyroelectrics is the linear pyroelectric crystals. In
contrast to ferroelectrics (which are usually divided into domains with arbitrary

direction of PS), the linear pyroelectrics PS has the same direction throughout the

crystal. Furthermore, this direction cannot be changed by an external electrical field.

The value of PS in the linear pyroelectrics, varying with the temperature, never

decreases to zero (as in ferroelectrics). These crystals may belong to pyroelectrics

of the CdS-type (AIIBVI crystals with wurtzitic structure), as well as lithium sulfate,

lithium tetraborate, and others. It is important to note that in such pyroelectrics the
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contribution from secondary pyroelectric effect dominates, exceeding the contribu-

tion of the primary pyroelectric effect.

The third group of pyroelectric materials is polar polymers such as PVDF film.

Owing to special processing, which involves film stretching 3–5 times with the next

temperature polarization (in field nearly 1MV/cm at 130°C), the polymeric film

acquires pyroelectric properties. Despite the fact that the pyroelectric coefficient

of polymeric materials is lower than those in single crystals and pyroelectric

ceramics, technical application of pyropolymers is very promising owing to their

excellent mechanical properties (thin and elastic films).

According to Curie principle, any linear effects in crystals must have the opposite
effect. For example, opposite to the direct piezoelectric effect is the inverse piezo-

electric effect. Similarly, inverse to the pyroelectric effect is the electrocaloric
effect. This effect can be applied for electrically controlled reduction in temperature

(e.g., to achieve better cooling). Thus, pyroelectric effect not only can convert ther-

mal energy into electrical energy but also vice versa. Controlled by voltage, the elec-

trocaloric cooling (or heating) depends on the polarity of the applied electrical field.

The alternation voltage can generate extended temperature wave.

In polar crystals, the electrocaloric effect influences the value of permittivity.

When thermal equilibrium in the studied sample is entirely established at the time

of electrical field application (possible at very low frequency), the pyroelectric crys-

tal completely absorbs electrical energy applied to a crystal and converts it into ther-

mal energy. This is the isothermal process of pyroelectric polarization, which is

characterized by isothermal permittivity εT. On the contrary, in case of rather fast-

changing electrical field, the energy process is the adiabatic one (thermal equilibrium

has no time to be set). It appears that there is a decrease in the capacitance of pyro-

electric element. Therefore at higher frequency, the adiabatic permittivity εS < εT

can be determined.

Residual (quasipermanent) polarization of electrets. Sometimes, relaxation

time of the polarization process can be extremely large and it exceeds many months.

In such dielectric usually polarized state exists, although this state is thermodynam-

ically unstable: this is the electret type of materials. Therefore in addition to spon-

taneous polarization of pyroelectrics, some solid dielectrics may have another kind

of constant polarization that exists without application of an external electrical field

to the dielectric. The structure of electrets must be inhomogeneous, so polarization,

originally initiated by an electrical field (or by other influence), is stored in the elec-

tret structure for a long time, although remaining metastable.

Typically, electrical polarization is induced by an external electric field, but after

this, when the field is switched off the polarization quickly disappears, and this

returns the dielectric to its equilibrium state that usually corresponds to the nonpo-

larized state. However, in some cases, the polarized state remains for a long time

after the external field is switched off: this is the residual polarization. It is typical
for inhomogeneous dielectrics and it can be caused, for example, by “freezing” of

some mechanisms of thermally activated or migratory polarization, when relaxation

time for one or the other reason can be sharply increased. This quasipermanent
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polarization can also be created by the electrical charges, embedded in the dielectric

and fixed in the surface or in the volumetric “traps.” If residual polarization is not

shielded by the metallic electrodes, such dielectric creates electrostatic field in

the surrounding space, similar to how a permanent magnet generates magnetic field.

Dielectrics that maintain electrical charges in their volume or on surface for a

long time and create in the surrounding space constant electric field are called

the electrets.

There are different methods for producing electrets. The usual way is to create resid-

ual polarization by a strong electric field and use additional activation impact on
dielectric. Additional influence accelerates the process of polarization: orientation

of dipoles, polar complexes, radicals, and domains. It might be also a process of elec-

trification: migration of electrons or ions and their attaching by traps. Depending on

the nature of the activation effect (heating, lighting, radiation, magnetic field, and

mechanical stretching), the electrets are classified as thermal, photo, radio, magnetic,

mechanical, and other electrets. Although electrets are in the metastable state, which

is formed from very low leakage materials, they can retain excess charge or polar-

ization for many years.

Quasipermanent (residual) polarization can be configured by two main mecha-

nisms, as shown in Fig. 9.20:

• heterocharge formation, in which the sign is opposite to the charges on forming

electrodes.

• homocharge formation, captured in dielectric, which has a sign same as that of

the charges on electrodes.

Important conditions for long-time existence of formed electrets is low electrical

conductivity of the original dielectric (σ < 10�11S/m) and large energy barriers

for dipole relaxation or trapped charge carriers.
FIG. 9.20

The main mechanisms of residual polarization while formation of electrets: (A) macrodipole

polarization; (B) implantation of electrical charge (electrons); (C) surface charge variation

in time.
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The thermoelectrets can be obtained by heating of heterogeneous dielectric in the
strong electrical field. By this method, homocharge and heterocharge can be formed.

The homocharge can be obtained, for example, owing to thermostimulated injection

of electrons from cathode (or holes from anode). The heterocharge appears through

various “impurity-type” polarization mechanisms: thermally activated polarization

(electrons, ions, or dipoles), migration polarization (space charge, according to

Maxwell-Wagner mechanism).

Under electrical field influence, the absorption current passes through a heated

dielectric, thus indicating that spatially separated space charges are really accumu-

lated in a dielectric and resulting in macroscopic electrical moment—polarization.

After such forced “temperature polarization,” the dielectric is cooled without elec-

trical field turning off; hence, its polarized state becomes “frozen.”

At the time of thermoelectret formation, namely, during the cooling period, a tre-

mendous increase in the relaxation time occurs. As usual, τ�exp(U/kBT), but for a
substantial increase in τ, that is, to increase the duration of electret state existence,

not only exponential dependence τ(T) is required but also the possibility of an abrupt
increase in τ at the expense of potential barrier U changing. Therefore the waxy

dielectrics, during thermoelectret preparation, can be polarized at temperatures

higher than their melting point; in the same way, polymers can be polarized at a tem-

perature higher than that of their glass transition, whereas ferroelectrics can be polar-

ized at a temperature higher than their Curie point.

Because of fundamental instability of electrets, their properties vary with time;

however, the main changes occur immediately after their manufacture. The over-

patching is seen similar to those in the heterocharge and homocharge, and the net

charge of electrets may subsequently change the sign.

The thermoelectret materials include [12] the following:

• Mixtures of amorphous materials (wax, bitumen, and tar); only from these

materials, the first electrets were prepared; currently, such electrets have no

technical applications because they are nonthermally stable and have low

mechanical strength.

• Ceramic-based materials (calcium and strontium titanates, rutile, etc.) as well as

glasses, pyrocerams, and various single crystals (oxides, fluorides,

chalcogenides). These electrets have sufficiently stable properties but have not

enough manufacturability.

• Ferroelectric ceramics (mostly, based on lead zirconate-titanate), for which

temperature polarization is provided by domain field orientation. Ferroelectric

electrets differ from polarized piezoelectric elements by lack of electrodes.

• Polymeric materials manufactured by thermoelectret technology (for instance,

polyvinylidene fluoride).

Residual polarization can be obtained in almost any solid dielectric; if thermally acti-

vated, charge carriers in the presence of polarizing field are captured by traps—

structural defects. Then, while heating, thermally activated current of depolarization
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enables to determine the energy structure of dielectric, as well as the concentration of

defects in crystals or polymers.

In addition to thermoelectrets, many other mechanisms of residual polarization

conservation are known, as shown in Fig. 9.21.

The photoelectrets are composed of dielectrics that have low dark conductivity

(σ<10�12S/m), but increased photosensitivity. Formation of such electrets depends

on the magnitude of the electrical field and light brightness. At illuminated places of

photosensitive dielectric, because of the photoelectric effect, charge carriers occur

and then they drift to the shadow places, thus settling on traps and forming the

homocharge.

As a result, after electrical field and light turning off, an “electrical image”

appears on the surface of photoelectrets. It can be read by electronic beam reflection

or by using pigment powder, whose particles are attracted to the charged places

by electrostatic forces. The effect is reversible: photoelectrets image can be

eliminated (“erased”) by the strong electrical field and by the light striking of the

photosensitive layer.

The main materials used for photoelectrets are photosensitive dielectrics, which

are convenient for large plate manufacturing (selenium, zinc oxide, zinc and cad-

mium sulfides, selenides, and others). The photoelectret state can be also obtained

in many crystals and polycrystals, for example, sulfur, anthracene, naphthalene, sili-

kosillenit (Bi12SiO20), and others. Photoelectrets are widely used in the xerography

(“dry pictures”) and photocopier devices.

Typically, the process of xerography somewhat differs from photoelectret polar-

ization because it uses the light depolarization of the electret layer. The electro-

photo–sensitive plate is the substrate coated with a thin layer of photoelectrets, which
is charged in advance by the corona-discharge in the dark. Then the image is pro-

jected onto the plate for reproduction. Owing to low dark conductivity, the homo-

charge of electrets persists for adequate time. In the alight places, charge relaxes,
FIG. 9.21

Various types of electrets: (A) thermoelectrets; (B) photoelectrets; (C) electroelectrets;

(D) radioelectrets; (E) triboelectrets.
After B.M. Tareev, Physics of Dielectric Materials, Energia, Moscow, 1973.
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thus creating latent electrical image; then by using pigment powder, the image is

transferred to the paper.

Electroelectrets. In some cases, for residual polarization formation, only suffi-

ciently strong electric field is used (without an additional activating effect). Such

electroelectrets, preferably, are made from the polymeric films. The homocharge

of electroelectret is formed on the upper surface of a film by its electrification (bot-

tom surface of the film is precoated using a metallic electrode).

Different methods can be used for electrification, for instance, the injection of

space charge in the polymer might be applied. The corona type of electrical discharge

is often used over the surface of the electrified film, whereas bombarding electrons

are fixed on the surface “traps.” Some of these electrons diffuse into the dielectric,

filling “traps.” Compensating charge is formed on the bottom electrode.

In some cases of electrets formation, the spark discharge in the gas located above

the surface of the polymer is used. Injection of electrons in this case is more intense,

but the spatial distribution of charge is less homogeneous. To improve the homoge-

neity of homocharge, contact methods of electrification are used when the electrical

field is applied to the polymeric film through a thin layer of liquid dielectric.

Electronic beams are also employed for homocharge formation. The promising

method to obtain highly stable electrets is also the method of ionic implantation

(which is usually used when semiconductor materials are doping). These technolo-

gies enable to control the amount of injected charge and the energy of electrons (or

ions), bombarding the polymer, as well as set the depth of their penetration into the

polymer. Thus, it is possible to control the distribution of homocharge in the

electrets.

Electroelectrets can be made from almost any polymeric dielectric. One of the

best materials for such electrets is the polytetrafluoroethylene (PTFE) and its various

copolymers on the basis of [dCF2dCF2d]n, [CF2dCH2]n, and so on. These elastic

materials are thermally and moisture resistive, thus possessing high mechanical and

electrical strength as well as extremely low conductivity: σ<10�14S/m. These

parameters determine the long-term stability of polymeric electret properties.

Radioelectrets are obtained by the irradiation of dielectrics by fast particles or by
hard radiation. Regardless of the nature of initial particles under the influence of illu-

mination, the activated electrons occur and then they are captured by structural

defects to form a space charge. In radioelectrets, the division of positive and negative

charges takes place, which leads to the formation of residual polarization (electrets

state). This division can be obtained because of the application of an external elec-

trical field and also without it. In latter case, electrical charges are separated because

of uneven absorption of hard radiation in the volume of dielectric: further, electrical

field gradient is induced, which distributes electrons and holes in the traps. However,

this method of electrification is not widely applied in the electrets but in the radiom-

eters to measure the doses of radiation.

The state of electrets in dielectrics can be obtained by some other methods. For

example, to create polarized state in the magnetoelectrets, the electrical and mag-

netic fields are used simultaneously. The mechanoelectrets are obtained by means
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of mechanical deformation of some dielectrics, usually by stretching of polymeric

films. Polar polymers under mechanical tension acquire noncentrosymmetric struc-

ture and become polarized (polyvinylidene fluoride).

Triboelectrets are obtained by the friction of two different dielectrics. For this

purpose, dielectrics with different electronic work function are used: the electrons

from the dielectric with a low work function move into the dielectric with a high

work function. It is interesting to note that historically first electrical phenomena

were observed with the friction of amber on fabric (Greek name of amber is

“electron”), and exactly, this phenomenon is used to name such scientific and tech-

nical fields as “electrical technique” and “electronics.”

Thermally stimulated depolarization. The thermally stimulated depolarization
of charged electrets is widely used to analyze energy levels, characteristic times, and

other activation parameters of molecular motion in the dielectrics and semiconduc-

tors, to study their structural and physical transformations, and to investigate mech-

anisms of accumulation and relaxation. During this process, the studied dielectric

generates electrical current, which changes with time when heating the sample.

The experimental method of the thermally stimulated current (TSC) spectroscopy
is used to study energy levels of traps in dielectrics and semiconductors and can

be applied also to study many electrophysical phenomena in these materials; partic-

ularly, the TSC method is widely used to study the physics and chemistry of

polymers.

The experimental procedure of the TSC method comprises the following stages:

• application of a direct electrical field E0 (or other activation factors) to the studied

sample at primordial temperature T1;
• sample cooling under the action of field to lower temperature T0 (optical or

electrical injection of charge carries may be used);

• switching off (or change) polarized field (or other activation factor);

• gradual heating of the sample at a constant rate and recording emergent electrical

current as a function of time/temperature.

After the electrical field, which produced polarization, is switched off, temperature-

stimulated transition gradually occurs from the nonequilibrium state (created by field

and additional influence) to the unpolarized equilibrium state. In this case, if the

bonded charges in a sample liberate themselves, temperature dependence of the mea-

sured current shows some peaks of thermally depolarization current. Theoretical
description of TSC spectra uses relaxation equation of dielectric depolarization with

dependence on temperature relaxation time. Linear law of sample heating enables

change in these equations from temporary-variable to temperature-variable. Com-

parison of TSC spectra with theoretical models provides information on the energy

state of impurities.

Many dielectrics and high-resistance semiconductors after their excitation by

external radiation (e.g., strong electrical field or radiation) are able to maintain their

excited state for a long time. As described in the previous section, this electret state

can be formed, for example, by the macrodipole orientation, by the appearance of

http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Energy_level
http://en.wikipedia.org/wiki/Semiconductor


FIG. 9.22

Thermally stimulated current from polarized AgCl at different heating rates: υ1<υ2<υ3<υ4.
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thermoexcited electrons and then captured by traps, as well as by the arising polarons

that form space charge.

Therefore if a polarized dielectric (that has electrodes) is subjected to gradual

heating, then in the external circuit (capacitor closed to resistor) the thermally stim-

ulated current appears and changes over time. This current is caused by partial or

complete disorientation of dipoles, by liberation of charge carriers from traps, and

so on. Thermally stimulated current is a function of temperature, and it has a char-

acteristic shape—the highs j(T) whose magnitude and position depend on the type of

dielectric, conditions of excitation, and rate of temperature increase, as shown in

Fig. 9.22. If the residual (quasipermanent) polarization Pres has been established

in the field E0 by oriented particles of one type with elementary electrical moments

p0 and bulk densityN, then Pres¼N(p0
2/3kBT)E0. Under normal conditions of constant

temperature, Pres(T) decreases with time according the exponential law, and depo-

larization current density is defined as

j Tð Þ¼Pres tð Þ=dt¼Pres tð Þ=τ:
During the TSC study, the temperature increase over a time is controlled by the linear

law from the initial value T0: T¼T0+bt, where b¼dTd/t¼ const. Depolarization

current occurs because the relaxation time of polarized polar particles (or complexes)

varies as τ¼ τ0e
U/kBT, where τ0

�1 is the relaxation frequency of particles and U
is the activation energy. As temperature increases, depolarization current initially

increases (due to τ temperature dependence) and then decreases because the concen-

tration of excited particles gradually decreases, as shown in Fig. 9.22. The activation

energy can be determined from a plot of j(T) at the initial section of the chart, if the

scale is: ln j(T)¼const�U/kBT.
9.7 HIGH-PERMITTIVITY DIELECTRICS AND PARAELECTRICS
Different dielectrics with a given value of ε and TCε (temperature coefficient of per-

mittivity) are widely used in the ceramic capacitor production. Owing to the fact that

in most cases the capacitors are used at high frequencies, only fast polarization mech-

anisms can play a role in them. One of the requirements for the properties of capac-

itors is their thermostability.
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Concerning, it is necessary to mention that electronic polarizability somewhat

increases the value of ε but stimulates negative TCε. Conversely, if the predominant

mechanism is ionic polarization, TCε becomes positive. Electronic devices, in par-

ticular electrical capacitors, need dielectrics with different ε values and various sign
TCε. Capacitors with various TCε are applied for temperature compensation of other

elements of electronic apparatus. In many cases, it is necessary to have TCε � 0 in a

broad temperature range. Importance of this problem is also attributed to the fact that

the relative number of ceramic capacitors in equipment reaches 50%.

Contemporary technology of polycrystalline solid solutions enables to obtain dif-

ferent ε and TCε values. This is especially important at high frequencies (microwave

εmic). During technical dielectric designing, it is considered that change in magnitude

and sign of TCε depends on what dominates the polarization of the dielectric—

electronic or ionic. The lattice (ionic) polarization also depends on electronic shell

displacement, but frequency characteristic of this mechanism of polarization is given

by the elastic forces and masses of ions. Therefore, this frequency is much less than

optical frequency but quite adequate for electronic applications.

The role of electronic shell displacements is especially important for high-

permittivity dielectrics. The fact that short-range repulsion force between ions

depends mainly on the interaction between shells of adjacent ions, this interaction

is smaller for “soft” shells. If the crystal structure is such that the elastic force of

ion repulsion is reduced, then εir (due to “contribution” of infrared polarization)

can be very large. Thus, electronic polarization of ionic crystals affects the frequency

of infrared vibrations. Accounting for this effect leads to reduction in frequency of

transverse optical phonons ωTO. As the frequency of longitudinal lattice oscillations

ωLO is practically unchanged with temperature, then, from the Liddeyn-Sachse-

Teller relation, it follows that only the value of frequency ωTO determines εmic.

If it is considered that electronic (optical) polarization affects ionic polarization

(infrared), then instead of the simple expression P¼NαF (where α is the polarizabil-

ity, N is the concentration of polarizable particles, and F is the acting Lorentz force),

it is possible to obtain the equation

P¼ a +
nq2

m

1

ω2
0�ω2

� �
" #

E+
1

3ε0
P

� �
, (9.24)

where 1/(3ε0) is the Lorentz factor and a is a parameter, considering the effect of

optical polarization.

After some transformations, for frequencies of transverse and longitudinal optical

phonons as well as for dielectric contribution from infrared polarization, the follow-

ing equations can be obtained [13]:

ω2
TO ¼ c

m
� nq2

3ε0m

ε ∞ð Þ+ 2
3

;

ω2
TO ¼ c

m
+
2nq2

3ε0m

ε ∞ð Þ+ 2
3

;

ε 0ð Þ� ε ∞ð Þ¼ nq2

ε0mω2
TO

ε ∞ð Þ+ 2ð Þ2
9

:

(9.25)
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These formulas might be reduced to a simplistic form, if the influence of electronic-

shell polarization would be neglected, that is, make substitution ε(∞)+2¼3. Note

that in formula (9.25), there is multiplier (ε+2)/3, which is the ratio between Lorentz
local field F and external electric field E.

Expression for frequency ωLO is the sum; therefore, inclusion of electronic polar-

ization almost does not change the frequency ωLO (as opposed to the value of ωTO).

From Eq. (9.25), it is seen that the lower the frequencyωTO, the greater is the value of

εmic (measured at microwave frequencies). Comparison shows that calculations by

formula (9.25) are very close to the experimental data for cubic alkali halide crystals.

For example, these parameters for NaCl and TlBr crystals can be compared: in NaCl,

ε(∞)¼2.25, ωTО ¼ 3.1�1013Hz, and ε(0)¼5.6 (εexper.¼5.6); crystal TlBr has

higher optical refractive index, respectively, it has ε(∞)¼5.1, ωTО ¼ 1.1 �1013
Hz, and ε(0)¼30 (εexper.¼31).

Formula (9.25) enables to describe temperature dependence of ε in the ionic crys-
tals. In the majority of the ionic crystals with ε¼4–8, the temperature coefficient is

positive (TCε>0), which distinguishes them from dielectrics that are characterized

mainly by electronic polarization and have TCε<0. In those ionic crystals, where

ε>10, the infrared polarization is significantly affected by electronic shell polariza-

tion, and therefore TCε might be negative. This interesting (and important for tech-

nical applications) result follows from the analysis of formula (9.25).

Formula for frequency ωTO shows that with increasing temperature, because of

thermal expansion, on one hand, the term c/m reduces, but, on other hand, depen-

dence on ε(∞) subtrahend decreases. The value of εmic(T) depends on which of these
effects will be overwhelming.

In crystals with high electronic polarizability, the effect of reducing ε(∞) with

increasing temperature predominates, which leads to ωTО increase with temperature

and to temperature decrease of εmic�1/ωTО
2 , respectively. Thus crystals with big ε,

unlike other ionic crystals, are characterized by TCε<0. In connection with these

examples, it should be noted that in NaCl crystals (εmic¼5.6), temperature coeffi-

cient of ε is positive: TCε¼+4�10�5K�1, whereas in TlBr crystals (εmic¼31),

it is negative: TCε¼�2�10�3K�1.

Paraelectrics of displacement type. Nonpolar ionic crystals with ε�100 (and

much above) occupy a special place among dielectrics with high permittivity. Typ-

ical representatives of such dielectrics are rutile (TiO2) and perovskite (CaTiO3).

It should be noted that these crystals are characterized by increased electronic (opti-

cal) polarization: εоpt>5. Moreover, microwave permittivity of rutile and perovskite

is strongly temperature dependent, with a negative TCε value. These dielectrics are
related to paraelectrics.

Paraelectric crystals belong to dielectrics with particular temperature dependence

of their permittivity, described by the Curie-Weiss law:

ε Tð Þ¼ ε1 +
C

T�θ
, (9.26)

where θ is the Curie-Weiss temperature, C is the Curie-Weiss constant, and ε1 is a
part of permittivity practically independent on temperature. This equation is in good

agreement with experimental data, as shown in Fig. 9.23A.



FIG. 9.23

Temperature dependence of inverse permittivity (A) and frequency ωTO (B) for paraelectrics

TiO2, CaTiO3, SrTiO3, and ferroelectric BaTiO3 (in its paraelectric phase); Г is the

correspondent oscillator damping factor, 1cm�1¼30GHz [13].
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For example, dependence ε(T) in CaTiO3 (perovskite) can be described in a broad

temperature range, if in formula (9.26), one puts ε1 ¼ 60, C¼4�104K, and

θ¼�90K. Calcium titanate can be considered as a material related to paraelectrics.
However, in typical paraelectrics, which include, for example, SrTiO3 or KTaO3,

Curie-Weiss temperature is positive (θ>0K), whereas CaTiO3 is distinguished by

a fact that it has negative characteristic temperature (θ<0K).

In most paraelectrics, at temperature T¼Tc � θ (i.e., critical temperature) phase
transition occurs to ferroelectric (or antiferroelectric) phase. That is the reason why

paraelectricity usually is associated with ferroelectricity. Similar to the ferroelec-

trics, the paraelectrics can be divided into two basic classes.

The paraelectrics of the “order-disorder” type are polar crystals (containing

dipoles), in which, as temperature decreases, dipole-to-dipole interaction gives rise

to a gradual ordering of dipole orientations, until, finally, when temperature becomes

Tc � θ, spontaneous polarization arises, at which most of dipoles are steadily ori-

ented. Such paraelectrics near their second-order phase transition are characterized

by rather sharp maximum of ε(T) that decreases with temperature increase. This fast

decrease in ε(T) signifies rather small Curie-Weiss constant (C � 103K).

The paraelectrics of displacement type are ionic (not dipole) crystals, in which,

however, ionic-covalent bonds between atoms are very significant. They usually

show first-order phase transition and relatively flatter ε(T) dependence in their para-
electric phase that is characterized by a big Curie-Weiss constant: (C � 105K).

These properties of displacement-type paraelectrics can be explained by the

dynamic theory of lattice vibrations. The central point in this theory is the fact that

phase transition arises because the crystal lattice loses its stability owing to relatively
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one of the transverse optical vibrations. This is reflected in the decrease in frequency
ωTО with decreasing temperature, and it is assumed that, at temperature T! θ, the
frequency ωTО ! 0. The relationship between frequency and temperature is

described by the Cochran law:

ωTO ¼A
ffiffiffiffiffiffiffiffiffiffiffi
T�θ

p
, (9.27)

where A is the temperature coefficient of frequency. This dependence is confirmed

by many experiments, as shown in Fig. 9.23B. Direct relationship between permit-

tivity and temperature dependence on frequency of transverse optical lattice mode in

paraelectrics, that is, the correlation of ε(T) andω2
TО(T) is seen, whereas the two parts

of Fig. 9.23 are compared.

Explanation of the decrease in ωTО when temperature decreases and high polar-

ization in crystals of perovskite structure is as follows. Each ion is in equilibrium

position under the action of long-range electrical forces of attraction and short-range

forces of repulsion. High polarization means that the application of even a weak elec-

trical field leads to unusually large displacements of ions from the equilibrium posi-

tion (or, according to the model of “soft” ions, to large deformation of electronic shell

of ions). This also means that the elastic force of repulsion of ions is small (i.e., cor-

responds to lower oscillation frequency).

It is logical to assume that in perovskite-type structures, such conditions are cre-

ated for some ions, when compensation of short-range repulsion forces and long-

range attraction forces occurs. Thus the effects, caused by interaction of electronic

shells of ions, lead to a very high value of permittivity along with anomalous tem-

perature dependence.

The frequency of transverse optical vibration mode in ionic lattice, which tends to

zero when temperature T ! θ, is the “soft” vibration mode. Using the Liddeyn-

Sachs-Teller relationship: ε(0)/ε(∞)¼ [ωLО/ωTО]
2, it is possible to show that the

Cochran law (9.27) gives rise to the Curie-Weiss law: ε(T) � C/(T �θ). To explain

the possibility of decrease in frequency ωTО in the perovskites, one needs to use the

polarizable ion model, in which the interaction of electronic shells has a significant

effect on the repulsive force of ions. This interaction can cause a condition at

which the force, conditioned by polarization of ions, decreases; this allows to assume

ωTО(T)! 0 and to ε(T)! ∞. In this sense, it might lead to the understanding of

the expression “wasting of crystal stability”: when small external perturbation

(i.e., external electrical field) leads to a great response, the polarization is and ε is
also high.

The latter assumption can be illustrated on the basis of the formula (9.25). The

parameters c and q, if one uses the “shell model,” depend on the characteristics of the

crystal structure: c characterizes short-range force that returns displacement of ion,

and q is the effective charge. Note that the longitudinal frequency ωLO is not critical

to changes in model parameters, as it is determined by the sum of two terms. Con-

versely, the frequency ωTО is strongly dependent on their difference.

In alkali-haloid crystals, the minuend in Eq. (9.25) is approximately two times

greater than that of the subtrahend; hence, frequency ωTО is only slightly dependent
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on temperature. However, in the perovskite-structured crystals, the minuend in

Eq. (9.25) is very close to that of the subtrahend; henceωTО becomes very low (much

<1013Hz). Moreover, even small changes in external conditions such as tempera-

ture, pressure, or voltage substantially affect the ωTО. As a result, in the vicinity

of “paraelectric-to-ferroelectric” phase transition, not only temperature but also elec-

trical field or pressure greatly changes dielectric properties of such a crystal.

To analyze the possibilities of how it is possible to reduce temperature depen-

dence of εmic, it is desirable to express Curie-Weiss constant through parameters

of the discussed model. The approximate form of Curie-Weiss law ε(T) �
C/(T �θ) can be obtained, if the following formula is substituted in Eq. (9.25):

mω2
TO

c
¼ 1�nq2 ε ∞ð Þ+ 2ð Þ2

9cε0
¼ γ T�θð Þ:

By substituting this value in the expression for permittivity in formula (9.25), it is

possible to obtain.

ε 0ð Þ� ε ∞ð Þ¼ nq2 ε ∞ð Þ+ 2ð Þ2
9cγε0

1

T�θ
; A¼

ffiffiffiffiffi
cγ

m

r
; C¼ nq2 ε ∞ð Þ+ 2ð Þ2

9cγε0
:

Displacement-type paraelectrics appears as a very attractive material for use in

microwave microelectronics that need high εmic and low loss materials. The main

obstacle to use paraelectrics at microwaves is εmic temperature instability. As the

nature of this instability is the electronic subsystem of a crystal, the ways to over-

come this instability should be sought in the methods of impact on this subsystem.

The main contribution to εmic is given by far infrared (lattice) polarization. Formally,

it is mentioned as “ionic” polarization, but in fact, it is associated with the suscep-

tibility of ion electronic orbitals. It is found that most part of εmic in the rutile and

perovskite is caused by highly polarizable oxygen octahedrons TiO6 connected at

their vertices. In this case, electronic clouds that link ions in the system of octahe-

drons provide enough freedom for easy polarization and leads to the εmic>100.

It is possible that there are possibilities for the rutile structure to have an impact

on crystal properties by allocation of various ions between the octahedrons. That is

why it is possible to govern the freedom of electronic shell interaction and their recip-

rocal displacement, when different ions are implemented to the structure. By this

way, it is possible to significantly weaken critical ε(T) dependence (described by

the Curie-Weiss low) but maintain high permittivity.

Thermal stable microwave dielectrics. Some examples of such elaborations are

shown in Table 9.5, where most important microwave dielectrics are listed. As the

loss factor has a tendency to linearly increase with frequency, to compare different

microwave dielectrics, the special quality factor is used: K¼ν/tan δ, where ν is the
frequency in gigahertz [13].

All high-permittivity microwave dielectrics mentioned in Table 9.4 are associ-

ated with perovskite-structure paraelectrics or ferroelectrics; however, nоne of listed
thermostable microwave dielectrics in Table 9.4 exactly match typical paraelectrics:

rather, they can be defined as materials “related to paraelectrics.”



Table 9.5 Location of Electron Spins in the Orbitals and Parameters of REE

Table 9.4 Permittivity and Quality Factor for Thermally Stable
(TCε<5ppmK�1) Microwave Dielectrics

Ceramics εmic K �1000 Ceramics εmic K �1000
(Mg,Ca)TiO3 20 50 BaO4 �TiO2 37 30

Ba(Sn,Mg,Ta)O3 40 200 BaO4,5 �TiO2 40 40

Ba(Zr, Zn,Ta)O3 30 150 CaTiO3 �LaAlO3 40 50

(Zr, Sn)O2�TiO2 38 50 BaO �Ln2O3 �TiO2 90…120 3 � 7

Note. Ln-La, Gd, Nd, Sm, Eu.
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The main reason of large ε in paraelectrics (or ferroelectrics) is the strong corre-

lation between high-polarizable octahedrons. This correlation gives birth to ferro-

electricity but at the same time leads to nonthermostability. To control octahedron

correlation, some additional ions should be placed between BO6-octahedrons, and

this is main sense of microwave dielectric compositions.

The outer electronic shell of barium ion (5s2p6 hybrid) is very remote from the

Ba-core owing to empty more deep electronic state 4f (Table 9.6); that is why the

5s2p6 shell is rather compliant to interaction with neighborhood. Taking root between
TiO6-octahedrons, the large ion Ba

2+ might have a strong influence on the outer elec-

tronic shells of the surrounding O�2 ions. This is one possible explanation of thermal

stability.

The microwave ceramics with ε580–120. Ceramics Ln2.3�xM3xTiO3 with

ε � 80 can be obtained as solid solutions of perovskite structure, where Ln is a

rare-earth element and M is the alkali metal ions that partially substitute rare-earth

ions. Among these components, some have the positive TCε, whereas others have
negative TCε. For example, La0.5Li0.5TiO3) has perovskite structure with TCε>0;

however, if M¼Na, K materials are characterized by TCε<0. That is why it is



Table 9.6 BLTs Permittivity and TCε at 300K According to Measurements at a
Frequency of 9.4GHz

Parameter

Lanthanoid

0La 1Ce 2Pr 3Nd 5Sm 6Eu 7Gd TiO2 CaTiO3

εmic 110 90 85 83 80 75 65 100 150

TCε, 10�6K�1 �700 �400 �250 �80 +60 +100 +160 �900 �1600

Note. Upper index before RE shows the filling of the 4f-shell; for comparison of rutile and perovskite
parameters are given as well.
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possible to find compositions, in which permittivity temperature dependence would

be compensated. At that, rare-earth ions are simultaneously substituted by alkali

metal ions with large radius (Na, K) and small radius (Li); these compositions might

have high temperature stability of dielectric parameters in microwave range.

The composition of BaLn2Ti4O12 (BLTs) is a paraelectric-like material with

imbedded rare-earth ions. These polycrystalline dielectrics are allocated among

many other microwave dielectrics: their permittivity ε is several times higher than

those in other types of microwave ceramics. As it was shown with the example of

rutile, there are some possibilities that have an impact on crystal properties by allo-

cation of various ions between octahedrons. In other words, it is possible to govern

dielectric properties by the degree of electronic shell interaction and their reciprocal

displacement by means of different ion introduction to the structure. By this way, it is

possible to significantly weaken critical ε(T) dependence (according to Curie-Weiss

low) andmaintain a high polarizability. This method is used in BaO �4TiO2 ceramics.

Fig. 9.24 shows another way of microwave high-permittivity dielectric elaboration
FIG. 9.24

BLT permittivity and temperature coefficient for rare-earth cerium row.
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(with εmic � 80), using the rare-earth ions doping of TiO2: Ln2TiO5, Ln2Ti2O7, or

Ln2Ti3O11 ceramics, where Ln means cerium row: Ce, Pr, Nd, Pm, Sm, Eu, and

Gd. The lanthanum ion has the electronic configuration 5s25f6 (similar to that of

Ba2+), but La3+ is much smaller than barium ion (� 0.1nm).

It is also important that the La3+ ion has an empty 4f shell; therefore, it is diamag-

netic (as barium ion). However, while barium introduction to rutile more than twice

decreases its permittivity, in TiO2-La2O3 ceramics, microwave properties remain

practically similar to those of TiO2, including εmic � 110 and TCε ��700, as shown

in Table 9.6. Increased value of εmic is explained by the relaxation process [13].

In the TiO2-Ln2O3 system, paramagnetic lanthanide leads to a noticeable effect

onmicrowave properties, especially by increasing thermal stability. Lanthanide elec-

tronic configuration is 4f(1…7)5s25p6; hence they are paramagnetics with a gradual

increase in magnetic moment: from one to seven of Bohr magnetons. Holding rather

big dielectric permittivity (εmic � 80 that exceeds twice εmic in the TiO2-BaO sys-

tem), the TiO2-Ln2O3 compositions can change TCε from the negative sign to the

positive one, as shown in Table 9.6.

As described in Table 9.6, the compositions appear as those of paraelectrics, but

they are simultaneously the paramagnetics; in the ε(T) characteristic, the impact of

paramagnetism predominates over paraelectricity.

In TiO2-Ln2O3 composition, paraelectric Curie-Weiss law becomes gradually

suppressed: from Ce to Gd (as paramagnetism becomes stronger), TCε changes

greatly, as shown in Fig. 9.24. It is obvious that using specially selected solid solu-

tion, for example, (NddSm)La2TiO5 composition, it is possible to reach zero ther-

mal coefficient TCε.
It is necessary to note that relatively simple compositions of the nTiO2-Ln2O3

type (as Ln2TiO5 or Ln2Ti2O7 ceramics) in which we can get TCε � 0 are nonstable

in processing, whereas more stable in technology composition; Ln2Ti3O11 is charac-

terized by TCε<0 (as in TiO2-rutile ceramics). Efficient solution to the problem of

the high ε and low TCε combination is to use the “structural stabilizer” Ba2+ together

with Ln3+ for TiO2-Ln2O3 ceramics. As a result, most prospective compositions are

elaborated in a condition when both lanthanides and barium are used together to

obtain thermostable ceramics (that has ε 
 100 and TCε � 0).

Perovskite-like structure of barium-lanthanum tetratitanates BaLn2Ti4O12 is usu-

ally titled as BLT. The Monophase perovskite-like structure BLTs exist only for

cerium group of lanthanide row: Ln¼La, Ce, Pr, Nd, Sm, and Eu. The valence of

Ln3+ is quite different from that of Ba2+; hence, BLTs are vacant (nonusual) perov-

skites. For technical application, such dielectrics are synthesized as complex mono-

phase systems, in which thermal stability could be controlled by change in their

composition, as shown in Fig. 9.24. It is seen that the case TCε¼0 is located between

neodymium and samarium. Some more recent elaborations using BLT-doped system

enable achieving ε 
 140.
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9.8 FERROELECTRICS AND ANTIFERROELECTRICS
Traditional and comfortable modeling of ferroelectrics is the assumption of its spon-
taneous polarization PS, the direction of which can be switched by an externally

applied electrical field. Currently, there is opinion as to another nature of ferroelec-

tricity: it might be assumed that the structure of ferroelectric is able to demonstrate

such nonlinear polar response to externally applied field, as if the switching of polar-
ization occurs in it.

However, in this tutorial, it is better adhered to the traditional theory of ferroelec-
trics as crystals with reversible spontaneous polarization.

As stated earlier, other than in ferroelectrics, internal polarization is peculiar to

the electrets and pyroelectrics. However, unlike residual polarization of electrets,

cold spontaneous polarization represents the stable thermodynamic state of polar

dielectrics. Indeed, residual polarization in electrets disappears during their heating

or irradiation, whereas spontaneous polarization appears a structural feature of polar

crystal. Really, its value can be changed under external influences, but then

completely restores when initial conditions return.

It should be recalled that pyroelectricity is one of the possible manifestations of

the peculiar structure of polar crystals. However, an applied electrical field can

change the direction of spontaneous polarization in the linear pyroelectric, which
persists up to the melting of a crystal. Being a nonlinear pyroelectric, ferroelectric
not only switches its PS under the electrical field but also shows significant change in

PS(T) dependence until PS completely disappears well before the melting of crystal.

Thus ferroelectrics are a subclass of pyroelectrics in which the polarized state is

not stable enough, but it is quite labile. This polarized state can be changed by

many external influences: electrical field, temperature, and pressure.

An important feature of ferroelectrics that suggests them as the electrical analog of

ferromagnetics is their spontaneous division into a plurality of domains. Within each

domain, the spontaneous polarization PS is the same, but in various domains, PS has a

different orientation. The subdivision of the ferroelectric structure into a great num-

ber of domains is energetically advantageous, as the single-domain crystal would

create an external electrical field (as in the case of electrets) in the environment.

Obviously, energy of this field decreases with diminution in the size of domains.

Externally applied electrical field causes, at first, junction of randomly oriented

ferroelectric domains into one domain; next, its polarization reaches saturation. As it

can be seen from Fig. 9.25A, after switching off external field, polarization tends to

maintain its constant direction. If polarity of externally applied field would be chan-

ged, polarization, without changing its absolute value, will change its direction

abruptly [8].

For such “forced” change in the direction of PS, that is, for ferroelectric polari-

zation reversal, it is necessary to apply electrical field of a certain value, which is the

coercive field EC (see Fig. 9.25A). Sometimes, the value of this field reaches very



FIG. 9.25

Ferroelectric polarization dependence on the electrical field (A) and spontaneous polarization

dependence on temperature (B) and pressure (C).

5679.8 Ferroelectrics and antiferroelectrics
high values, and then, the ferroelectric cannot be repolarized and behaves like a pyro-

electric. However, during such “hard” ferroelectric heating, as it approaches the tem-

perature of Curie point TC, its coercive field ECmush decreases; therefore close to the

Curie point, it becomes possible to observe hysteresis. The coercive field EC and PS

in ferroelectric becomes zero, if T¼TC. The pyroelectric, however, has no Curie

point, and until electrical breakdown, its internal polarization does not change

direction—such crystal rather can be destroyed than changing the direction of

polarization.

It is therefore believed that availability of dielectric hysteresis is necessary with
adequate property of the ferroelectric state. If temperature exceeds the critical value

Tc, then hysteresis loop and ferroelectric state disappears. In the same way in ferro-

electric, PS affects the increase in hydrostatic pressure, as shown in Fig. 9.25C. By

contrast, linear pyroelectric does not change its polarized state under a pressure up to

being destroyed.

Summarizing, it might be concluded that ferroelectric is a special, nonlinear

pyroelectric. Ferroelectrics are significantly different from linear pyroelectrics of

tourmaline or lithium sulfate types.

In case of active dielectric applications, first, ferroelectrics or dielectrics close to
them have gained the largest interest. In fact, exactly in ferroelectrics, their

“transforming functions” are most pronounced. For example, the greatest value of

piezoelectric module is observed in Rochelle salt crystals and, in the ferroelectric,

antimony sulfoiodide (SbSI). The highest values of pyroelectric coefficients are also

seen in ferroelectric crystals (three glycine-sulfate). Therefore for thermal infrared

receiver manufacture that uses pyroelectric effect, only the ferroelectrics (nonlinear

pyroelectrics) are applied. The most applied piezoelectrics are also ferroelectrics, in

particular, the ferroelectric ceramics of the PZT type (Pb(Zr,Ti)O3). In optical detec-

tors (that use the photopolarization effect), some of ferroelectric crystals are also

applied, whereas the ferroelectric crystals strontium-barium niobate and lithium nio-

bate are used for recording optical holograms.
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Model conception of ferroelectricity. It is important to establish the main cause

of ferroelectricity appearance in the ionic crystal. It can be shown that the great

importance for ferroelectricity constitutes the anharmonicity in ion movement. This

means a substantial nonlinearity in the law of reciprocal displacement of neighboring

ions in the crystal lattice. This peculiar property occurs in some special structures [7].

For the simplest analysis, the one-dimensional chain of ions is investigated. The

energy of linear chain of ions can be expanded in a row in power of dynamic dis-

placement x:

U xð Þ¼½ cx2 + 1⁄4 bx4 +… (9.28)

When considering polarization of ordinary (“linear”) dielectric, sufficient approxi-

mation is to consider only the first term of this expansion:U(x)¼½ cx2, where c is the
coefficient of elasticity. To determine the role of anharmonicity, it is enough to con-

sider the next (anharmonic) term ¼bx4 with the coefficient of anharmonicity b>0.

The lattice concerned can be stable only with assumption that the coefficient of

anharmonicity is positive: b> 0. Exactly, this guarantees the stability of a given lat-

tice in case of large fluctuations. As to the coefficient of elasticity, it might be pos-

itive (c>0) or negative (c<0).

Eq. (9.28) corresponds to the fact that ferroelectric is found above the Curie point
(TC), that is, in the nonpolar (paraelectric) phase that has the centrosymmetric struc-

ture. Below TC, this 1D crystal passes onto the noncentrosymmetric (ferroelectric)

phase. In case of transition to spontaneously polarized state (below TC), to expansion
series (9.28), the energy of ion spontaneous displacement F �x should be added:

U xð Þ¼½ cx2 + 1⁄4bx4�Fx, (9.29)

where x is the ion deviation at the equilibrium state and F is the internal (spontane-

ous) electrical field. Fig. 9.26 shows the functionU(x) for both cases: when c>0 (on
FIG. 9.26

Anharmonicity and ferroelectricity: energy U dependence on “ferroactive” ion deviation from

equilibrium state in a lattice.
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the left) and when c<0 (on the right), it is seen that below the Curie point, the spon-

taneous deformation xS arises, at which the energy U(x) becomes minimal.

As the polarized state at x¼xS now is the equilibrium state, a total force acting on

the system of charges in this state equals zero: ∂U(x)/∂x¼0, which means

cx+bxc
3�F¼ 0: (9.30)

With spontaneous polarization, the electrical field is associated, which is called the

coercive field: FC¼βPS, where β is the Lorentz factor. In case of one-dimensional

model of ferroelectric represented by simple linear chain of ion polarization

PS ¼npS ¼nqxS, where n is ion concentration and q is ion charge. By substituting

these data to Eq. (9.30), a cubic equation can be obtained

cxS + bxS
3�nq2βxS ¼ 0: (9.31)

where the term cxS describes the “elasticity,” whereas member bxS
3 characterizes the

anharmonicity. This equation has three roots:

x1 ¼ 0;x2,3 ¼� nq2β�c
� �

=b
� �1=2

: (9.32)

As far as the only spontaneously polarized phase (with spontaneous deformation

xS 6¼ 0) is considered, the first solution x1¼0 of Eq. (9.32) is a side effect and will

not be implemented here. The analysis of the other two obtained solutions provides

an opportunity to make the following conclusions.

First, the sign «�» means two equivalent possible directions of the spontaneous

polarization, which corresponds to two equal in magnitude but opposite in direction

ion displacements:�xS. This corresponds to two opposite values of PS. Indeed, spon-

taneous polarization of ferroelectric material in some parts of a crystal can be

directed in one direction, but in other parts—in the opposite direction (these areas

of PS in the opposite direction are called domains).

Second, in crystals with very small anharmonicity (when b ffi 0), the spontaneous

displacement of ions is impossible. Therefore, the anharmonicity of ionic displace-

ments is one of the defining properties of ferroelectric crystals.
Third, Eq. (9.32) has real roots x2,3 only under the condition when nq2β>c

(because parameter b>0). To clarify the physical meaning of this important inequal-

ity (i.e., essential conditions for spontaneous polarization arising), it is necessary to

multiply the left and the right sides of the expression nq2β>c by deformation x:

nq2βx> cx: (9.33)

The right-hand side of Eq. (9.33) corresponds to the elastic force that counteracts

ferroelectric spontaneous displacement xS. The nature of electronic shell interaction
is such that it seeks to return the nonpolar state. Obviously, the left side of inequality
(9.33), namely, the nq2βx, has also the dimensions of force, which is the leading
interaction (i.e., leads to ferroelectricity). Therefore spontaneous polarization occurs
in such crystals, where the leading interaction exceeds the returning interaction.

In further analysis of Eq. (9.33), there is an opportunity to make the conclusion

of what should be atomic parameters that contribute to the emergence of the
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ferroelectric state in the ionic crystals. The first factor is the high density of a crystal
(in this simple model, it is represented by parameter n). As a second factor, the

big electric charge q of shifting ions can be considered: q2 in inequality (9.33).

The third factor is the increased Lorentz factor β.
Comparing these qualitative results with those of the experimental data, their cor-

rectness is observed. Indeed, among a large number of well-studied alkali halide

crystals (such as NaCl), no ferroelectrics exist: ions in these crystals have single

charge (Na1+ and Cl1�), whereas the Lorentz factor is small: β¼1/3ε0 (ε0 is the per-
mittivity of free space). At the same time, in the barium titanate, for example

(BaTiO3 is the best-known ferroelectric), titanium ion (Ti4+) has valence of +4

(i.e., q2 in Ti4+ is 16 times higher than the q2 of alkali halides). The Lorentz factor
in barium titanate is also five times higher than its usual value in the simple cubic

ionic crystals owing to peculiarities of perovskite structure (this term comes from

mineral CaTiO3¼perovskite).

In the perovskites that have a general formula ABO3, the small-sized cation B4+ is

surrounded by the octahedron formed of six oxygen ions O2� (Fig. 9.27). The dis-

placement of particular “ferroactive” ion B4+ provides great contribution to the

dipole moment of unit cell, in which spontaneous polarization occurs. The significant

shift in small-sized tetravalent cation in the octahedron is conditioned by the fact that

surrounding the very small ion B4+, large anions O2� leave considerable space inside

the octahedron for easy displacement of the ion B4+. This effect results in the appear-

ance of spontaneous polarization in the perovskites.

Barium titanate is one of the many ferroelectrics with a perovskite structure. At
the Curie point of barium titanate, its permittivity shows step increase and gradual

decrease in the paraelectric phase. As temperature increases, spontaneous polariza-

tion first gradually declines and then abruptly falls to zero at phase transition. Heat

capacity shows typical for phase transition maximum (Fig. 9.28).
FIG. 9.27

Crystal structure of perovskite ABO3: “ferroactive” ions; Ο¼B is surrounded by octahedron

of oxygen Ο, whereas crosshatched A ions are located between octahedra.



FIG. 9.28

The main characteristics of barium titanate: (A, B) permittivity dependence on temperature

and pressure; (C, D) spontaneous polarization and specific heat dependencies on

temperature.
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Another class of ferroelectrics that have phase transition of order-disorder type

(Table 9.7) is quite different from barium titanate (mostly, these are ferroelectrics

with hydrogen bonds). First, the Curie-Weiss parameter C in them is less by two

orders of magnitude; second, their phase transition temperature TC is very close

to Curie-Weiss temperature θ. Phase transition in these crystals is well described

by the second-order transition theory (see Section 10.1).

The main experimental characteristics of ferroelectrics of the order-disorder type

ferroelectrics are shown in Fig. 9.29 and listed in Table 9.7. Temperature dependence

of dielectric constant, spontaneous polarization, and specific heat corresponds to the

thermodynamic theory of phase transitions of the second type. Dynamic properties of

these crystals differ from the properties of ferroelectrics with displacement-type tran-

sition. A special and interesting property of crystals with order-disorder transition is

the isotopic effect—the displacement of Curie point in case of hydrogen replacement

by deuterium (Table 9.7). This peculiarity demonstrates the importance of hydrogen

bonds for majority of these types of ferroelectrics.



Table 9.7 Main Classes of Ferroelectric Crystals and Their Properties
According to Author Microwave Studies [2]

Ferroelectric/
Parameter

PS,
μCcm22

TC,
K θ, K

C,
1024,
K

Eg,
eV

A/2π,
GHzK21/2

Complex oxides of
perovskite type

CaTiO3 – – �90 4.5 3.2 170

SrTiO3 – – 35 8.4 3.2 180

BaTiO3 30 400 388 12 3.3 75

PbTiO3 80 780 730 15 3.1 90

KNbO3 30 685 625 18 3.4 95

LiNbO3 70 1500 – – 3.6 –

Crystals with
hydrogen bonds:

Rochelle salt 0.25
–

297
255

291
257

0.17
0.14

–
–

–
–

Deuterized
Rochelle salt

�0.35 308
251

300
253

–
–

–
–

–
–

TGS 2.8 323 322 0.28 – 8.1

DTGS 3.2 328 327 0.27 – 10

KDP 4.7 123 118 0.28 – 180

DKDP 4.8 216 208 0.31 – 37

Chalcogenides

SbSI 50 295 285 23 1.9 –

SbSBr 10 95 82 12 2.2 –

PbTe – – – 14 0.2 –
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There are also ferroelectric crystals that do not contain oxygen. Mostly, they are

represented by the chalcogenides (Table 9.7). These ferroelectrics have a narrow

band gap in their electronic spectrum, that is, such crystals belong to the ferroelec-

trics semiconductors.

Properties of ferroelectrics are considerably dependent on their domain struc-
ture. The origin of multidomain structure in ferroelectric crystal below phase tran-

sition is energetically favorable. Single-domain crystal (Fig. 9.30A) creates an

electrical field in the surrounding space (such as electrets), to which some energy

W1 is spent.

As shown in Fig. 9.30B, the energy of an external field in a two-domain crystal is

smaller than that in single-domain crystal. Thus in case of multiple-domain structure,

the total energy of the crystal must be reduced. This reduction in energy is limited by

the growth of energy W2, expended on the formation of domain walls that separate

regions with different directions of PS, Fig. 9.30C. The average size of domains

(whose sum W1+W2 is minimal) depends on temperature, structural defects, and



FIG. 9.30

Domain structure of ferroelectrics: (A) single-domain crystal creates in the surrounding area

depolarizing electrical field; (B) in two-domain crystal, the depolarizing field is reduced;

(C) domain wall structure in the vicinity of which PS gradually changes its direction to

opposite; (D) comparison with pyroelectric, wherein field is shielded by charges on the

surface.

FIG. 9.29

Temperature dependence of relative dielectric constant, spontaneous polarization (μC/cm2),

and specific heat (J/(moldeg) crystals, close to model of order-disorder phase

transition: (A) TGS¼ triglycinesulfate (NH2CH2 �(COOH)3H2SO4); (B) KDP¼potassium

dihydrogen phosphate (KH2PO4); (C) Rochelle salt (RS) KNaC4H4О6 �4H2О.

5739.8 Ferroelectrics and antiferroelectrics
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electrical conductance of dielectric, as well as on environment properties. Multido-

main structure in ferroelectrics is relatively stable; the equilibrium state of ferroelec-

tric domains usually corresponds to domain size from a few hundredths of millimeter

to several millimeters.

Linear pyroelectrics that are characterized by the “hard” orientation of spontane-

ous polarization never split up into domains. However, they usually do not induce

electrical field in the environment, as their spontaneous polarization is shielded

by electrical charges accumulated on the surface (Fig. 9.30D). With change in ambi-

ent temperature, the alteration in polarization has not adequate time to be compen-

sated by conductivity and a pyroelectric effect appears. Over time, spontaneous

polarization in crystal again remains compensated.

The possibility of spontaneous splitting into the domains is caused by the change-

ableness of “soft” ferroelectric state in comparison with “hard” pyroelectric state. In

this regard, sometimes ferroelectric is defined as pyroelectric that divides into
domains.

However, in technical applications, sometimes just single-domain ferroelectric

crystals should be used. This is needed, for example, in the pyroelectric temperature

sensors, particularly, in heat television tube (vidicon) that converts invisible infrared

image of objects into optical image seen on a screen. Single-domain structure in fer-

roelectrics can be created by various methods: thermal electrical polarization, radi-

ation exposure of crystals with applied electrical, field or by the introducing specific

impurities that impede formation and movement of domain walls.

Application of ferroelectric ceramics also needs to create polarized structure:

inasmuch as ceramic sample would consist of a plurality of domains and crystallites,

oriented in different directions, and piezoelectric effect will not occur. The polarized

piezoceramics often are obtained as thermoelectrets—by heating and subsequent

cooling in the strong direct electrical field. This method uses temperature depen-

dence of coercive field EC that is significantly reduced when temperature increases

(in Curie point EC¼0). In heated ceramics, ferroelectric domains can be easily ori-

ented by electrical field; later, when temperature decreases, most of the domains

remain in the polarized state. Thus the piezoelectric ceramics is the texture of ori-
ented ferroelectric domains. That is why, when operation with polarized piezoelec-

tric ceramics, their overheating should be avoided because it may result in domain

depolarization and, consequently, in the loss of piezoelectric properties as domains

become disordered in high temperature.

Frequency and optical nonlinear properties of ferroelectrics can be also deter-

mined by the motion of domain walls under the influence of electrical field. Low-

frequency nonlinearity is characterized by the hysteresis. In its first cycle, the

hysteresis loop (Fig. 9.25A) is due to forced orientation of domains; then, they par-

tially maintain their polarization until the field of opposite direction (EC) makes

domains switching. Reversal polarization in ferroelectrics specifies domain contri-

bution to the dielectric constant: εdom�dP/dE. This contribution depends on the

electrical field; this nonlinear dependence ε(E) sometimes is applied in technique.

However, at microwave frequencies switching of domains, as a rule, does not have
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time to occur. Therefore, the use of nonlinearity conditioned by domains motion is

limited by the radiofrequency range.

Dielectric hysteresis loop characterizes two different states of polarization of fer-

roelectric crystal. This bistability is clearly manifested, if coercive field of ferroelec-

tric is big enough. Exactly, the bistable polarized state can be used in the memory

devices of computers and in other devices of modern electronics. It should be noted

that in the bulk ferroelectrics, domain switching is possible only at relatively low

frequencies (typically, <106Hz). However, in the thin ferroelectric films (<1μm),

switching time can be reduced to 10�8 s.
9.9 FERRIELECTRICS AND FERROELASTICS
The antiferroelectric is close to the ferroelectric by its physical nature, structure, and

chemical composition. However, in the antiferroelectric, PS¼0, as spontaneous

polarization that occurs during phase transition is totally compensated within a single

unit cell. Inasmuch as the energy of antipolar state is not very different from the

energy of polar phase, external influence can turn antiferroelectric into ferroelectric.

For example, phase transition from antipolar to polar states can be induced by a

strong electrical field (E>Ecr); in this case, the double hysteresis loop is observed,

as shown in Fig. 9.31F.

Phase transition between antiferroelectric and ferroelectric can occur not only

under the influence of electrical field but also sometimes as a result of temperature

change. This situation is observed, for example, in sodium niobate (NaNbO3,

Fig. 9.31B). Antiferroelectric phase in this crystal exists between temperatures of

630 and 80K. Below temperature of 80K, the NaNbO3 crystal enters into the ferri-

electric phase, when ferroelectric and antiferroelectric states coexist.

However, most often, antiferroelectric phase occurs upon cooling from the para-

electric phase, usually with the “multiplication” of crystal unit cell. Therefore below

the Curie point, the size of antipolar phase unit cell is 2, 4, or 8 times bigger than the

unit cell in the paraelectric phase. Spontaneous polarization in this case is compen-

sated by the displacement of opposite charges within new enlarged unit cell [14].

Thus in antiferroelectrics, owing to unit cell “multiplication” in comparison with

the original (nonpolar) phase, polar shifts of ions during phase transition are com-

pensated at the elementary level; hence, total spontaneous polarization is absent

(PS¼0). In this connection, it is necessary to note that during phase transition from

paraelectric to ferroelectric states, multiplication of elementary unit cell usually is

not observed: each unit cell below the Curie point becomes polarized in the same

way, and this effect is condensed in the crystal, forming PS>0.

This means that in antiferroelectrics, the critical reduction in the frequency of

vibrational soft mode occurs not in the center of Brillouin zone (as in ferroelectrics)

but on the boundary of Brillouin zone, and therefore the size of antiferroelectrics

Brillouin zone decreases as a result of crystal symmetry lowering below phase tran-

sition (a more detailed description will be given in Chapter 10).



FIG. 9.31

Temperature dependence of permittivity in antiferroelectrics PbZrO3 (A), in NaNbO3

(B), PbMgWO6 (C), and NH4PO4 (D), as well as spontaneous polarization compensation

in unit cell of antiferroelectric (E) and double hysteresis loop (F).
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Ferrielectrics are crystals in which spontaneous polarization PS is compensated

only partially—by analogy with ferrimagnetics that are characterized by partial com-

pensation of their spontaneous magnetization. Therefore ferrielectric is not entirely
compensated antiferroelectric. Compounds such as sodium niobate (NaNbO3 below

80K), tungsten oxide WO3, PbCd1/2W1/2O3, and some other isostructural com-

pounds are related to ferrielectrics.
Ferroelastics are crystals that in their structural properties are close to the fer-

roelectrics. Phase transitions in them are accompanied by critical changes in the elas-
tic constants of these crystals. Thus at temperature below the critical TC, a

spontaneously deformed state occurs, similar to spontaneous magnetization that

occurs in the ferromagnetic or spontaneous polarization that occurs in the ferroelec-

tric. By analogy with ferroelectrics, these materials are called the ferroelastics.
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In the ferroelastic, phase transition from one direction of spontaneous deforma-

tion to another direction can be realized by applying externalmechanical stress. Sim-

ilar to ferrielectrics, ferroelastics below temperature TC are divided into mechanical

domains, where spontaneous strain has different directions. Similar to analog process

of ferroelectric domain orientation (under electrical field influence), the uniform

mechanical stress can make a single-domain ferroelastic.

Thus ferroelastics are spontaneously deformed crystals, in which deformation can

be reoriented by the external mechanical influences.

If the sign of strain X is changed, the sign of spontaneous deformation xS also

changes. Mechanical rigidity of ordinary crystals is large enough, so that their defor-

mation is very small and linearly depends on mechanical stress (according to

Hooke’s law, Fig. 9.32A). Conversely, the mechanical stiffness of ferroelastic in
one peculiar direction of crystal is small, and therefore deformation increases

sharply in case of increasing corresponding stress X, Fig. 9.32B). However, after
achieving certain coercive force XC, the stiffness increases again, and a hysteresis

characteristic is observed with the nonlinear saturation of x(X) characteristics.
FIG. 9.32

Key features of ferroelastics: (A) linear dependence of x(X) in ordinary crystals;

(B) mechanical hysteresis in ferroelastic; (C) temperature dependence of the critical

component of elastic stiffness in the vicinity of phase transition; (D) spontaneous strain

temperature dependence.
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After removing external stress, unlike conventional crystals, immediate restora-

tion of the undeformed state is not observed in the ferroelastics: for some time, they

can save their spontaneous deformation +xS. To change strain direction (from +xS
to �xS), it is necessary to apply to a crystal the opposite sign of mechanical force

that exceeds the coercive strain XC. Therefore ferroelastics, for a long time, can exist

in one of the two spontaneously deformed states: in the state of tension (+xS) or in the
state of compression (�xS). Over time, however, the ferroelastic domains occurs, and

total (macroscopic) spontaneous deformation gradually relaxes to an average value

of x¼0, approaching to the original (zero) point of mechanical hysteresis, as shown

in Fig. 9.32B.

The ordering parameter of the ferroelastic phase transition is one of the compo-

nents of crystal mechanical deformation. Therefore, the ferroelastics in the vicinity

of phase transition may not have either dielectric or magnetic anomalies. However,

owing to the symmetry change at phase transition, particularly, because of appear-

ance (or change) of the piezoelectric effect, small anomaly in the permittivity in the

vicinity of ferroelastic phase transitions can be observed, as shown in Fig. 9.33B. For

example, such change in ε takes place in the ferroelastic lead orthophosphate

(Pb3(PO4)2).

In ferroelastic gadolinium molybdate (Gd2(MoО4)3, sometimes used in optoelec-

tronics, the main parameter of phase transition is mechanical deformation, but as a

consequence of ferroelastic transition, spontaneous polarization also occurs, as

shown in Fig. 9.33A. It is interesting to note that, unlike conventional ferroelectric

crystal, in this case, spontaneous polarization PS increases while cooling, which is

not according to Landau dependence PS� (TC�T)1/2 (as in ferroelectric or ferromag-

netic) but linearly: PS� (TC�T).
Ferroelectric phase, which occurs in this case as “by-effect” of ferroelastic tran-

sition, is the improper ferroelectric. In case of improper ferroelectric transition, the

ordering parameter is not vector quantity (polarization) or the tensor physical quan-

tity (component of deformation), but it is the mixed parameter. Thus the improper

ferroelectric Gd2(MoО4)3 is the ferroelastic and the ferroelectric simultaneously.
FIG. 9.33

Temperature dependence of permittivity and spontaneous polarization in gadolinium

molybdate (A); ε(T) dependence for lead orthophosphate (B).
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A small peak in permittivity near phase transition (Fig. 9.33A) is observed in this

crystal only at low frequencies, when the crystal is free to deform under the electrical

field—as electromechanical contribution to permittivity εEM from the piezoelectric

effect. In microwave frequency range, where piezodeformation in crystal has no time

to occur, the dependence ε(T) for Gd2(MoО4)3 has no significant anomalies near its

phase transition.

In the ferroelastic, spontaneous deformation changes with temperature according

to law: xS � (TK�T)1/2, as shown in Fig. 9.32D. Therefore, the strain component xS
in the ordered phase of ferroelastics changes by a law similar as that for spontaneous

magnetization MS in ferromagnetics or ferroelectric spontaneous polarization PS.

The main parameter that is critically changed at the Curie point (similar to the

permittivity of ferroelectric or magnetic permeability of ferromagnetic) in case of

ferroelastic is a component of elastic compliance tensor sijkl that causes spontaneous
deformation in crystal at temperature below TC. Temperature dependence of elastic

stiffness tensor critical component cijkl (inverse to elastic compliance sijkl) is shown
in Fig. 9.32C, for one of the ferroelastics. As the 1/ε of ferroelectrics or the 1/μ of

ferromagnetic, this option (1/s) of ferroelastics at Curie point tends to be zero.

Critical reduction of elastic stiffness components in the paraelastic phase deter-
mines the reduction in sound velocity (υsound) in a certain direction of the crystal. In

some cases, in the vicinity of ferroelastic phase transition, sound velocity decreases

to 300–400m/s (in this connection, it is appropriate to remind that in the ordinary

crystals, υsound �4000m/s, whereas in water, υsound¼1500m/s).

After transition from paraelastic to ferroelastic phases, the velocity of sound

increases again but still remains much lower than that in most of the dielectric crys-

tals. All these show that peculiar mechanical properties of ferroelastics are caused by

the soft mode in the acoustic lattice vibrations, whose frequency is critically reduced
in the vicinity of phase transition—as well as in ferroelectrics, spontaneous polari-

zation is a result of a decrease in the frequency of transverse optical lattice

vibrations mode.

Ferroelastic transitions can be both the second and the first order. In ferroelastic

lead orthophosphate (Pb3(PO4)2), phase transition of first-order type (PT-1) takes

place at 450K with a jump in deformation. However, in another ferroelastic BiVO4,

its transition at 530K is the second-order transition (PT-2). As mentioned, an addi-

tional ferroelectric phase can occur below the transition temperature in the

ferroelastic.

The low velocity of sound indicates significant sensitivity of ferroelastic to exter-

nal influences. That is why they can be used in the optics as light deflectors, designed
for spatial scanning of light beam. Elastic waves can excite the crystal through a pie-

zoelectric effect (usually in the frequency range of 30–300MHz), and they form a

kind of optical diffraction grating, whose pitch depends on the frequency of control-
ling electrical field. By varying the frequency of ultrasound, it is possible to control

the angle of light beam deflection passing through the crystal. In addition to deflec-

tors, ferroelastics and paraelastics can be applied as sensors of pressure and strain, as

well as in other measuring devices.
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9.10 NONLINEARITY OF FERROELECTRICS
AND PARAELECTRICS
Ferroelectric materials are widely used in electronics. If we consider, for example,

modern devices such as mobile phone, it will appear that ferroelectric materials are

used in many of its components. First, in the mobile, the microphone is present

(which uses the direct piezoelectric effect in ferroelectric) and so is the speaker
(working on the principle of the inverse piezoelectric effect). Furthermore, piezo-

electric filters are applied in the radiofrequency filters implemented with surface

acoustic waves created with ferroelectric films. The microwave signal filter uses

materials with high dielectric constant related to ferroelectrics. In addition, in the

mobile phone, the subminiature film ceramic capacitors are applied, also made of

ferroelectric materials.

However, one of the main characteristics of ferroelectrics, which provide their

practical application, is the reversal of spontaneous polarization, in other words—

the effect of polarization switching. At a certain value of coercive field, this effect

is expressed stronger in case of more rectangular hysteresis loop (Fig. 9.34A). Two

stable states of polarization can be interpreted as either 0 or 1 in the binary system

that is the mathematical basis of modern computing.

Two opposing values of spontaneous polarization (+PS and �PS) in the ferro-

electric crystals of films can be stored for a long term, thereby providing computer

memory recording and save information in the binary code. For example, the pulse of

positive polarity orients ferroelectric domains that result in the residual polarization

(that approximately equals to +PS). Further, positive pulse (“readings” information)

in this case does not lead to polarization reversal, and current through ferroelectric

“storage element” is negligible. If originally the negative pulse was “written,” then

reading positive pulse occurs repolarization—jump of polarization from�PS to +PS,

thus resulting in significant boost of current through ferroelectric.

Similarly, ferroelectric film may control the current in field-effect transistors

(FETs), when gate is the ferroelectric film deposited during the manufacture of inte-

grated circuits. This is an example of the practical application of thin film integrated
with semiconductor in the memory devices: they are used as a matrix of logic ele-

ments. The principal feature of such devices is based on the polarization switching;

their advantages are the ability to obtain a high integration density (up to 1012

bit/cm2), low power consumption, high radiation resistance, and others.

In addition to computing, nonlinear dielectric enables to convert electrical signals

(modulation, amplification, detection, and others). In conventional dielectrics, the

electrical induction is strongly proportional to electrical field: D�εE or, what is

the same, induced by electrical field polarization linearly relates to the field: P�χE,
whereas ε¼1+χ. However, in ferroelectrics (and paraelectrics), these linear rela-

tionships are not fulfilled, as permittivity itself depends on the field strength, ε¼ε(E)
or χ¼χ(E).



FIG. 9.34

Basic nonlinear properties of ferroelectrics: (A) dielectric hysteresis; (B) dynamic

nonlinearity; (C) nonlinear current in ferroelectric variable capacitor; (D) effective

nonlinearity; (E) reversing nonlinearity; (F) amplitudemodulation using variable capacitor [9].

5819.10 Nonlinearity of ferroelectrics and paraelectrics
Permittivity is characterized by the ratio of polarization to electrical field:

ε¼1+P/ε0E. In ferroelectrics, ε≫ 1; hence ε � P/ε0E, where P¼Pind+Pоr; Pind

is the induced polarization, whereas Pоr is the orientation (domain) polarization.

As seen in Fig. 9.34B, the ε(E) dependence owing to polarization switching has sharp
maxims that are seen near EC. Thus during a period of sinusoidal voltage,

“instantaneous” capacitance of ferroelectric capacitor passes twice through peak

values, whereby current that flows through nonlinear capacitor has pronounced non-
sinusoidal shape, as shown in Fig. 9.34C.

By averaging of permittivity for a period, it is possible to get effective dielectric
constant εef, whose dependence on the electrical field is characterized by a curve with
maxim, as shown in Fig. 9.34D (that reminds the maxims of instantaneous values of ε
in Fig. 9.32B).

In area 1 of εef(E) dependence (in a relatively small electrical field), the nonli-

nearity is practically absent because field strength is not adequate to cause domain

orientation, and permittivity (εstart) is defined only by Pind. In area 2 of εef(E) depen-
dence, permittivity increases rapidly because of domain orientation: polarization Por
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is added to Pind. In the strong field, when almost all domains participate in polari-

zation, dependence εef(E) shows maxim (εmax in area 3). In case of further increase

in field, in the area 4, effective permittivity reduces because the contribution of Por

no longer increases, although field strength E continues to increase.

In practice, domain nonlinearity is described by coefficient Kef¼εmax/εstart. In
nonlinear (variable) ceramic capacitors, coefficient of effective nonlinearity reaches
20 (in crystals, Kef reaches 100). Effective nonlinearity of variable capacitors can be

applied for frequency multiplication (higher harmonics generation) to improve con-

trast of image in photoluminescent screen and as the limiters of voltage (because

capacity increases sharply with voltage, resistance to alternating current decreases).

In variable capacitors, in addition to effective nonlinearity, the reversible nonli-
nearity is seen (and also can find application in electronics). In this case, permittivity

in alternating field ε� can be controlled by simultaneously applied bias voltage, as

shown in Fig. 9.34F. The bias field “hardly” orients domains and excludes them from

repolarization that results in the ε� reduction and saturation εsat. Nonlinearity coef-

ficient of such dielectric “varactor,” that is, the ratio of primary permittivity εstart to
permittivity of saturation regime Kp¼εstart/εsat usually reaches 10.

Reversible nonlinearity can be applied for capacitor value controlling by bias

field. Effectiveness of such control is increased, if capacitor is included into resonant

circuit. That is why dependence ε�(Ebias) may be used, for example, for amplitude
modulation of the RF signal (Fig. 9.34F). If the modulation characteristic should be

linear, except for controlling variable field, the application of direct electric bias Eb is

necessary, as shown in Fig. 9.34E. Reversible nonlinearity, unlike effective nonli-

nearity, can be used in a very wide frequency range, if the voltage of high-frequency

signal is small. In this case, the controlling field results in the ε-anisotropy and polar-
ization saturation. In case of nonpolar (paraelectric) phase, reversible nonlinearity

can be used in the microwave range.

Nonlinearity of paraelectricsmanifests itself as a dependence of permittivity on

electrical bias field, that is, ε(Eb). It is appropriate to remind that paraelectrics have

high permittivity that depends on temperature according to the Curie-Weiss law:

ε(T) � C/(T�θ).
It is pertinent to recall that paraelectrics are ferroelectrics above the Curie point,

as well as similar to the crystals (SrTiO3, KTaO3), which at low temperatures do not

enter into polar phase because of quantum effects. Paraelectrics have no domains;

hence, the high-frequency dielectric losses (caused in ferroelectrics by domains)

in the paraelectrics are relatively small. Therefore, a paraelectric can be used as a

tunable and nonlinear dielectric up to a frequency range of 109–1011Hz.
Permittivity of paraelectrics depends on temperature T and electrical field E [1]:

ε Tð Þ� C

T�θ
; ε Eð Þ� ε Tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 3βε30ε

3 Tð ÞE2
3

r
, (9.34)

where C is the Curie-Weiss constant; θ is the Curie-Weiss temperature, β is the coef-
ficient at term P4 in Landau expansion (see Chapter 10).
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For further analysis, Eq. (9.34) should be presented in the form of rapidly con-

vergent series:

ε T, Eð Þ� C

T�θ
�K

3

C4E2

T�θð Þ4
2

9
+
2

9
K2 C7E4

T�θð Þ7 ,

whereK¼3βε0
3. From this expression, the temperature coefficient TCε and dielectric

nonlinearity N can be determined:

TCε¼ 1

ε

∂ε

∂T
�� 1

T�θ
+

KC3

T�θð Þ4E
2� K2C6

T�θð Þ7E
4; (9.35)

N¼ 1

ε

∂ε

∂E
��2

3
+

KC3

T�θð Þ3E +
2

3

K2C6

T�θð Þ6E
3: (9.36)

Eqs. (9.35), (9.36) are illustrated graphically in Fig. 9.35.

The value of TCε depends on the electrical field, whereas nonlinearity N depends

on temperature. At certain temperature, a maxim of nonlinearity is observed, which

is of interest in connection with the selection of operating modes of microwave
FIG. 9.35

Nonlinear properties of paraelectric: (A, B) ε depending on temperature and bias field

simultaneously; (C) temperature dependence TCε; (D) nonlinear dependence on

temperature and bias field [4].
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variable capacitors for use in the technical devices. From Eq. (9.36), it is possible to

find field strength Emax at which nonlinearity is the largest:

E2
max ¼

T�θð Þ3
3KC3

:

This parameter characterizes paraelectric “rigidity” and determines the range of

operating voltage. In practice, this voltage needs to be reduced, which is caused

by requirement to improve device reliability (operation voltage must be significantly

lower than electrical breakdown voltage) and to reduce the power of microwave sig-

nal (which results in overheating of nonlinear dielectric).

Owing to low inertia of controlling mode and high resistance to radiation, micro-
wave variable capacitors are quite promising for use as parametric amplifiers, mod-

ulators, microwave signals, phase shifters, and so on. At cryogenic (helium)

temperatures, most promising for application is potassium tantalate because, at

helium temperatures, it has quite low level of dielectric losses, whereas at liquid

nitrogen temperatures, the advisable material for variable capacitors is strontium tita-

nate. At ambient temperatures, the suitable variable capacitors can be prepared from

ferroelectric solid solutions (Sr,Ba)TiO3 and (Sr,Pb)TiO3 in their paraelectric phase.

When ferroelectric materials are used for applications at microwave frequencies,

it is important that the value of permittivity and its temperature dependence would be

minimal with maximal nonlinearity. However, as it is seen from Eq. (9.34), nonli-

nearity is proportional to permittivity in power 3, whereas a field, in which nonlinear-
ity has a maxim, increases with deviation from the Curie-Weiss temperature as

(T�θ)3/2. Therefore, various technical requirements to be applied in microwave

paraelectric varactors (high thermal stability, high nonlinearity, and small losses)

are difficult to reconcile; however, compromise is still possible, if paraelectrics is

used as a thin film.

Nonlinear paraelectric films. Paraelectric microwave elements are usually

made as thin films, deposited on dielectric substrate having high thermal conductiv-

ity (BeO or MgO). Ensuring proper heat dissipation prevents overheating of non-

linear film, in which density of energy can reach large sizes. Different thermal

expansion coefficients of substrate and film give rise to mechanical stresses in a film,

thus resulting in more diffuse dependence of ε(T), whereas film permittivity and

losses decrease. In addition, the operating voltage in case of film reduces, whereas

breakdown voltage increases.

For application in microwave technology, only ferroelectrics of the displacement
type of phase transition are promising materials, and they must be regular solid solu-

tions using above the Curie point. That is, films should be in the paraelectric phase

because at microwaves in the ferroelectric phase dielectric losses show a sharp

increase because of the multidomain structure of ferroelectrics.

Deposited on dielectric substrate with εsub � 10, paraelectric film of 0.1–1-μm
thickness and permittivity ε¼300–1000 can be applied practically without inertia

of controlling. Pectinated interdigital electrodes should be deposited on only one side

of a film. Typical characteristics of film designed for microwave devices are shown
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ParameterΔε/εm for paraelectric BST films in dependence on bias field; permittivity electrical

control is shown in a window.
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in Fig. 9.36. The manageability of paraelectric by bias electrical field corresponds to

the parameterΔε/εm, that is, the bigger theΔε/εm, the higher is the permittivity. Non-

linearity N can be significantly increased with permittivity: N¼ε�1dε/dE�ε3.
Generally, the thinner the paraelectric film, the lower is the permittivity and

dielectric losses, but ratio ofΔε/εm reduces. Dielectric losses of films are much smal-

ler than losses of bulk samples made of the same nonlinear composition. Studies have

shown that solid solution (Sr,Pb)TiO3¼SPT appears most suitable to use in the

microwave range. Both components (SrTiO3 and PbTiO3) are characterized by rel-

atively low damage of soft phonons and therefore give relatively small contribution

to microwave losses.
9.11 DIFFERENT EFFECTS INTERDEPENDENCE IN POLAR
CRYSTALS
Most active dielectrics belong either to polar crystals (pyroelectrics, ferroelectrics,
and piezoelectrics) or to partially ordered polar systems (liquid crystals, electrets,

polar polymers, and so on). That is why any physical hypothesis relevant to the

nature of intrinsic polarity (which is not caused by an external electrical field)

deserves particular attention. This “hidden polarity” is the only phenomenon that

can cause the electrical (vector) response onto nonelectrical impact on a matter.

Impact can be scalar (i.e., zero-rank tensor) or it can be vector (first-rank tensor)

or even second-rank tensors. For all these reasons, this section is devoted to the con-

ception of spontaneous polarization [15–18].
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The cause of noncentrosymmetry in crystals. If the simplest structures formed by

polar molecules (of HCl type) and polar radicals (of NH4 type) would be ignored,

but only atomic and ionic dielectrics will be considered, the polar structures are

inherent to the crystals with hybrid ionic-covalent bonds. Exactly, this specificity
causes the symmetry reduction in the crystals; hence, most of them belong to the non-

centrosymmetric classes of symmetry.

Crystals with purely ionic bonds and those with purely covalent bonds are elec-
trically nonsensitive to nonelectric impacts (they are nonpolar crystals). Mostly, they

belong to the centrosymmetric classes of symmetry. As a rule, in pure ionic crystals,
the highest symmetry exists, and they have no special orientations in their atomic

connections. In the same way, in simple covalent crystals, each atom provides

one unpaired electron, but the formal charge of atom remains unchanged; hence

atomic bonds have a balanced electronic pair. That is why they also have, as a rule,

the centrosymmetric structure.

It might be supposed that the primary cause of internal polarity existence is the

asymmetry in distribution of electronic density along atomic bonds. Such asymmetry

is caused by considerable distinction in electronegativity of their atoms. It is appro-

priate to recall that electronegativity is a physical property that describes the ten-

dency of an atom to attract electrons; it depends on the atomic number and the

size and structure of outer electronic orbitals. In the structure of atom, an attraction

that outer electrons feel from particular nucleus depends on the number of protons in

a nucleus, the distance of outward orbital from nucleus, and the amount of screening

from the inner electrons. The higher the atomic electronegativity, the stronger the

atoms attract electrons toward themselves.

For the reasons listed, in various atoms, the difference in electronegativity might

be very substantial. Hereby, the atom with higher electronegativity attracts conjunc-
tive electrons more strongly, and therefore its true charge becomes more negative.

Conversely, the atom with lower electronegativity acquires increased positive

charge. Together, these atoms can create the polar bond and contribute to the non-

centrosymmetric structure.

In the molecules, perceptible difference in the electronegativities of atoms gives

rise to their interior polarity, for example, the dipole moments are created (such as in
HCl or H2O). However, in the crystals, a significant difference in the electronega-

tivities of atoms results in directional polar structural motives and produces noncen-
trosymmetric structures.

Recall that out of 32 classes of crystals, 11 are centrosymmetric classes and 21 are

noncentrosymmetric classes. However, only in the 20 of noncentral classes, odd elec-
tromechanical effect (piezoelectricity) becomes apparent: x¼dE (strain x is propor-
tional to the applied field E, whereas d is piezoelectric module). Furthermore, out of

20 piezoelectric classes of crystals, 10 classes belong to the pyroelectrics (they have

peculiar polar axis), whereas other 10 noncentral classes would be referred to as

“true” (or “actual”) piezoelectrics; one can come to the conclusion that they have

the polar-neutral axes. This means that along any of such axis, polarity can be con-

vincingly manifested, but on the whole (considering the joint action of all axes), the

crystal turns out to be polar neutral.

https://en.wikipedia.org/wiki/Chemical_property
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Atomic_number
https://en.wikipedia.org/wiki/Valence_electrons
https://en.wikipedia.org/wiki/Valence_electrons
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Next, these crystals will be considered, as well as the question: what can be the

microscopic explanation of piezoelectricity in case of noncentrosymmetric but non-

pyroelectric crystal?

Intrinsic polarity modeling. Generally, the unique properties of some polar crys-

tals are described by the conception of spontaneous polarization, PS. If there really is

a spontaneous polarization, it would be accompanied by the “internal field.” In this

connection, contemporary theoretical works doubt in uniqueness of the concept PS

conception [19] because experimentally only the change in polarization can be mea-

sured: by the pyroelectric effect and by means of “polarization switching” in

ferroelectrics.

The model discussed later, based on the asymmetry in the distribution of elec-

tronic density along atomic bonds, is free from assumption of internal field existence.

Asymmetric atomic bond does not result in any internal field in a crystal but can pro-

vide specific response to external impact. That is why it is possible to interpret the

“PS” as responsiveness of a crystal for electrical reaction on uniform thermal,

mechanical, or irradiation impact (which is impossible for centrosymmetric

crystals).

For example, in case of uniform but directed mechanical influence onto a polar

(or polar-neutral) crystal, the electrical response arises (i.e., piezoelectric effect). The

point is that reciprocal displacement of atoms compresses or stretches their asymmet-

ric bonds, and by this way, it induces associated electrical charges on crystal surface

(i.e., produces piezoelectric polarization). On the contrary, the hydrostatic (nondir-
ected) pressure cannot produce the piezoelectric effect in the polar-neutral (“actual”)

piezoelectric crystal, but in the polar (pyroelectric) crystal, the volumetric piezoelec-

tric effect arises [16].

If atomic bonds in crystal are symmetric (nonpolar), then no electrical response is

possible to any uniformmechanical perturbation. It should be noted that this is not in

regard to heterogeneous mechanical impact, when electrical response occurs in any
crystalline dielectric—flexoelectricity. By the same way, the heterogeneous temper-

ature influence induces in any piezoelectric (even in polar-neutral crystal) something

such as “pyroelectric effect”—actinoelectricity. The point is that any nonuniform

impact changes the structure of atomic bonds in a crystal, thus converting crystal into

an asymmetric state. For example, electrical field induces polar axis in any solid

dielectric: atomic bonds forcedly acquire the asymmetry so that any dielectric dem-

onstrates electrically induced piezoelectric and pyroelectric properties (magnitude of

these effects is strongly dependent on dielectric permittivity).

The noncentrosymmetric allocation of electrical charges in polar crystals can be

described by different structural polar motives such as the imaginary dipole (i.e.,

unidirectional atomic bond), the imaginary sextuple (i.e., two-dimensional formation

of asymmetric bonds in a plane), or the imaginary octuple (i.e., three-dimensional

asymmetric atomic connections in a volume).

Such modeling of electrical charge allocation is quite common in the case of

description onmolecule properties, for instance, to describe the Van derWaals bond-

ing by the fluctuating polar structures in electronic shells (dipoles, sextuples, and



FIG. 9.37

Simplified representation of intrinsic polarity in noncentrosymmetric crystals: (A) dipole

moment; (B) sextuple moment, (C) octuple moment [17].
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octuples). In case of polar and polar-neutral crystals, such modeling of their proper-

ties can be applied to the crystals with asymmetric hybrid ionic-covalent bonds in the

one-, two-, and three-dimensional intrinsic polarities of crystals possessing multidir-

ectional structural motives, and this will be used further to describe various proper-

ties of active dielectrics.

The simplest case is the dipole-type structural polar motive (Fig. 9.37A) that cor-
responds to the so-called spontaneous polarization in crystal. This generally known

conception of PSmight be used only as a way to quantify the response of polar crystal

onto homogeneous dynamic influence: changing in time uniform heating (or cooling)
that leads to the pyroelectric effect; changing in time uniform compression (or

stretching) of crystal (including hydrostatic influence) that gives rise to the piezo-

electric effect.

Physical property that usually is expressed by the conception of spontaneous

polarization might be represented in the macroscopic way by polar vector, which
is considered as being “built-in crystal structure” and corresponds to polar first-rank

tensor. Exactly this “intrinsic polarization” results in the vector-type reaction to any
external scalar impact on a crystal. For example, it leads to volumetric piezoelectric
effect in case of all-round (hydrostatic) pressure dynamic influence and to pyroelec-

tric effect in case of uniform dynamic heating or cooling. Applying rather strong

alternating electrical field might result in polarization switching (only in ferroelec-

trics). Crystals, possessing the so-called spontaneous polarization (i.e., dipole-type

hidden intrinsic polarity), belong to 10 pyroelectric classes of symmetry (ferroelec-

trics are the sub-class of pyroelectrics).

However, many other polar crystals are not pyroelectrics, but they belong to the

so-called actual piezoelectrics. In this case, asymmetric allocation of bonded electri-

cal charges needs more complicated modeling than discussed simple dipole-type
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structural motive. In such “actual” piezoelectrics, intrinsic polarity can be repre-

sented by imaginary sextuple (in plane) or by imaginary octuple (in volume): they

correspond to second- and third-rank tensors, respectively. As seen from

Fig. 9.37B and C, these high-rank intrinsic electrical moments are totally compen-
sated (in contrast to dipole structural motive).

In both these cases, any arbitrary scalar action (e.g., hydrostatic pressure or uni-

form heating) cannot “awake” in such crystals any vector response. Only the vector

or tensor types outside actions, such as mechanical stress Xij (second-rank tensor) or

temperature gradient (vector grad T), are capable of provoking this hidden intrinsic

polarity to produce vector response (i.e., to induce connected (polarization) charges

on the surface of the crystal or to generate electrical current, if crystal has electrodes

closed onto resistor).

The modeling of intrinsic (or “latent,” or “hidden”) polarity shown later signifies

the ability of low-symmetric crystal to produce specific responses to a variety of

external influences, but they obviously must be variable in time. If the external influ-
ence (mechanical, thermal, and optical) is not changing in time, no electrical

response is possible to observe. This property of polarization is generally only when

the affecting factors (field, pressure, heat, light, and so on) are changing in time. If
the impact, after being applied (or changed), remains constant, polarization does not

manifest itself—unlike conductivity that exists all the time of external factor dura-

tion (fields, illumination, radiation, and heat gradient).

Experimental illustrations. There is much experimental evidence of spontane-

ous polarization (PS ¼Mi) manifestations in pyroelectrics and ferroelectrics; hence,

this is a matter of common knowledge. However, in the piezoelectrics that are not
pyroelectrics, the existence of hidden polarity (capability to produce electrical

response onto homogeneous nonelectric impact) needs some experimental

grounds [18].

As a rule, experimental possibilities are limited only by the electrical measure-

ments that can be seen as the vector responses (voltage or current). Not surprisingly,

compensated intrinsic polarity was not detected. However, there is some qualitative

evidence of the latent polarity of noncentral crystals.

For instance, the etching of quartz crystal occurs more rapidly on the “positive”

side of polar X-axis, whereas rate of etching is very slow on its “negative” side.

Therefore, the etch figures for quartz samples are very different for “+” and “�” sur-

faces [6]. In only the same way in the cubic but polar GaAs crystal, a considerable

distinction in the chemical properties between two surfaces of the (111)-cut plates is
seen, which should be considered during electrode deposition.

Next, during the crystallization process, the density of piezoelectric crystal

decreases in comparison to its melt. For example, growing GaAs crystal can swim

in its melt (as ice in water). It may be deduced that polar bond formation expands the

noncentrosymmetric crystal. Moreover, temperature dependence of thermal expan-
sion coefficient α of any piezoelectric passes through zero with a temperature inter-

val of 10–100K instead of showing classic dependence α�T3. It can be attributed to
the assumption that polar bonds in a piezoelectric at low temperatures become more

ordered.
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Moreover, heat diffusion resistance R in all noncentrosymmetric crystals far

exceeds R of the centrosymmetric crystals. Increased thermal resistance in the pie-

zoelectrics is conditioned by the peculiarities of the phonon dissipation process in

these crystals (binding of acoustical and optical phonons). In addition, the fundamen-

tal (lattice) microwave absorption of polar crystals is vastly superior to the absorp-

tion of centrosymmetric crystals. Dielectric losses bymicrowaves show an additional

maxim of the quasi-Debye type absorption owing to interaction between optical and

acoustical phonons [4].

Moreover, the affinity pyroelectricity and piezoelectricity is demonstrated by the

polymorphism of43m (piezoelectric) and 6mm (pyroelectric) structures. The zinc sul-

fide crystal is the best example of piezoelectric and pyroelectric affinity: interatomic

interaction provides some relatively stable configuration of the ZnS crystal (zinc

blend), in which both structures (sphalerite and wurtzite) can coexist.

In case of sphalerite, the piezoelectric intrinsic polar structure of ZnS can be

described by the octuple electrical moment, and this simulation might be success-

fully represented by four threefold polar axes of [111]-type direction that are crossed

at an angle of 109.5°, as shown in Fig. 9.38A. Such intrinsic three-dimensional polar

structure is absolutely self-compensated.

However, the second principal structure of ZnS is the pyroelectric wurtzite,

which includes not only octuple-type polar axes but also a dipole component, as

shown in Fig. 9.38B. In spite of difference in symmetries, distinction between atomic

displacements in two principal forms of zinc blend is quite small that these structures

can alternate each other in one crystal. Therefore, there is no big qualitative differ-

ence between pyroelectric and piezoelectric intrinsic polarities.

Of the 10 pyroelectric classes of crystals, the dominating structural motive is the

intrinsic dipolemotive. The first-rank material tensor (i.e., material vector) describes
FIG. 9.38

Spatial distribution of 3D octuple-type polarity (only a positive direction of axes is shown):

(A) total compensation of polarity; (B) appearance of dipole component that is equivalent

to spontaneous polarization PS [16].



FIG. 9.39

Latent polarity for 1D model: (A) pyroelectric coefficient indicatory surface; (B) internal

polarity (firm line) and pyrocoefficient (dotted line) temperature dependence.
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the distribution of pyroelectric response in a crystal. Appropriate indicatory surface

(indicatrix) consists of two spheres, as shown in Fig. 9.39A.

These spheres are located above and below the symmetry plane m, being char-

acterized by the equation γ(φ)¼γmax cos φ. It is evident that spatial distribution of

pyroelectric coefficient corresponds to 1D intrinsic polarity (which is traditionally

called as spontaneous polarization: P¼Pmax cos θ). The upper sphere is the indica-
tory surface for upper orientation of PS, whereas the bottom sphere only means the

change in sign of the pyrocoefficient γi, if spontaneous polarization would have the

opposite direction.

Material vector γ reaches its maxim in the direction of ordinate that coincides

with internal polarity. Hence, the γmax might be measured in the cut of crystal made

perpendicular to peculiar polar axis. Angle φ is the angle between the ordinate axis

and the slanting crystal’s cut where the pyroelectric effect is studied.

It should be also mentioned that the energy of dipole-to-dipole interaction com-

paratively weakly decreases with distance: namely, as�r�2. Such a far range has an

influence on the intrinsic polarity temperature dependence (when chaotic movement

aspires to destroy internal ordering). It is notable that 1D ordering is relatively stable;

hence, it is capable of strongly withstanding the inescapable disorientation of thermal

fluctuations. That is why common pyroelectric canmaintain its internal polarity up to

crystal melting. However, if the 3D thermal disordering can overcome the internal

ordering steadiness in polar 1D system (this is the case of ferroelectricity, as shown in

Fig. 9.39B), its collapse happens very fast (critically) and this gives rise to phase tran-

sition into the nonpolar phase, when polarization temperature dependence follows

Landau law P(T)¼Pmax(Θ�T)1/2, that is, with critical index “0.5.”

Some piezoelectrics (nonpyroelectrics!), for instance, quartz, are characterized

by in-plane situated polar structural motives of intrinsic polarity. Crystals of

quartz-symmetry include berlinite (AlPO4), cinnabar (HgS), tellurium (Te), and

so on.

Spatial distribution of charges that characterize internal polarity in quartz-type

crystals in the polar coordinates can be described as: γ(θ,φ)¼ γmax sin
3 θ cos3φ,

as shown in Fig. 9.40A, where θ is the azimuth angle and φ is the plane angle.



FIG. 9.40

Intrinsic polarity in quartz: (A) indicatory surface; (B) temperature dependence: 1—M1

found in [100]-cut plate in α-phase; 10—M1 found in [110] rod in high-temperature β-phase;
2—artificial pyroelectric coefficient of [100]-thin cut, 3—piezomodule d14 [10].
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Through the radius vector, handled from the center of the figure shown, one can

determine the magnitude of piezosensitivity in any cut of quartz-type crystals. It

is obvious that maxims of this effect are seen along any of three X-type axes. No

piezoelectric effect is possible in the directions of Y and Z axes.

In case of 2D intrinsic polarity correlation, the interaction energy of sextuple

moments decreases with distance much faster than in case of 1D interaction, namely,

as �r�3, as shown in Fig. 9.37B. That is why such kind of intrinsic polarity

(described by polar moment Mij being second-rank tensor) can be destroyed by

3D thermal fluctuations more easily than in case of 1D correlation. It is remarkable

that 2D intrinsic polarity correlation also ceases at quite definite critical temperature;

hence, the crystals with 2D-polarity show phase transition into nonpolar state, as it is

seen from Fig. 9.40B, with the example of quartz.

Themost interesting is that “effective pyrocoefficient γ1” disappears in the vicinity
of α! β phase transition of quartz at the temperature of θ1 ¼ 846K. It is also remark-

able that quite interesting temperature dependence is observed for any of the compo-
nents of intrinsic polarity P[100]¼ΔP1. Calculated from γ1(T) dependence, the

intrinsic polarity ΔP1¼
Ð
γ1dT decreases with temperature linearly: ΔP1� (θ�T),

that is, with Landau critical index “1.” Previously, such linear temperature depen-

dence of spontaneous polarization was observed only in the improper ferroelectrics.

It should be noted that other piezoelectrics of quartz symmetry (SiO2 and AlPO4)

also show additional to α! β phase transition second high-temperature transition,

namely, β ! γ. In their β phase, quartz and berlinite are also piezoelectrics, but with
intrinsic polarity described by the octuple. The highest-temperature γ-phase in these
crystals is nonpolar.

Other piezoelectrics (also called nonpyroelectrics), for instance, gallium arse-

nide, or KH2PO4 (KDP in its paraelectric phase), are characterized by the dominat-

ing volume-situated polar structural motive of intrinsic polarity; typical for octuple
(3D), the electrical moment is shown in Fig. 9.37C, which corresponds to the third-



FIG. 9.41

Intrinsic polarity in the paraelectric phase of the KDP crystal: (A) indicatory surface;

(B) partially clamped crystal temperature investigation: 1—octuple moment jM j� (θ�T)2;

2—effective pyroelectric coefficient; 3—permittivity ε1 at microwaves [15].
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rank material tensor. Spatial distribution of octuple moment is seen in Fig. 9.41A,

and can be described as P111¼Pmax sin θ sin2θ cos2φ.
Well-known ferroelectrics of the KDP type (as well as antiferroelectrics of the

ADP type) in their paraelectric phase belong to the polar-neutral crystals, and at

room temperature, they are only “actual” piezoelectrics. The intrinsic (hidden and

compensated) polarity is arranged like the electrical moment of the 3D octuple type.

It decreases with distance very fast (as r�4), and this testifies the weak stability of the

corresponding polar bonding. Fig. 9.41B shows some properties of the KDP crystal

above its ferroelectric phase transition, where KDP is only a piezoelectric of 422

class of symmetry (below 150K, it becomes ferroelectric). It is seen that internal

polarity quite gradually disappears by the law P� (θ�T)2, that is, with critical index
“2.”

It is found that crystals of KDP type in their paraelectric phase also have (similar

to quartz) high-temperature phase transition, where their polar-neutral 422 crystal

symmetry group changes its symmetry to nonpolar group. Microwave measurements

show a slow decrease in polar moment with temperature; the permittivity ε1 drops at
temperature of θ¼483K, above which the high-temperature phase transition is seen.

The conception of intrinsic octuple moment can be further applied for many other

“actual” piezoelectrics. For instance, in the crystals of 23 cubic class of symmetry

main polar directions correspond to four threefold axes. Fig. 9.42 shows temperature

dependence of intrinsic polarity P[11] for GaAs and GaP in comparison with compo-

nent P[100] of quartz intrinsic polarity.

In all studied piezoelectrics, their intrinsic polarity decreases while temperature

increases. In the quartz crystal, this polarity disappears with temperature during

α ! β transition. It is supposed that in the AIIIBV crystals, their P111 intrinsic polarity

also disappears, but at the melting temperature. It is obvious that in the melt, no firm

polar bolds can be settled. However, during crystallization, the AIIIBV crystals are



FIG. 9.42

Temperature dependencies of internal polarity component ΔP111 in GaAs and GaP crystals,

in comparison to polarity component ΔP100 of SiO2 (α-quartz) crystal.

594 CHAPTER 9 Polar dielectrics in electronics
widened because of polar bond formation; hence, the density of crystal becomes less

than the density of a melt. While forming, the polar bonds swell up the crystal

structure.

It is interesting to notice that effective (artificial) pyrocoefficient γ111 (obtained in
partially clamped crystal) is rather big in case of the sillenite type crystals. Some of

them such as Bi12GeO20 and Bi12SiO20 are widely used in electronics industry.

Among them, it is possible to find effective pyroelectric coefficients up to

100 μC/m2.K.

Therefore, the physical nature of mechanoelectrical and thermoelectrical

responses of noncentrosymmetric crystals (active dielectrics) is related. Their pecu-

liar properties might be described by a substantial difference in the electronegativity

of their atoms, which results in a complicated spatial distribution of their sensitivity

to external influences on the crystal.

The pure ionic and pure covalent crystals are defined by their centrosymmetric

structure, and they do not show piezoelectric or pyroelectric effects. On the contrary,

noncentrosymmetric structures are the demonstration of mixed ionic-covalent bonds
of their atoms. These bonds are exactly directional and therefore such structures

result in different manifestations of asymmetry and complexity of the polar crystal

structure. Although polar crystal formation from charged ions (initially, from liquid

or vapor state of the material), noncentrosymmetric structures are formed spontane-

ously. This peculiarity can be described by a combination of electrically active con-

struction of ions that leads to electrical moments, describable by tensors of

different ranks.

Temperature steadiness of intracrystalline polar moment can be described by the

critical law M� (θ�T)n: it means that a phase transition temperature θ exists, when
electrical momentM disappears with temperature increase. The critical parameter is

n¼1, if all components of intrinsic polarity are arranged in a plane (two-dimensional

case, 2D). In the event of spatial (3D) arrangement of the latent polarity, exponent is

n¼2. This differs essentially from 1D “spontaneous polarization” of ferroelectrics,

which shows PS(T) critical law with n¼0.5 (Landau’s critical index).
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9.12 SUMMARY
1. Polar (or active, or functional, or controlled, or smart) dielectrics may

efficiently react to the changes in temperature, pressure, mechanical stress,

electrical and magnetic fields, and light illumination. Polar dielectrics are

classified as pyroelectrics, ferroelectrics, piezoelectrics, electrets,

paraelectrics, optically active materials, and others. Polar dielectrics can be

defined as materials that enable to directly convert energy and transform

information. Indeed, a piezoelectric material converts electrical energy to

mechanical energy (and vice versa); a pyroelectric material is a thermoelectric

(and therefore electrothermal) power converter; nonlinear dielectrics enable to

transform the frequency of signal and to perform modulation and detection

(i.e., conversion of information). These transformative functions are due to the

peculiar physical structure and chemical composition of certain dielectrics.

2. Piezoelectric can convert mechanical energy into electrical energy or vice

versa (electrical energy into mechanical energy). Originally, the

mechanoelectric effect was discovered first, and for this reason, it is called as

“direct” piezoelectric effect; afterwards, the “inverse” (electromechanical)

effect was detected. Piezoelectric effect is the odd (linear) effect, at which

mechanically induced polarization is directly proportional to strain (and, vice

versa, induced by electrical field strain is directly proportional to electrical

field). Piezoelectric effect is observed only in the noncentrosymmetric crystals

and textures.

3. Piezoelectric effect can be described by piezoelectric module, which is the

third-rank tensor. Mathematical relationships that define piezoelectric effect

depend on a combination of various boundary (limiting) conditions, under

which piezoelectricity is used or studied. Mechanical boundary conditions

mean the possibility of deformation (if the crystal is free) or deformation

inability (when the crystal is clamped). Boundary electrical conditions are as

follows: crystals can be short circuit or open circuit.
4. Mechanical property (elasticity) and electrical property (polarization) of

piezoelectric crystals are interrelated, and therefore they can be considered

together. Their relationship is characterized by the electromechanical coupling
coefficient KEM—one of the most important parameters of piezoelectric

materials and devices. In the case of direct piezoelectric effect imparted to a

piezoelectric, mechanical energy not only is spent on its elastic deformation

but also creates electrical polarization that causes electrical energy

accumulation. Conversely, supplied to piezoelectric, electrical energy (in case

of the inverse piezoelectric effect) is spent not only for its polarization but

also for its elastic deformation and elastic energy accumulation.

5. The square of electromechanical coupling coefficient KEM
2 shows what part

of energy, attached to a piezoelectric, is converted into the energy of other

kind. However, this parameter is not a performance factor: first, because

the losses of electrical or mechanical power are not considered, and second,

the actual conversion efficiency of piezoelectric depends not only on the KEM

but also largely on the shape, orientation, and other peculiarities of the

piezoelectric element.
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6. Manifestation and parameters of piezoelectric effect can be controlled by bias
electrical field: for example, piezoelectric filter characteristics can be

changed, as well as surface acoustic wave parameters. Electrical controlling

by piezoelectric properties is most manifested in dielectrics with high

permittivity.

7. Electrostriction is observed in all dielectrics as the even effect, when
deformation of dielectric caused by electrical field is proportional to the

square of field strength. Thus the sign of strain during electrostriction does not

change with field sign alteration. From piezoelectric effect, electrostriction

differs by its unidirectionality, that is, the effect of electrostriction is

exceptionally an electromechanical, but not “mechanoelectrical,” effect.

8. Piezoelectric effect can be induced by electrical field in any solid dielectric

(in the form of “linearized electrostriction”); the efficiency of electrically

induced piezoelectric effect in diffused phase transition ferroelectrics may

even exceed the efficiency of the best piezoelectric material.

9. Pyroelectric effect and piezoelectric effect can be considered as solid-state

energy converter. However, if piezoelectricity is associated with

electromechanical conversion, the pyroelectricity appears to be thermoelectric
power conversion. Such transformation of energy by a solid is possible, if

dielectric (crystal, polycrystal, or polymer) is polarized; as a rule, if it has

spontaneous polarization, thermoelectric power conversion is defined as the

pyroelectric effect, whereas inverse electrothermal energy conversion is

the electrocaloric effect.
10. Pyroelectricity is characterized by primary and secondary effects. Primary

effect is caused by temperature change in spontaneous polarization of

polar crystals. Secondary effect is piezotransformed thermal deformation of

crystal. It should be noted that similar effects can be artificially induced in

all solid dielectrics, if they are to undergo a strong electrical field. Hidden

(or latent) intrinsic polarity in pyroelectric is only the ability to provide

electrical (vector) response to any nonelectrical scalar dynamic

impact—uniform change of temperature or hydrostatic pressure.

11. Research and application of dielectrics is commonly held under the adiabatic
conditions, when at the time of voltage change the thermal equilibrium
between dielectric and surrounding environment does not succeed in

establishing itself; hence, the entropy is not changed: δS¼0. Therefore

from experiments, the adiabatic dielectric permittivity εS is measured. In
dielectrics whose polarization depends on temperature (ferroelectrics,

pyroelectrics, and others), another—isothermal—the process of polarization

might be important, when δT¼0 and dielectric permittivity is isothermal: εT.
Analytical determination of εT and εS relationship might be important to

explain ε frequency dependence in the range of subsonic frequencies and in

some theoretical calculations. Isothermal dielectric permittivity is always

greater than adiabatic: εT>εS. As a rule, this difference is small and can be

neglected. However, in pyroelectrics, and, especially, in the vicinity of

ferroelectric phase transition, the difference between εT and εS can reach

10%–50%; hence, it should be considered.
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12. The electrets are dielectrics that maintain for a long time their polarized state

owing to the residual polarization. Electrets are able to create direct electrical
field in the surrounding space. Existence of quasipermanent polarization

(electret state) is described by two types of localized charges in the insulator—

heterocharge and homocharge.

13. The heterocharge creates electrical polarization in the volume of dielectric

due to the “frozen” migratory polarization (orientation of macro-dipoles, or

space charge accumulation, and so on). In this case, negative charge is

concentrated near the anode, whereas positive charge is located at the cathode,

so that residual electrical field has an opposite direction to the

polarization field.

14. The homocharge in the electrets is the result of injection of charge carriers into
a dielectric or due to irradiation of dielectric by electronic beam. Then this

charge localizes in the traps with corresponding energy levels located in the

band gap of dielectric. In case of bonded negative charge, it is located near

the cathode, whereas near the anode, the related positive charge is settled;

the resulting field in electrets has a direction same as that of the

polarization field.

15. Generally, to receive quasipermanent polarization in dielectric, it should be

placed in a strong electrical field and subjected to additional physical
treatments that reduce the relaxation time of dipoles (or accelerates the

migration of charged particles). However, electret state may be created without

application to dielectric electrical field, for example, due to mechanical

deformation (mechanoelectrets) by charging of dielectric in corona discharge,
or under discharge plasma (electroelectrets), as well as owing to electrification
by friction (triboelectrets), and so on.

16. Method of thermally stimulated depolarization, also called as thermoelectrets

analysis or thermally stimulated current (TSC-spectroscopy), is based on

the detection of weak currents arising at the process of thermal destruction

of created polarization, previously induced in dielectric by a strong direct

electrical field. This method utilizes the property of dielectrics to store and

maintain for a long time residual polarized state that exists in electrets. During
TSC study, the dependence of depolarization current against temperature is

usually recorded. The investigation of temperature-stimulated electrical

currents is one of the widely used methods of determination of electronic local

energy levels in solids.

17. Paraelectrics are crystals with peculiar temperature dependence of dielectric

constant that is described by the Curie-Weiss law: ε(T)¼ε1+C/(T � θ).
In most of these crystals at a certain temperature called the critical
temperature (T¼TC), the phase transition to ferroelectric or antiferroelectric

state occurs. Thus, the properties of paraelectrics are closely related to

those of ferroelectrics.

18. Similar to ferroelectrics, paraelectrics can be divided into two basic classes.

Paraelectrics of the order-disorder type are polar (dipole-type) crystals.

With temperature decrease, owing to dipole-dipole interaction, a gradual

ordering of dipole orientations takes place, until, finally, below the Curie

http://en.wikipedia.org/wiki/Spectroscopy


598 CHAPTER 9 Polar dielectrics in electronics
temperature TC, spontaneous polarization arises, at which most dipoles are

already ordered. Order-disorder paraelectrics above their phase transition are

characterized by rather steep dependence of ε(T): their Curie-Weiss

constant is relatively small (C � 103K), whereas paraelectric-ferroelectric

transition usually has a second-order type.

19. The other type (displacement type) of paraelectrics are those that are ionic

crystals, in which the covalent bonding of atoms is very important. In this case,

temperature dependence of permittivity appears more flat: C � 105K, and

phase transition to ferroelectric (or antiferroelectric) state occurs at

temperature TC>θ, having a pattern of the first-order type transition. To

describe the properties of these paraelectrics, a dynamic theory of lattice

vibrations and the model of “soft phonon mode” should be applied.

20. Thermally stable high-permittivity dielectrics are important components of

microwave electronics based on such displacement-type paraelectrics,

which never acquire a polar structure. The reason for the high permittivity is

low-frequency “soft lattice mode,” whereas increased thermal stability is

obtained due to suppression ε(T) critical change by paramagnetism. Low

microwave losses can be obtained only in the monophase composition.

21. The dominating mechanism of losses in high-ε microwave dielectrics occurs

due to the existence of polar phase. In case of polar bonds between atoms,

their atomic potential manifests pronounced anharmonicity, which is the main

microscopic channel to transfer electrical energy into heat. In the dynamic

theory, anharmonic potential is described by a coupling between optical

phonons and acoustical phonons. With increase in temperature and,

consequently, with increase in amplitudes of atom vibration, manifestation

of anharmonicity becomes more noticeable, and losses increase.

Consequently, during elaboration of microwave dielectrics, any polar

(noncentrosymmetric) component in their composition should be avoided.

22. Ferroelectrics are characterized by spontaneous polarization, whose

direction can be changed by an externally applied electrical field. Except

ferroelectrics, the steady polarization is inherent to electrets as well as to

pyroelectric crystals. But in contrast to nonequilibrium residual polarization of
electrets, in pyroelectrics, internal polarization is in a thermodynamically

stable state. Ferroelectric differs from pyroelectric by its ability to repolarize:

switching of spontaneous polarization in the external electrical field

(dielectric hysteresis). Additionally, ferroelectrics may be defined as

ferroelectric is a pyroelectric that divides on domains.

23. Ferroelectrics are characterized by strongly expressed nonlinear properties.
At audio and radio frequencies, nonlinear ferroelectric capacitors (variable
capacitors) allow the modulation of signals and generation of higher

harmonics. At microwave frequencies, a thin film of displacement-type

ferroelectrics in their paraelectric phase can be used for microwave phase

modulation and for adjustable filters. Optical nonlinearity of ferroelectrics

is applied in the electro-optics and nonlinear optics.

24. By analogy with magnetism (where ferromagnetics, antiferromagnetics,

and ferrimagnetics can exist), not only the ferroelectrics but also
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antiferroelectrics and ferrielectrics are known. Spontaneous polarization of

antiferroelectric is compensated already in a crystal unit cell, whereas in the

ferrielectrics, their antipolarization is not totally compensated. Mechanical

analogs of ferromagnetics and ferroelectrics are the ferroelastics, in which

phase transition occurs owing to spontaneous deformation. Coexistence of
spontaneous deformation and spontaneous polarization is inherent to the

improper ferroelectrics.
25. The nonlinearity of ferroelectric is expressed as hysteresis loop with large

dependence of permittivity on electrical field. Nonlinearity of the effective
permittivity occurs in alternating field, when effective permittivity εef(E)
changes up to 50 times. At reversible nonlinearity (i.e., ε-controlling by

bias electrical field), change in ε can reach up to 10 times. Reversible

nonlinearity can be applied in various microwave devices based on thin

paraelectric films.

26. Spontaneously polarized crystals (pyroelectrics and ferroelectrics) differ

from other piezoelectrics by the one-dimensional ordering (1D), conditional

with their “dipole-type structural motive.” Similarly (and with the same

level of approximation), in the “actual” piezoelectrics (nonpyroelectrics),

the existence of intrinsic (hidden) polarity might be assumed. Investigation of

pyroelectric response in the piezoelectrics with partially limited thermal

deformations enables to experimentally decompensate components of

“sextuple (2D) structural motive” and “octuple (3D) intrinsic polarity” in
the piezoelectric crystals.
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From a phenomenological point of view, phase is defined as a physically and chem-

ically uniform state of matter that has a specific set of properties. After transition to

another phase, the substance remains uniform, but acquires other properties. In

chemistry, well-known phase transitions (PTs) are the aggregate conversions:

“gas , liquid , solid” phases.
However, in many technical applications of solid materials, primary importance

is given to another type of PTs that occur inside the solid state or inside the liquid

state without changing the aggregate state. These conversions take place because of

the interactions of matter’s structural elements: electrons, ions, dipoles, and mole-

cules (or their complexes).

The question is that near PT the structure of a matter is extremely sensitive to any
external influences (thermal, electrical, magnetic, or mechanical); even in case of

minor changes of T, E, H, or X, electrical, magnetic, optical, and other properties

of substance demonstrate considerable variations. This unusually high sensitivity

near the PT even to weak external influences is used in many devices and equipment

of electronics and instrumentation [1].

Usually, in the event of a change in external conditions, main electrical properties

of crystals (conductivity, permittivity, permeability, optical activity, and others)

change smoothly. However, near the PT these parameters vary essentially, even

by a jump, sometimes, in several orders of magnitude. This means significant mod-

ification in the crystal properties [2].

Provoked by external influence, PTs in the magnets, metals, dielectrics, and semi-

conductors are accompanied by substantial restructuring of material subsystems:

electronic, phonon, dipole, magnetic, or others. This restructuring is obviously

accompanied by a change in crystal symmetry in the vicinity of PT. For instance,
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in the polymers different PTs are determined by the peculiarities of their intermole-

cular interactions: vitrifying, orientation melting, crystallization, and so on. Another

example is the liquid crystals (LCs), where PTs are conditioned by the appearance (or

change) of linear, planar, or helical ordering of anisometric molecules.

When microscopic characteristics of any PT are discussed, a regulating
(ordering) parameter η should be considered. In crystals, it is the measure of struc-

tural deviation from the state of highest symmetry. Depending on what kind of

microscopic interactions causes PT and what changes of structure take place, the

ordering parameter η acquires different physical meanings. For example, in ferro-

electrics the ordering parameter may correspond to the degree of electrical dipole

regularity, in the ferromagnetics parameter η describes the ordering in the system

of magnetic moments (spins), and so on. The ordering parameter may also have

broader content; for example, in case of PT with the aggregate conversion parameter

η characterizes the degree of regularity in a mutual arrangement of atoms or

molecules [3].
10.1 PHASE TRANSITIONS OF FIRST AND SECOND ORDERS
Despite the wide variety of PTs in different materials, it is possible to introduce some

general criteria for their classification. According to P. Ehrenfest’s theory, this clas-
sification is based on thermodynamic function peculiarities and on their derivatives,

which demonstrate parameters changing in the vicinity of PT. The type of PT is

determined by the lowest nonzero partial derivative from the thermodynamic poten-

tial (Φ). This potential is a specific function of volume V, temperature T, pressure p,
entropy S, and other macroscopic parameters that describe a state of thermodynamic

system and represents substance exposed to PT [4].

The classical examples of the first-order PTs (PT-I) are melting (or crystalliza-

tion) and vaporization (or condensation). If, during PT from one phase to another, the

stepped changing of the entropy S takes place, in which connection heat release (or

absorption) is observed, such a transition, following Ehrenfest’s classification,

belongs to the PT-I.

However, in solid-state physics, the second-order PTs (PT-II) are more typical,

when the second derivatives of thermodynamic potentials show sharp changes. As a

rule, although these transitions occur within one (usually crystalline) state of aggre-

gation, they might have some features of first-order transitions, yet being closer in

their nature to the PT-II.

A comparison of thermodynamic potential in two phases—phase I (Φ1) and phase

II (Φ2)—is shown in Fig. 10.1, simultaneously in the temperature and pressure inter-

vals. At lower temperature, phase II is more stable, because its energy is smaller,

while at higher temperature, for the same reasons phase I stability is higher than that

of phase II.

PT occurs when the energies of phases I and II are equalized—this happens at tem-

perature T0. Therefore when temperature increases, the energy of a system varies along



FIG. 10.1

Thermodynamic potential of crystal passing through phase transition; ΔT is temperature

hysteresis in case of PT-I.
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the line 1–2–3–4–5while at reduced temperature it follows the line 6–7–3–8–9; in fact,
transition can occur in point 3 that corresponds to temperature T0. The dependence of
potential Φ on the pressure p is also shown in Fig. 10.1. Line segment AB denotes the

intersection of two surfaces that meet the same potential of both phases. To the left of

this line, less energy is seen for phase II, because this phase is more stable here. To the

right of line AB, by contrast, more stable (energetically favorable) is phase I.

First-order phase transition (PT-I) suggests the possibilities of overheating and

overcooling. In case of heating transition occurs at temperature T1 (line 1–2–3–
4–7), while in case of cooling transition occurs at temperature T2 (following line

6–7–3–8–2). Thus PT-I is characterized by thermal hysteresis, namely, during cooling,

phase I is converted into phase II not at temperature T¼T0, but at lower temperature

T2, that is, the overcooling of phase I is seen. In the samemanner, while heating, phase

II conversion occurs at temperature T¼T1, which means the overheating of phase II.

The temperature range of hysteresis ΔT¼T1�T2 depends on many factors, particu-

larly, on the speed of temperature change, as well as on the structural imperfections

and on the purity of a substance.

In the vicinity of PT-I, the entropy shows aΔS jump that characterizes the change

in latent heat. In the same manner, a sudden change of the volume ΔV is observed, as

shown in Fig. 10.2A. In the event that PT nature is close to PT-II, the size of these

jumps depends on different crystal properties. The smaller the jumps of ΔS and ΔV,
the closer the nature of transition to second-order transformation (when ΔS!0 and

ΔV!0).

In the event that PT-I occurs, due to jumps in thermodynamic functions, their

derivatives are infinite. The first derivative of entropy is the specific heat Cp, while



FIG. 10.2

Temperature change of thermodynamic parameters in the vicinity of PT-I (a) and PT-II (b).
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the first derivative of volume is the thermal expansion coefficient αp (both param-

eters are determined under constant pressure p):

Cp ¼ T ∂S=∂Tð Þp;αp ¼V�1
∂V=∂Tð Þp: (10.1)

Experimental studies of specific heat Cp(T) temperature dependence and thermal

expansion coefficient αp(T) indicate that near PT-I these parameters have narrow

but large extremes.

PT-II is characterized by such changes in crystal properties, at which thermody-

namic potential, entropy, and volume show uninterrupted change, but their deriva-

tives, in particular Cp and αp, have finite jump (Fig. 10.2B). In the experiments, in

the vicinity of PT-II at critical point (transition point), maximums in temperature

dependences of Cp(T) and αp(T) are observed, but they are not so large, as in the case
of PT-I.

PT division to PT-I and PT-II is confirmed by many experiments, devoted to

study of thermal, electrical, magnetic, and mechanical properties of different

substances. It turns out that a very large jump of entropy, typical for PT-I, is really

observed only during transitions, caused by the aggregation state change

(gas , liquid , crystal).
If phase transformations are observed in experiments occurring with one of con-

densed matter, that is, within only crystalline or only a liquid substance, these PTs,

usually, are only close but not entirely adequate to the mentioned classification. As a

rule, transitions of second order dominate that, however, might have some signs of
first-order transition. During PT-II only the symmetry changes abruptly (as a rule,

symmetry lowers below critical temperature T0), but thermodynamic potentials

change almost continuously (Fig. 10.2B).
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Second-order transitions are gradual and smooth, and they do not show temper-

ature hysteresis and they are not accompanied by discontinuous jump in energy or in

volume of a crystal. However, as a result of this transition, the new physical property

appears as follows: crystal becomes ferroelectric, ferromagnetic, ferroelastic, super-

conductive, and so on [5].

During the investigation of PTs, as in crystals so in LCs, more complex regular-

ities are observed, differing from the ones described in the idealized limiting cases of

PT-I and PT-II. For this reason, Ehrenfest theory offers satisfactory explanation only

for some qualitative features of material properties while a phase transitions.

Thermodynamic theory that quantitatively describes the changes in matter prop-

erties in the vicinity of PT-II (and in the vicinity of some PT-I occurring with low

jump of entropy, i.e., close to PT-II) is the theory of Landau. This theory can be

applied exceptionally to PTs with a change in symmetry, but only for the liquid

or crystalline state of a matter.

According to Landau’s theory, a variable with the temperature ordering param-
eter η is introduced. Depending on the symmetry of a crystal, in one phase (usually—

in the higher temperature phase) the studied system is not ordered and hηi¼0. The

correspondingly ordered phase (at lower temperature) shows hηi 6¼0. According to

Landau, the thermodynamic potential of the system Φ(T,η) can be represented as

series in powers of the parameter on order parameter:

Φ Т , ηð Þ¼Φ0 Тð Þ+Аη +Вη2 +Cη3 +Dη4 +Eη5 +⋯ (10.2)

whereΦ0(T) is the part of free energy that does not depend on η, while coefficients A,
B, … may depend on temperature (for simplicity, pressure is assumed as being

constant) [2].

As any phase exists at the thermodynamic equilibrium, then a minimum of free

energy should exist at the condition: ∂Φ/∂η¼0. Hence, as evidence shows, the coef-

ficient at first degree of η must be equal to zero: ∂Φ/∂η¼A¼ 0. In addition, it is

supposed that the disordered (higher temperature) phase has center of symmetry; that
is why minimum Φ(η) in vicinity η¼0 should be also symmetric, and series Φ(T,η)
should be characterized only by even numbers. Therefore, all coefficients at odd

powers of η in expression (10.2) must be zero. This allows to rewrite expression

(10.2) for thermodynamic potential in a form:

Φ Т , ηð Þ¼Φ0 Тð Þ+ 1

2
αη2 +

1

4
βη4 +

1

6
γη6 +⋯, (10.3)

where α, β, and γ are coefficients of terms of series of thermodynamic potentialΦ(η).
Regarding these, the new designations (α, β, γ instead of B, D, …) are used, while

coefficients ½, ¼, … are introduced solely to facilitate expressions, derived from

differentiation of thermodynamic potential.

Analyzing the expansion in series (10.3), it is possible to arrive at the critical
dependence of α on temperature. In case of transition PT-II terms β and γ temperature

dependence is not critical; therefore, in a simple case, their temperature dependence

might be neglected [2].
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The critical temperature dependence of α could be justified by the next argumen-

tation. Phase transformation occurs at T¼θ; then, from the condition of thermody-

namic potential minimum (∂2Φ/∂η2 ¼ 0) it follows that at lower temperatures (below

θ), that is, in the ordered phase, where η 6¼0, the value of α should be negative: α<0.

Similarly, it might be shown that at higher temperature (in the disordered phase),

where the average ordering parameter η¼0, the value of first coefficient should

be positive: α>0. Hence, parameter α is dependent on temperature, and in the very

point of transition α¼0.

Using Taylor series for α(T) by expansion in powers of (T�θ) in the vicinity of

phase transition and paying attention to small deviation from transition, it is possible

to limit by the first member of this series:

α Tð Þ¼ α0 T�θð Þ, (10.4)

where α0 is independent of temperature coefficient.

According to Landau’s theory, the type of phase transition (PT-I or PT-II) is

determined by the sign of coefficient β at fourth degree of ordering parameter.

If β>0, it is the PT-II. In this case, there is no need to consider coefficient γ at η6

(as well as higher degrees of ordering parameter) because the sustainability of system

is entirely guaranteed by the member 1
4
βη4 in expansion (10.3). Thus thermodynamic

description of PT-II by expansion Φ(T,η) takes polynomial form:

Φ T, ηð Þ¼Φ0 Tð Þ + α=2ð Þη2 + β=4ð Þη4, (10.5)

where α¼α0(T�θ) and β>0.

If β<0, it is the PT-I. At the condition β<0, the sustainability of a system must

be provided by taking into account the next term 1
6
γη6 in expansion (10.3) by the

assumption γ>0. The expansion of thermodynamic potential in this case takes also

polynomial form.

Φ T, ηð Þ¼Φ0 Tð Þ+ α=2ð Þη2 + β=4ð Þη4 + γ=6ð Þη6, (10.6)

where α¼α0(T�θ). Coefficient β also can vary with temperature, but the last coef-
ficient should be positive (γ>0) because this ensures stability of phases.

Owing to polynomial form of free energy presentation, Landau’s theory allows

not only quantitative description of changes of crystal properties near PT, but also

prediction of many physical characteristics. The particular shape of functions

(10.5) and (10.6) depends on physical meaning of the ordering parameter.
10.2 PHYSICAL MEANING OF ORDERING PARAMETER
Similar to other phenomenological parameters, the ordering parameter η may be

regarded as the macroscopic value. It is important to note that the value of this

parameter can fluctuate and change both in space (from point to point) and in time.

The value of η can be represented as generalized consideration of such physical

quantity that shows an abnormal change due to PT (magnetization, polarization,

deformation, and so on).



60710.2 Physical meaning of ordering parameter
Thermal motion in matter significantly affects the degree of its ordering. In case

of temperature reduction, the degree of ordering increases, but the rate of temporary

setting of process (its relaxation) at low temperature slows down (relaxation lies in

thermodynamic equilibrium establishing in a system). Conversely, the higher the

temperature, the faster the setting of any degree of ordering. However, the rate of

ordering with a time is the slowest near the point of PT—this feature is critical slow-
ing down of a process. Relaxation of ordering in this area is very slow, thanks to the
convergence of free energy of both phases.

The system, in which PT happens, can have different degrees of freedom. How-

ever, the only critical degree of freedom is associated with the ordering parameter

that abnormally reveals itself at PT. Other (noncritical) degrees of freedom of system

remain fast enough when equilibrium establishes with a time.

Reflecting the anisotropy of crystal properties, ordering parameter might be the

tensor of appropriate rank. For example, in ferromagnetic the parameter η is the spon-
taneous magnetization vectorM (first-rank tensor); ordering parameter in ferroelec-

trics is the spontaneous polarization vector P, while in ferroelastics η is one of

components of second-rank tensor of mechanical deformation xij. In the simplest

cases, ordering parameter can also be scalar (zero-rank tensor).

As an example of scalar η case, the self-ordered alloy AB will be considered. In

the simplest case it consists of two components: A and B, in which the number of

atoms is same; the well-ordered phase corresponds to structure ABAB… To each

of the components its own sublattice can be attributed. Denote the probability of

A-type atom detection in the A sublattice as PAA, while in the sublattice B it is

PAB. As the ordering parameter, the value η¼PAA – PAB should be selected.

In more complex cases, related to the transitions in crystals, the parameter η
becomes multicomponent (corresponding values and their relationship with crystal

are defined as the Lifshits groups). Then consider such changes in a structure, which

take place during PT-II, limited to simplest models (Strukov). Consider the flat

model of diatomic crystal (Fig. 10.3A) [3]. The point group of symmetry of this

structure contains following elements of symmetry: 1̄ (center of symmetry), 4, 2̄,

2 (axis of symmetry), m1, m2, m3, m4 (planes of symmetry).
a2

a1

m1 m1

m2

m3

a2

a1

m4

(A) (B)

FIG. 10.3

Flat diatomic crystal model and elements of point symmetry (A); symmetry reduction

as a result of relative displacement of sublattice elements of point symmetry (B).
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Suppose that at certain temperature one of sublattice shifts relatively to another in

the direction a1, as shown in Fig. 10.3B. After such small displacement, the symme-

try group of this model will have only two elements of symmetry:1̄ andm. The initial
phase, shown in Fig. 10.3A, is a symmetric one, but the new phase with lower sym-

metry (Fig. 10.3B) is asymmetric.

As a result of the shift, the coordinates of lattice atoms in crystallographic system

are changed as follows:

The coordinates of atoms before shifting:

n1a1, n2a2—for atoms Ο,
(n1+½) a1, n2a2—for atoms •.

The coordinates of the atoms after shifting:

n1a1, n2a2—for atoms Ο,
(n1+½ η) a1, n2a2—for atoms •,

where η is part of a1, on which atoms of “internal” sublattice are shifted. Exactly this

specific parameter of PT is called the ordering parameter, and it is seen that η¼0 for

the symmetric phase and η 6¼0 for the asymmetric phase.

The ordering parameter may vary with temperature rise, as shown in Fig. 10.4.

Continuous change in the ordering parameter with temperature in the ordered

phase is a characteristic feature of PT-II (Fig. 10.4A). On the contrary, the ordering

parameter can be changed by a jump (Fig. 10.4C); this is an ideal case and it corre-

sponds to PT-I.

In many experimental situations, η(T) dependence very often changes by one of

“intermediate” ways, as shown in Fig. 10.4B. In this case, PT is transition of first
order, close to transition of second order. Here the ordering parameter η first changes
with temperature gradually, but then abruptly falls down to the disordered phase [3].

PT of second order can be accompanied by multiplication of the size of crystal

unit cell. Then the volume of unit cell in the low-symmetry phase (more ordered)

increases in 2, 4, and 8 times, as well as the translational symmetry of unit cell also

changes.
FIG. 10.4

Temperature dependence of order parameter for PT-II (A); PT-I close to PT-II (B), and

for PT-I (C).
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Based on the microscopic changes in a structure, PTs are divided into the dis-
placement type and the order-disorder type. As shown in Fig. 10.3, the model of

PT-II is characterized by a fact that in point of PT the displacements of atoms occur,

changing the symmetry of a crystal. Therefore, these transitions are called the PTs of

displacement type.

The regulating parameter for the PT of order-disorder type is described likewise.

The symmetry of crystal can be changed as a result of probability redistribution for

atom location in different states of equilibrium in the unit cell. Suppose that the num-

ber of these states is two, and they are “settled” according to concentrations of atoms

N1 and N2 (numbers of atoms) and their energy positions are 1 and 2, respectively.
At sufficiently high temperatures they are settled evenly; therefore, the probability of

the presence of atom in each position is same: N1¼N2. As the average (in time) stay

of atoms remains at the center of a cell, the symmetry of structure does not change.

When temperature decreases, PT to ordered phase appears described by the dif-
ference of probability of particles to stay in different positions, that is, as difference

between the number of particles in these positions. Below the point of PT parameter

η¼ N1�N2ð Þ= N1 +N2ð Þ
acquires nonzero value. In this case, more natural, parameter η can be called as the

order parameter, than in case of the displacement-type PT. Therefore such structural

transition, at which the symmetry changes as a result of redistribution of particles

between earlier equivalent positions, is called the transition of order-disorder type.

Nevertheless, a clear border between displacement and order-disorder types of

PT cannot be determined. In terms of symmetry, there are no differences between

them: considering the structure, always the average position of atoms is taken into

consideration. Therefore, it does not matter how this averaging is performed: either

by the discrete way or by the continuous way. Regarding some other properties, espe-

cially, dynamics of PT, the displacement type of transition and order-disorder type of

transitions vary considerably.
10.3 PHASE TRANSITIONS WITH ANOMALIES IN DIELECTRIC
PROPERTIES
In case of ferroelectric crystal, higher temperature nonpolar phase crystal becomes

spontaneously polarized lower temperature phase (without application of electrical

field). Thus ferroelectric transitions can be described by PT models of both the sec-

ond and the first order: in various ferroelectric crystals PTs might be quite different.

Currently, the number of known ferroelectrics and related crystals (antiferroelectrics,

ferroelastics, virtual ferroelectrics, improper ferroelectrics) exceeds 600, and taking

into account their solid solutions—5000. Therefore, there is a sense to limit this con-

sideration only by most common phenomena, caused by PT in the ferroelectrics.

According to phenomenological classification, PTs in ferroelectrics are divided

into two major classes: displacement type and order-disorder type. From the
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microscopic point of view, when displacement-type PT occurs, above the transition

temperature (in paraelectric phase) crystal shows structural instability relatively to

one of lattice vibrations modes, called the soft mode. As temperature of paraelectric

phase decreases and approaches to TC, the frequency of this mode reduces, and in the

extreme case goes to nearly zero. As a result, in the point of PT the shift of crystal’s

sublattices occurs, restoring crystal’s dynamic stability. Owing to this shift, the fer-

roelectric phase with the spontaneous polarization PS appears (in antiferroelectrics

mutual shift of sublattices cannot give total polarization) [5].

The feature of order-disorder-type ferroelectrics is peculiar structural elements

of crystal (molecule, radical, group of ions), which can be in two or more equilibrium

positions that can be described by the orientation of dipole moments. In the nonpolar

(high-temperature paraelectric phase), the energy of thermal motion disordering

exceeds the energy dipole-dipole interaction, so that the orientation of dipoles is cha-

otic and total polarization is absent (PS¼0). As temperature decreases, due to dipole-

dipole interactions in the vicinity of PT, the self-ordering of polar structural elements

occurs and, as a result, the spontaneous polarization appears (PS>0). In the antifer-

roelectrics ordered dipoles are directed antiparallel, and, despite their streamlining,

total polarization does not occur (PS¼0). However, not very far from PT, the exter-

nal electrical field may forcibly change antiparallel orientation into the parallel with

the advent of PS>0.

Using Landau theory from the general considerations the Curie-Weiss law can be

obtained that characterizes permittivity temperature changing, as well as theoreti-

cally describing temperature dependence of PS, to clarify dielectric hysteresis loop

appearance and to explain nonlinear properties of ferroelectrics.

In the thermodynamic potential expansions in series of Eqs. (10.5), (10.6) for fer-

roelectric PT, it is common to assume the polarization P as the ordering parameter. In

fact, above Curie point TC ordering parameter η¼0 and polarization P¼0, while

below TC, where η>0, spontaneous polarization appears: P>0 (Fig. 10.4).

Ferroelectrics with PT-II. Considering that electric field can be defined as

derivative ∂Φ/∂P, expression (10.5) can be rewritten as

E¼ αP+ βP3: (10.7)

The inverse dielectric susceptibility ∂P/∂E can be found as

χ�1 ¼ ∂E

∂P
¼ ∂

2Φ

∂P2
¼ α+ 3βP2: (10.8)

It is possible to consider that χ�ε, since ε¼1+χ and permittivity of ferroelectrics is

very large: ε≫1.

First, consider the nonpolar (paraelectric) phase, that is, the temperature range,

in which the first term in Landau polynomial α>0, and the considered temperature

interval is located above critical temperature, T>TC (Fig. 10.5). The conditions of

phase sustainability are

∂Φ

∂P
¼ 0,

∂
2Φ

∂P2
> 0:



FIG. 10.5

Dependences of thermodynamic potential (A) and its derivatives (B, C) on ordering parameter

P above TC.
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The first of these expressions can be reduced to cubic equations αP+βP3 ¼ 0. This

equation can have only one valid root P1¼0: polarization is the ordering parameter

and above TC the high temperature phase is disordered. Naturally, above the Curie

point, spontaneous polarization is absent. Roots P2,3 ¼� ffiffiffiffiffiffiffiffiffiffiffiffi�α=β
p

are imaginary

(since for PT-II parameter β>0, and above TC also α>0).

Next consider temperature dependence of the permittivity above the Curie point
(Fig. 10.6B). Peculiar to the nonpolar phase, the Curie-Weiss law follows from

formulas (10.5) and (10.8):

1

ε
¼ α0 T�θð Þ, ε¼ C

T�θð Þ :

PT occurs at Curie-Weiss temperature, when parameter α changes its sign. There-

fore, in the nonpolar phase, that is, above the Curie point permittivity depends not

only on temperature but also on strength of electrical field. From expressions

(10.7) and (10.8), it follows that above TC, that is, in the paraelectric phase significant
dielectric nonlinearity should be observed (Fig. 10.6C). Dependence P(E) is charac-
terized by saturation area. This means that permittivity in paraelectrics decreases in
a strong electrical field, because ε�∂P/∂E. The general formula that takes

into account both ε-nonlinearity and temperature ε-dependence in the paraelectric

phase is
FIG. 10.6

Temperature dependence of spontaneous polarization (A), inverse permittivity (B), and

dielectric nonlinearity in nonpolar phase (C).
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ε T, Eð Þ¼ C

T�θð Þ 1 + 3βε30E
2 C3

T�θð Þ3
" #� 1

3

: (10.9)

It can be seen that higher the nonlinearity in the nonpolar phase, the closer the tem-

perature to the PT point [6].

In the polar phase, below the Curie point spontaneous polarization appears;

therefore, all roots of cubic equations ∂Φ/∂P¼αP+βP3 ¼ 0 are valid. However,

since α<0 (see formula 10.3), root P1¼0 now corresponds to the maximum of

Φ(P). However, by definition, the polar phase is stable if the value Φ(P) is minimal,

that is, atP2,3 ¼� ffiffiffiffiffiffiffiffiffiffiffiffi�α=β
p

. Substituting α¼α0(T�θ) in this expression, it is possible
to find temperature dependence of spontaneous polarization (Fig. 10.6):

P2
c ¼

α0 θ�Tð Þ
β

: (10.10)

Then, temperature dependence of permittivity can be determined from Eqs. (10.10),

(10.8):

1

ε
¼ 2

θ�Tð Þ
C

; ε¼ C

2 θ�Tð Þ : (10.11)

Thus, thermodynamic theory predicts that below the Curie point, at the same distance

from TC, the value of permittivity is twice smaller than in the paraelectric phase at

T>TC (Fig. 10.6B). This prediction of theory is well confirmed by the experiments.

Further, the nonlinear properties of ferroelectrics in the polar phase will be con-
sidered. The relevant characteristics of this phase—thermodynamic potential and its

derivatives—are shown in Fig. 10.7. In Φ(P) dependence points of extremes are

marked: at these points the function E(P) crosses the axis P. Dependence of E(P)
is characterized by the unstable area, the extent of which is shown by dashed lines.

In this range, permittivity (ε�∂P/∂E) would be negative (but that is impossible).
FIG. 10.7

Thermodynamic potential (A) and its derivatives (B) for ferroelectrics with PT-II: points 1, 2,

3—roots of equation.
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The result is P(E) hysteresis, which is the main feature of a ferroelectric. The

differential permittivity also shows “butterfly wings”-type hysteresis (Fig. 10.7B)

that corresponds to instantaneous value of ε when it passes through two maxims

when the electrical field changes.

Ferroelectrics with PT-I close to PT-II also can be analyzed by Landau ther-

modynamic theory that allows explaining their properties in detail. Correspondent

expression for thermodynamic potential has a form

Φ Pð Þ¼Φ0 Tð Þ+ α

2
P2 +

β

4
P4 +

γ

6
P6, (10.12)

where α¼α0(T�θ); β<0 i γ>0.

When this relationship is studied in detail, some special points for Φ(P) function
and for its derivatives can be found. If instead of the image of the function E(P) the
more convenient coordinates P(E) would be used, polar phase existence will be

explained by the region of instability that corresponds to dielectric hysteresis loop

similar to the illustration in Fig. 10.7B. Accordingly, permittivity depends on the

field strength. Thus the main characteristics of ferroelectrics in their polar phase
(hysteresis loop and ε(E) dependence) do not depend on the type of PT that takes

place in the Curie point.

It should be noted that first-order PT (with condition γ>0) occurs not at temper-

ature T¼θ (when α¼0) but at value αK ¼ 3β2

16γ. That is why, in case of PT-I, transition

temperature TC is greater than Curie-Weiss temperature θ. Therefore, spontaneous
polarization arises at T¼TC by a jump (unlike PT-II), and the size of this jump equals

ΔPS ¼ 3β
4γ.

Permittivity also shows a jump at temperature TC, and its graded change is

Δε¼ 4γ
3β2

(correspondingly, in the Curie point permittivity is not expected to be

infinite, as in case of PT-II) but its maxim equals 16γ
3β2

(Fig. 10.8).

The most studied ferroelectric that PT nature is close to PT-I is the barium tita-

nate. This ferroelectric demonstrates all features of ferroelectric transition of first

order. Temperature maximum of permittivity in pure BaTiO3 occurs at TC¼400K,

while Curie-Weiss temperature (θ¼388K) is below at 12K. Curie-Weiss constant in
FIG. 10.8

Temperature dependence of spontaneous polarization (A) and inverse permittivity

(B) in ferroelectrics with PT-I.
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barium titanate equals C¼1.2 105 K, while temperature maximum of permittivity is

εmax¼105. This maximum of permittivity and transition to nonpolar phase can be

achieved not only by barium titanate heating but also by the increase in pressure.
This is also consistent with thermodynamic theory, but in previous analyses, for

simplification, pressure is considered as permanent [6].

Moreover, the thermodynamic potential, formula (10.12), which describes main

characteristics of barium titanate, can characterize also two low-temperature subse-

quent PTs from one ferroelectric phase to another. Fig. 10.9 shows the change of

BaTiO3 unit cell in temperature range below 400K. First, there is a transition from

high-temperature nonpolar cubic phase (with lattice parameters a¼a¼a) to the

tetragonal polar phase (with lattice parameters a¼a 6¼c). Second, at temperature

of about 300K, transition from the tetragonal ferroelectric phase to another ferroelec-

tric phase (orthorhombic) occurs; finally, by cooling to temperature �200K, the

most low-temperature (rhombohedral) ferroelectric phase appears [2].

Experimental data show that changes in BaTiO3 lattice parameters in the vicinity

of these transitions everywhere demonstrate temperature hysteresis, which clearly

indicates that all these transitions are close in their nature to PT-I. Spontaneous polar-

ization in BaTiO3 occurs abruptly, as foreseen by PT-1 theory; the permittivity at the

Curie point also decreases by a jump.

Thus most important changes in dielectric properties of ferroelectrics that occur

as a result of first- or second-order PT can be successfully explained by thermody-

namic theory.

Selecting order parameter from phenomenological Landau theory is based on

the choice of the most important property of a crystal. In case of ferroelectrics,

the polarization is selected as the ordering parameter that can explain not only tem-

perature dependence of PS, but also large maxim of permittivity in the vicinity of

PT. However, in some other cases, the spontaneous polarization arises without
FIG. 10.9

Temperature change of crystal lattice parameters and symmetry of BaTiO3 in series

of its phase transition.
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noticeable maximum in ε(T) dependence, for example, in the gadolinium molybdate

(Gd2(MoO4)3).

Ferroelectrics in which temperature dependence of permittivity does not have

clearly expressed maximum ε(T) are the improper ferroelectrics. The polarization

is not their ordering parameter. In case of Gd2(MoO4)3, for example, PT is caused

by mechanical strain, while spontaneous polarization originates during PT as one

of the properties of the ordered low-temperature phase [2].

However, ε(T) maximum appearance is not obviously caused by the fluctuations

of polar phase. Some examples of ε(T) dependences with maximum are given in

Chapter 9 for crystals called antiferroelectrics. In these crystals, the ε(T) maximum

at transition point may be also large (as, e.g., in lead zirconate PbZrO3), or may be

absent (as in lead magnesium-tungstate PbMg1/2W1/2O3). PT into the antipolar
phase from a nonpolar phase might be close as to PT-I so to PT-II. It is necessary

to mention that among antiferroelectrics there are perovskite-type oxides; therefore

there are some crystals comprising hydrogen (ammonium dihydrogen phosphate

(NH4H2PO4)).

Permittivity frequency dispersion near the phase transition. A wide-range

frequency study of ferroelectrics is required not only because of their applications,

but also because of important physical properties of these materials. Lattice dynam-

ics theory of crystals predicts strong anomalies in dielectric properties of ferroelec-

tric at microwaves. The question is that in the vicinity of ferroelectric PT one of

lattice vibration modes decreases down to microwaves. Furthermore, most of ferro-

electrics have a multidomain structure, and domain wall resonant (or relaxation)

frequency is also located in the microwave range. For this reason, frequency study

can support investigation of many fundamental characteristics of ferroelectrics [7].

In the polar (ferroelectric) phase, the dispersion of permittivity is observed thanks

to reversible movement of domain walls. In the nonpolar (paraelectric) phase, the

permittivity dispersion (usually, relaxation) is due to the contribution of lattice vibra-

tion mechanism to a permittivity that varies with temperature, following Curie-

Weiss law: ε(T) ¼C/(T�θ).
In ordinary (nonferroelectric) dielectrics possessing thermally induced type of

polarization their relaxation time shows exponential dependence on temperature:

τ�exp(U/kBT), where U is activation energy and kB is Boltzmann constant. Dielec-

tric permittivity dispersion that explains thermal orientation of dipoles in ordinary

dielectrics leads to shift of εmax(T) toward higher frequencies at temperature increase

(see Fig. 7.30 in Section 7.8). This model predicts linear dependence of log(ωεmax/Ω)

on 1/T, and, using the slope of this line, the activation energy U can be found (relax-

ation frequency Ω is determined by the relaxation time: Ω¼1/τ).
However, in the order-disorder-type ferroelectrics relaxation type of ε-

dispersion does not follow traditional temperature dependence: it is disrupted in

the vicinity of PT. Relaxation time is characterized by the critical temperature

dependence: τ¼τ0/(T�θ) that corresponds to Curie-Weiss law: ε(T) ¼C/(T�θ).
This law is conditioned by significant change with temperature such parameters that

in ordinary relaxation-type dielectrics remain practically constant.
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Thus in the order-disorder-type ferroelectrics, PT assumes the presence of groups

of atoms with individual dipole moments. In the paraelectric (high-temperature)

phase they look like disordered dipoles, that is, crystal structure is characterized

by several equally probable orientations of the dipole moments of polar groups,

which, under the influence of thermal vibrations of crystal lattice, are randomly dis-

tributed along these directions. As temperature decreases, the interaction of dipoles

leads to spontaneous ordering of these polar groups so that PT occurs in the ferro-

electric (spontaneously polarized) phase. Therefore, in lower-temperature (polar)

phase, many polar groups are still not oriented [7].

Among many order-disorder-type ferroelectrics there are Rochelle salt (whose

dielectric dispersion was shown previously in Section 7.8, Fig. 7.32) and the trigly-

cine sulfate (TGS). This type of ferroelectrics has two main frequency intervals of

dielectric permittivity dispersion: domain wall relaxation in polar phase and dipole

relaxations in all phases. Themost interesting for physics of PT in the ferroelectrics is

permittivity frequency/temperature dependences, as shown in Fig. 10.10 for TGS.

In contrast to Rochelle salt, the TGS crystal is not piezoelectric in its paraelectric

phase. Therefore electromechanical deposit to ε2 in paraelectric phase is absent;

however, below the Curie point in ferroelectric phase, electromechanical contribu-

tion to ε2 exists (shown in Fig. 10.10 by stroke region).

It is noteworthy that in the Curie point dependence ε0(T) at microwaves demon-

strates not the maximum but the minimum. It can be explained, considering that

family of ε*(ω,T) characteristics can be described by the modified Debye equation
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TGS crystal microwave study: (A) ε2
0 temperature dependence at frequencies: 1—1kHz,

2—GHz, 3—16GHz, 4—26GHz, 5—37GHz, 6—80GHz, 7—250GHz; (B) theoretical

explanation of ε0(T) dependence.
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ε∗ ω, Tð Þ¼ εIR +
C

T�θ + iωτ0

In the paraelectric phase, TGS dynamic properties can be described by parameters:

C¼3200K, θ¼321K, and τ0¼2 10�10 s/K [7].

Crystals of TGS type are one-dimensional ferroelectrics. In full microwave range

and in a wide temperature interval near PT they show large absorption (>30db/mm),

but only in the direction of polar axis. In two other crystallographic axes, these

crystals are similar to customary ionic crystals, and they are well transparent at

microwaves. For this reason, thin oriented plates of these crystals might be used

as polarizers in full millimetric and even submillimetric range of waves.

Generalized dielectric spectrum of order-disorder ferroelectrics [7]. Typical

frequency-temperature dependence of permittivity in ferroelectrics with PT of

order-disorder type is shown in Fig. 10.11. As frequency increases from infra-low

to optical range, the ε-dispersion occurs in several well-separated frequency inter-

vals. Consequently, permittivity of ferroelectric crystals can be considered as the

sum of several dielectric contributions Δεj conditioned by different mechanisms

of polarization. Above and below PT temperature, these polarization mechanisms

might be different.

In the polar phase (below the Curie point), it is possible to distinguish six polar-

ization mechanisms. Primarily, this is optical dielectric contribution Δε1 from elec-

tronic elastic polarization; in the ferroelectrics this contribution is small, and it is

characterized by negative TCε. In ferroelectrics of order-disorder-type contribution

Δε2 from crystal lattice (far infrared) polarization is also small, but its temperature
FIG. 10.11

Generalized temperature dependences of different mechanism dielectric contributions

for order-disorder-type ferroelectrics: above TC—data are close to parameters of KDP crystal;

below TC—data are close to the parameters of TGS crystal.
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dependence is characterized by positive TCε (Δε2 differs only a little from usual

ionic crystals). In the vicinity of the Curie point, as a rule, Δε2 shows only a small

anomaly (in contrast to displacement-type ferroelectric).

Other contributions to dielectric constant (plots 3…6 below TC), shown in

Fig. 10.11, are characterized by relatively low-frequency polarization mechanisms,

caused by peculiarities of ferroelectric crystal. Common to them is the decrease in

these contributions as distance from PT point increases. ContributionΔε3 is given by
the relaxation of disordered part of polar groups. These atomic groups appear and

disappear (“flicker”) in a crystal with frequency depending on distance from PT.

Therefore, the variance of Δε3 at temperatures below TC is similar to the Δε3 disper-
sion in the paraelectric phase.

Electromechanical contribution to permittivityΔε4 in some crystals, for example,

in Rochelle salt, is large; in other ferroelectrics (such as TGS), it is relatively small.

Dispersion of Δε4 occurs in a form of one or more dielectric resonances at radio fre-

quencies, when “inertial clamping” of ferroelectric crystal happens, usually in the

frequency range of 104–106Hz.
Dispersion ofΔε5 in ferroelectrics is studied in detail. This dielectric contribution

is associated with high polarizability of domain walls, the cause of which some

authors consider as relaxation while other authors suppose resonant mechanism of

domain wall polarization. The plot of Δε6 in Fig. 10.11 corresponds to very low-

frequency contribution to permittivity. This dispersion clearly depends on the

domain structure of crystal, but, unlike Δε5, it occurs in the range of subsonic fre-

quencies. The Δε6 value strongly depends on aging processes and on the presence

of defects in a crystal.

In the nonpolar phase (above the Curie point), dielectric dispersion of order-

disorder-type ferroelectrics is characterized by the dynamic properties of dipoles

and polar groups ordering in a crystal in the vicinity of PT. Dotted lines in area

30 (Fig. 10.11) show the Δε3(T) change at different frequencies. Near PT these

dependencies are characterized by pronounced minimum.

Displacement-type ferroelectric frequency characteristics. From a microscopic

point of view, in case of displacement-type ferroelectric, above the transition point

TC, there is crystal lattice instability due to one of optical lattice vibrations that is

called as the “soft mode.” As temperature decreases approaching TC, the frequency
of this mode diminishes critically, and in the limit tends to zero. As a result,

displacement-type phase ferroelectric transition occurs in a form of spontaneous shift
of the sublattices of a crystal, restoring its dynamic stability. Then, spontaneous shift

of sublattices causes spontaneous polarization PS.

The example of dielectric dispersion in the displacement-type ferroelectrics is

shown in Fig. 10.12. The domain-type dielectric contribution shows dispersion

mainly at microwaves; this dispersion has relaxation character. In the paraelectric

phase (above PT temperature) in most of displacement-type ferroelectrics, the micro-

wave ε-dispersion is absent.

It is important to determine how Curie-Weiss temperature affects the presence or

absence of microwave ε-dispersion. Investigations show that in lead titanate

(PbTiO3), in which Curie-Weiss temperature (θ¼740K) is rather high, microwave



FIG. 10.12

Temperature dependence of ε and dielectric losses tan δ: (A) PbTiO3 at 37GHz, (B) BaTiO3

at frequency range of 10.4… 37GHz (1), at 46GHz (2), at 75GHz (3).
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ε-dispersion is absent. In the PbTiO3 even at millimeter waves, the ε(T) characteristic
above the Curie point coincides with this dependence at a frequency of 1MHz

(Fig. 10.12A, curve 1).
However, in the ferroelectric phase of PbTiO3 microwave losses (curve 2) are

large, which indicates strong ε-dispersion below the Curie point, in the ferroelectric

phase. Thus PbTiO3 investigation suggests the assumption that microwave disper-

sion in the paraelectric phase is absent; therefore ε-dispersion does not depend on

PT temperature. In practice, these studies recommend using exactly paraelectric

phase of displacement-type ferroelectrics for nonlinear microwave components with

small microwave losses, creating solid solutions, such as (Sr,Pb)TiO3 [6].

In contrast, in other ferroelectrics, which are considered only as “close to PT of

displacement type” (for instance, in BaTiO3) the microwave dispersion in the para-

electric phase appears quite strongly in the range of millimeter waves that brings to

increased microwave losses (Fig. 10.12B). The reason for this microwave dispersion

in paraelectric phase is that PT in BaTiO3 has some indications of order-disorder-

type transition. Investigations have shown that this dispersion, which starts at

millimeter waves and continues in the submillimeter waves, is the beginning of

fundamental dispersion caused by the “soft TO-lattice vibrational mode” in

BaTiO3, which is characterized by very high anharmonicity.

The dispersion, which is clearly observed at frequencies of 60–80GHz, does not
depend on the imperfections in the crystal structure and takes place in crystals, so

also in polycrystalline BaTiO3. In practice, this means that, if barium titanate would

be included to the structure of nonlinear microwave element, one cannot expect from
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this paraelectric small dielectric losses, because microwave losses are the conse-

quence of fundamental mechanism of PT in BaTiO3.

Therefore, microwave dispersion in the paraelectric phase depends on the soft

lattice vibration mode. For this reason, the Lorentz oscillator model can be a basic

model to describe ε* frequency/temperature dependence:

ε∗ ωð Þ¼ ε ∞ð Þ+ ε 0ð Þ� ε ∞ð Þ
1 + ω=ωTOð Þ2 + iΓω=ωTO:

In this equation, it needs to assume ε(0)�ε(∞)¼C/(T�θ) and soft mode critical

dependence on temperature ωTO¼A(T�θ)1/2. As a result, the relative damping fac-

tor is Г¼γ/ωTO:

ε0 ω, Tð Þ� ε ∞ð Þ¼CA2 A2 T�θð Þ�ω2

A2 T�θð Þ�ω2½ �2 + γ2ω2

tanδ� γω

A2 T�θð Þ:
From ε and tan δ temperature dependences at various frequencies, the soft mode-

temperature dependence can be calculated. Soft mode-temperature dependence is

shown in Table 10.1 and Fig. 10.13.

Table 10.1 shows the main lattice dynamics parameters of paraelectrics and

ferroelectrics.

Generalization of displacement-type ferroelectrics spectrum [7]. Frequency-

temperature dependence of permittivity in typical displacement-type ferroelectrics

is shown in Fig. 10.14. As frequency increases (from radio frequencies to optical fre-

quencies), several mechanisms of permittivity dispersion are clearly seen.

PT has almost no effect on the optical properties (plot 10 and 1 in Fig. 10.14). In

the paraelectric phase (above PT temperature TC), the far-infrared (lattice) polariza-
tion dominates (plot 20). Dielectric contribution of the “soft” lattice vibration mode

results in very high permittivity (thousands near TC). In the ferroelectric phase soft

phonon gives rise to relatively small dielectric contribution (plot 2), but there are

many other mechanisms to increase permittivity.
Table 10.1 “Soft” Lattice Mode Parameters of Some Ferroelectric
Materials [7]

Material Pc, μQ/cm2 TC, K θ, K C×1024, K A/2π, GHzK21/2

CaTiO3 – – �90 4.5 170

SrTiO3 – – 35 8.4 180

BaTiO3 30 400 388 12 75

PbTiO3 80 780 730 15 90

KNbO3 30 685 625 18 95

LiNbO3 70 1500 – – –



FIG. 10.13

“Soft” lattice mode frequency dependence for various paraelectrics obtained by microwave

and far-infrared experiments (1cm�1¼30GHz) [7].

FIG. 10.14

Generalized dielectric spectrum for displacement-type ferroelectrics, that is temperature

dependence of main polarization mechanism’s contribution to permittivity: 10, 1—electronic

polarization contribution at different temperatures; 20, 2—dielectric contribution of “soft

phonon” in polar and paraelectric phases; 3—domain walls dynamical polarization in polar

phase; 4—electromechanical (piezoelectric) polarization mechanism; and 5—domain

switching polarization in strong electrical fields.
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The plot 3 characterizes domain wall vibration polarization that leads to micro-

wave dispersion. If the domain structure of crystal (or polycrystal) is not compen-

sated (no neutral), radiofrequency dispersion is observed (plot 4 in Fig. 10.14) in

the form of great number of electromechanical resonances. This ε-dispersion occurs
at frequencies of 104–106Hz. In the polar phase, low-frequency dielectric contribu-

tion is produced by mechanism of domain switching (plot 5 in Fig. 10.14). This

dielectric contribution is possible, however, only in the strong electrical fields.

As shown in Fig. 10.14, while cooling from the Curie point, the ferroelectrics,

where PT is close to the PT-1, show sharp decrease in their permittivity. This is con-

ditioned by a stepped increase in spontaneous polarization PC that is accompanied by

the coercive field growth. In turn, this results in a stepped increase in “soft” phonon

frequency and, consequently, to permittivity graded decrease.

However, inside any domain wall, spontaneous polarization and coercive field

are very small (close to zero). Therefore, polarizability of domain wall is very

high. This phenomenon can be interpreted as a “frozen” paraelectric phase inside

domain walls, which, in that way, partially exists below the Curie point. Meaningful

frequency of dielectric microwave dispersion (near 1010Hz) enables (using

Lyddane-Sachs-Teller relation) finding “effective permittivity” inside domain walls

as εwall � 3 105.

Morphotropic phase transitions. In connection with a search for the most effi-

cient piezoelectric-ferroelectric materials, a new type of PT—morphotropic

transitions—was found (and they are widely used). It turned out that highest effi-

ciency in electromechanical properties is seen in the border between antiferroelectric

and ferroelectric phases. From the very beginning of this study, the composition lead

zirconate-titanate, Pb(Zr,Ti)O3 (denoted as PZT), showed piezoelectric module

d33�300pC/N and electromechanical coupling factor (KEM�0.6) that was signifi-

cantly greater than previously known piezoelectric ceramics.

At present, piezoelectric ceramic made on the base of Pb(Zr,Ti)O3 with additives

are characterized by module d33¼600pC/N and coupling coefficient KEM�0.75.

These parameters are achieved using special technology: all compositions are

produced near the morphotropic border. Correspondingly, the morphotropic PT

between rhombohedric and tetragonal ferroelectric phases of PbZr1�xTixO3 is a

qualitative leap in the development of piezoceramic materials. Morphotropic PT

means that structural transition in solid solutions might be realized just by the chang-

ing of composition. In the interval of concentrations near such PT different structures
can coexist. The width of this border depends on technological factors, for example,

in the PZT ceramics it can vary from 0.5 to 15mol%.

It is found that at morphotropic PT the permittivity and also the piezoelectric

parameters show pronounced maxims in dependence on their concentration. The

maxim of electromechanical activity and permittivity in the vicinity of phase

boundaries is associated with the higher degree of domain reorientation in these

ceramics. It is also possible that the reason for the piezoelectric activity increase

is conditioned by the decrease in unit cell spontaneous deformation near the

morphotropic border. It is established that rhombohedric and tetragonal phases

https://www.google.com.ua/url?url=https://en.wikipedia.org/wiki/Lyddane%25E2%2580%2593Sachs%25E2%2580%2593Teller_relation&amp;rct=j&amp;frm=1&amp;q=&amp;esrc=s&amp;sa=U&amp;ved=0CBMQFjAAahUKEwjp-sHOjrrIAhUGEHIKHf08BUw&amp;usg=AFQjCNGu-1BskSNAoB26-Nv686m4SMTsRA


FIG. 10.15

Phase diagram of solid solutions PbZr1� xTixO3: C—cubic, T—tetragonal, R—rhombohedral,

and M—monoclinic phase.
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on the (x,T)-diagram of PbZr1�xTixO3 is separated by a narrow intermediatemono-

clinic phase (Fig. 10.15).

In this regard, large electromechanical response near the morphotropic border is

associated with the fact that rotation of polarization vector in the electrical field dur-

ing ceramic polarization is facilitated by the presence of one or more intermediate

monoclinic phases between rhombohedric and tetragonal phases.

Modern trends in piezoelectric material science relate to solid solution search

among such systems, where the morphotropic border exists. In particular, high elec-

tromechanical coupling factor and large piezoelectric modules are found in the

binary solid solutions PbB3+
0.5Nb0.5O3-PbTiO3 (where B

3+¼Sc, Yb, Lu). In the early

2000s based on solid solutions BiB3+O3-PbTiO3 (where B3+¼Fe, Sc, In), high-

temperature piezoelectric ceramic materials were developed with increased piezo-

electric properties and ferroelectric Curie point of 450–500°C.
Diffuse phase transitions and relaxor ferroelectrics [7]. Crystals and ceramics

with diffuse PT have the nonuniform distribution of structural ions. In these compo-

sitions, owing to structural fluctuations, their PTS are fuzzy. However, these mate-

rials (e.g., solid solutions Ba(Ti,Sn)O3 or Ba(Ti,Zr)O3), except decreasing PT

temperature and broadening the ε(T) dependence, have no significant features that

are peculiar to one other kind of materials—relaxor ferroelectrics.

The relaxor ferroelectrics demonstrate an exceptional case of diffuse phase fer-

roelectric transition. They are ferroelectrics with disordered structure that is charac-

terized by the blurred maximum ε(T) in PT vicinity and by heightened capability for
electrical controlling by their properties. If ferroelectric materials are applied as
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piezoelectric actuators or as electro-optical modulars or other controlling devices,

the relaxor ferroelectrics favorably differ from conventional ferroelectrics by the

absence of hysteresis with electrical control by deformation.

Blurred maximum ε(T) in the relaxor ferroelectrics is not caused only by random
distribution of structural components, but also by fundamental properties of these

structures. A distinctive feature of relaxors is remarkable “softening” in dielectric,

optical, and elastic properties over a wide temperature range (other ferroelectrics

have such features only in a very narrow temperature range in the vicinity of the

Curie point). Relaxor ferroelectric shows large and expanded ε(T) maximum where

giant electrostriction is observed. The point is that a degree of electrical control by

deformation x(E) is dependent on permittivity: x�ε2.
All listed properties determine technical applications of relaxor ferroelectrics:

they might be used as subminiature capacitors (because of large permittivity), they

may be applied as large-strain nonhysteresis actuators (owing to giant electrostric-

tion), they may serve as nonlinear optical devices (thanks to highly disordered

“nonergodic” structure), etc. Moreover, relaxor ferroelectrics have potential applica-

tions in pyroelectric sensors (because electrically induced pyroelectric coefficient

is proportional dε/dT) and can be also used in electrically controlled piezoelectric

filters (by electrically induced piezoelectric effect with modulus d�ε2).
Extended temperature maximum of permittivity in relaxor ferroelectrics has been

investigated in many studies, but usually at comparatively low frequencies (up to

106–107Hz). It is obvious that ε0-maximum shifts with the increase in frequency

toward high temperature. Fig. 10.16 shows microwave investigations of ε0(T) for
PMN crystal up to �1011Hz [7].

Generally, to distinguish relaxors among other diffused PT ferroelectrics, many

microscopic or optical investigations should be used. The experimental test method
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Temperature dependence of the PMN permittivity at high frequencies.
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will be described later—how to draw a line between relaxors and usual disordered

ferroelectric solid solutions. The study is to measure a family of ε*(ʋ,T)¼ε0(ʋ,T)�
iε00(ʋ,T) dependences in broad frequency-temperature interval.

Generalized dielectric spectra of relaxor ferroelectrics might be compared with

spectra of classic displacement-type ferroelectrics (such as BaTiO3, Fig. 10.14) and

various ferroelectric solid solutions (not relaxors) with the diffused PT, namely,

solutions Ba(Ti,Sn)O3, (Ba,Sr,Ca)TiO3, and Pb(Zr,Ti)O3. All these materials are

characterized by broad ε(T) maximum, associated with random distribution of

same-valence cations in correspondent sublattices. The heterogeneity of composition

in microregions is accompanied by the fluctuations of Curie temperature that leads to
broad ε(T) maximum. The nature of dielectric spectra for mentioned compositions is

similar to BaTiO3.

However, relaxor ferroelectric is characterized by the cations of different valence
that occupy randomly similar structural sites. These materials have two different

types of structural disordering. For example, lead magnesium niobate crystal

(PMN¼PbMg1/3Nb2/3O3) has B+2-B+5-type compositional disordering, while

potassium-lithium tantalate crystal (KLT¼K1� xLixTaO3) has strongly disordered

structure only in lithium ions that are located in the noncentral positions with various
associations between them.

Generalized temperature/frequency dielectric characteristic of relaxors shown
in Fig. 10.17 is constructed by analogy with other type of ferroelectrics (Figs. 10.11
FIG. 10.17

Generalized dielectric spectrum peculiar for relaxor ferroelectrics; temperature dependence

of “dielectric contributions” from basic polarizationmechanisms: 1—electronic displacement

(optical) polarization; 2—lattice (ionic, phonon) polarization mechanism; 3—domain wall

polarization mechanism in polar phase; 30—polarization of interphase boundary

displacement; and 4, 40—polar cluster reorientations (DTP is diffused phase transition

region).
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and 10.14). Very large εmax is typical for relaxor ferroelectrics in extended temper-

ature interval, while in classical ferroelectrics large εmax is seen only at Curie tem-

perature (note that the narrow peak of ε in proper ferroelectrics is a fundamental

property of their PT).

With regard to relaxor ferroelectrics, their peculiarities might be explained using

the dielectric spectroscopy method. Here it is considered that diffuse εmax(T) in the

relaxor is so large because of heterogeneity in electrical field distribution: while

investigating, applied field becomes stronger in the “low-εmicro-regions” (clusters).

As a result, the polarizability of these clusters increases. Spatial wave of nonlinear

polarization extends in the relaxor ferroelectrics with acoustic mode velocity; there-

fore, a strong ε-dispersion is seen in the frequency range of 103–104Hz.
However, only this mechanism cannot give an exhaustive explanation peculiar to

relaxor large dielectric constant (ε�104–105) that is observed at a small electrical

field over a broad temperature interval. If relaxor ferroelectrics would be a simple

composite of low- and high-frequency adjoining polar clusters, the ε-value will be

formed predominantly by the clusters that have reduced ε; therefore, relaxor permit-

tivity would not be expected to be huge.

It should be noted that at very high frequencies (microwaves) and comparatively

low frequencies the rate of T ε0max(logʋ) drift is quite different. This circumstance

enables to distinguish relaxor ferroelectrics from other types of ferroelectrics.

Among other data, frequency dependence of ε0-temperature maximum (Tε0max) is

analyzed (Fig. 10.18). The ordinary ferroelectric is defined by a sharp ε0 (T) maxi-

mum at Curie temperature TC ¼Tmaxε, and, as is well known, no frequency shift of
this maximum is seen (line BT, Fig. 10.18). In contrast, in normal disordered

ferroelectrics—solid solutions (but not in the relaxors), the selected parameter Tε0max

gradually increases as frequency grows up (line BSnT, Fig. 10.18). In other words,
FIG. 10.18

Temperature of ε-maximum frequency dependence in relaxor ferroelectric PMN and KLT in

comparison with normal displacement-type ferroelectric BT¼BaTiO3 and ordinary

diffuse solid solution BSnT¼Ba(Ti,Sn)O3 [7].
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the usual ferroelectric solid solution with diffused PT shows a simple linear rise in
their Tε0max(logʋ) dependence.

Relaxor ferroelectrics demonstrate the broken or the bifurcated Tε0max(logʋ)
dependence. That is, the PMN-type relaxor ferroelectric shows gradually increas-

ing but broken-line for Tε0max(logν) dependence (line PMN in Fig. 10.18). How-

ever, the relaxor ferroelectric of KLT type demonstrates the bifurcation of this

line (KLT).

The main reason for the Tε0max(logν) dependence becoming a broken line or bifur-

cated line is the coexistence in the relaxor ferroelectrics of at least two different types
of polar clusters that occupy adjoining nanoscale regions in a crystal.

At low frequencies (below �105Hz), dielectric permittivity of PMN decreases

with frequency approximately 10 times. Thereafter, as seen on plot I on PMN line

in Fig. 10.18, the temperature of observable ε0max increases gradually with a fre-

quency rise.With further frequency increase, temperature maximum of PMN permit-

tivity prolongs its decrease but practically no shifts with frequency rise between 105

and 108Hz (plot II on PMN line in Fig. 10.18). Finally, starting at about 5�108Hz,

the dependence of Tε0max(logʋ) again gradually increases to higher temperatures

(section III on PMN line in Fig. 10.18).

Therefore, Fig. 10.18 demonstrates frequency dependences of Tε0max for four

typical situations:

• normal displacement-type ferroelectric (similar to BaTiO3) shows no frequency

change in its Tε0max within limits of experimental study (up to 75GHz);

• ordinary ferroelectric solid solutions with diffused PT, such as

Ba(Ti,Sn)O3¼BSnT, demonstrates linear shift of Tε0max to higher temperatures

as frequency increases (a simple explanation of this growing Tε0max is the

ε-dispersion due to domain wall polarization in polar phase, which is absent in

the paraelectric phase);

• relaxor ferroelectric shows a broken-line dependence of Tε0max(logʋ). This is seen
in frequency interval of (105–108) Hz for PMN, in which the position of Tε0max

practically does not change with frequency (or this change is too small);

• in some relaxor ferroelectrics the Tε0max(logʋ) characteristic shows bifurcation;
for example, KLT has two different polarization mechanisms that correspond to

various ways by which mobile Li+ ions can move in the multiwell lattice

potential.

The aforementioned is convincing evidence that in relaxor ferroelectrics two or more
types of polar clusters coexist. Most probable mechanisms of two main dielectric

contributions to diffused ε-maximum of relaxor are as follows:

• low-frequency (up to 105Hz) dielectric contribution to broad ε-maximum that

usually is interpreted as the “reorientation of dipole moments of polar

nanoregions” that is accounted for strong electromechanical coupling of

“soft-polarizable” polar regions, in which the electrostriction transfers to the

piezoelectric effect;
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• high-frequency (108–1010Hz) contribution to the ε-maximum that commonly is

explained as the motion of boundaries of polar nanoregions; this is similar to the

microwave ε-dispersion in normal ferroelectrics, which is due to their

multidomain structure, and here it is accounted for the “frozen

super-paraelectricity” in the boundaries of polar nanoregions.

Therefore, it is shown that the peculiarity of dielectric spectra of relaxor ferroelec-

trics is broken or bifurcated Tε0max(logʋ) dependence. For this reason, the relaxor fer-
roelectrics can be recognizable from ordinary ferroelectric solid solution by their

frequency investigations. The low-frequency mechanism of the ε-dispersion in

relaxor ferroelectrics is accounted for strong electromechanical coupling of “soft-

polarizable” polar regions, while microwave ε-dispersion is due to the “frozen

super-paraelectricity” in the boundaries between polar regions (as in ferroelectric

domain walls).
10.4 PHASE TRANSITIONS WITH CONDUCTIVITY ANOMALIES
Dielectric conductivity involves a complex function of many parameters: σ(ω,T,E,
p). As a rule, conductivity varies with frequency, temperature, electrical field, or

pressure smoothly and reversible. Only electrical breakdown results in a sharp

and irreversible jump in the σ(E) dependence.
However, there are other parameters like sudden change in conductivity, as

shown in Fig. 10.19, which are important for electronics engineering and interesting
FIG. 10.19

Changing conductivity σ (S/m) depending on temperature (A, B, C), on electrical field (D), on

pressure (E), and on film thickness (F): A, D, E—vanadium dioxide: B—doped barium

titanate, C—silver iodine; and F—film of semimetal bismuth [5].
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for physics. In the event of a change in external conditions and in the case of peculiar

size or configuration of studied objects (thin films, ultrathin wires, or small clusters),

an abrupt and quite a large change in conductivity can be observed.

Substances that are similar in chemical composition can be in two different

steady states: electroconducting or electroinsulating. In the state of increased con-
ductivity, the electrical charge can be transferred by electrons (Fig. 10.19A and

B) and also by ions (Fig. 10.19C). Usually the conductance increases with increasing

temperature, but it may decrease as well (Fig. 10.19B). The jump in conductivity can

also be caused by changes in electrical field strength (Fig. 10.19D), or by the increase

in pressure (Fig. 10.19E) as well as due to change in geometric dimensions of the

studied object (Fig. 10.19F).

The abrupt change in conductivity, in particular its jumps when temperature

changes, cannot be explained by the conventional ideas about charge transfer mech-

anisms in the dielectrics and semiconductors. Electrical conductivity of nonmetal

materials (semiconductors and dielectrics) has activation nature: charge carriers

are generated by thermal, radiation, optical, and other means. Therefore it would

be expected that conductivity gradually changes with temperature, not abruptly.
However, large jumps of conductivity are observed experimentally and, apparently,

this is caused by PT.

If conductivity has electronic nature, it is likely that its jump means the funda-

mental change in the energy electronic spectrum of a crystal. Electronic spectrum

peculiar for dielectrics and semiconductors having the energy bandgap (i.e., gap

in the electronic states distribution) turns into the continuous spectrum, which is

the characteristic of metallic substances. Conventionally, such PTs are called the

insulator-metal transition.
If at a PT the ionic current abruptly increases, this phenomenon is usually

explained as a “partial fusion” of one of sublattices of ionic crystal (usually, it is cat-

ionic sublattice), and such a PT is called the superionic transition, which suggests

that the solid insulator partially goes into the electrolyte state (electrically similar

to the liquid melt or solution).

The drastic change in conductivity does not exactly mean PT. For example, a sig-

nificant jump in electronic conductivity (in millions of times) is observed in varistors
that are ceramic wide-band semiconductor dielectrics, for example, carborundum

(SiC) or zinc oxide (ZnO). Most of varistors are made of zinc oxide doped with bis-

muth oxide. At both low and high levels of electric field, varistor is characterized by

the ohmic behavior (j�E) (Fig. 10.20). At that, in weak electrical field, varistor

has much higher electrical resistance: its resistance is called dielectric, but in strong

electrical field, resistance of varistor decreases millions of times, and it becomes a

typical semiconductor.

When field strength increases to a critical value, resistance of varistor suddenly

decreases, and, therefore, current through it increases sharply [1]. This phenomenon

is quite different from conventional electrical breakdown, because the increase in

current is restricted (so high current does not destroy the varistor), and its nonlinear

characteristic j(E) is reversible. It is possible that varistor-type behavior (whose PT is



FIG. 10.20

Typical current-voltage characteristic of zinc oxide varistor.
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similar to that of insulator-metal type) is caused by the quantum-mechanical tunnel-
ing through the Schottky barriers that exist on the grain boundaries of ceramics.

Varistors are used to protect electrical circuits from the splashes of voltage that often

occur in the inductive circuits and can damage circuit’s elements: with increase of

voltage, the current flows through varistor but not through other elements of a circuit.

Electronic conductivity at insulator-to-metal transition [7]. Transitions of this

type are important for solid-state physics as they relate to the fundamental restruc-

turing of the electronic spectrum of a crystal. Studying the nature of the transition

from dielectric state to metallic state has not only scientific but also technical inter-

est: sharp variation in electrical properties that are bound with optical properties of

crystals is used in electronics and automation devices.

The ability of insulator-to-metal transition was predicted theoretically by H. Mott

when analyzing the applicability of energy-band theory, describing electronic spec-

tra of solids. In this theory, usual one-electron approximation is used. It is assumed

that each electron moves in the force field of ions and all other electrons (except one

under consideration); here, paired interactions are not taken into account even for

nearest neighboring electrons (these interactions are included in the average field).

In one-electron approximation, the solutions of Schr€odinger equation in a crystal are
the Bloch functions, while energy eigenvalues form the energy bands that are filled

according to Pauli principle.

Before considering any theoretical interpretations of dielectric-to-metal PT, the

more complete examination of experimental evidences related to physical character-

istics of such crystals near the transition is necessary. A typical example is the

transition in three-valence vanadium oxide, whose characteristics are illustrated in



FIG. 10.21

Phase transition in V2О3: (A) temperature jump of conductivity σ (S/M); (B) magnetic

susceptibility temperature dependence: (C) temperature-voltage phase diagram;

(D) temperature-pressure phase diagram.
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Fig. 10.21. At low temperatures, this crystal is dielectric with typical σ(T) depen-
dence that has activation character. At critical temperature TC¼150K, crystal

V2O3 turns into the metallic phase with a jump in conductivity about ten orders

of magnitude (Fig. 10.21A); at that, in the vicinity of PT the temperature hysteresis

is observed. Above TC the σ(T) dependence shows metallic character. Critical tem-

perature depends on electrical field intensity (Fig. 10.21C), which promotes metal

phase stabilization. Critical temperature depends also on the pressure

(Fig. 10.28D), which reduces the distance between atoms that facilitates PT. In

the strong electrical fields and at high-pressure dielectric phase V2O3 cannot exist.

This oxide in its electronic spectrum resembles metal.

It is important that such insulator-metal PT is accompanied by the change in V2O3

magnetic properties (Fig. 10.21B). The dielectric phase is simultaneously antiferro-

magnetic, while the metallic phase is paramagnetic. A similar PT with a jump in con-

ductivity and a change in magnetic ordering is observed in many transition metal
oxides: in Fe2O3 at temperature of 120K conductivity increases 102 times, in

WO3 at temperature of 240K jump in conductivity is 104 times, in VO2 at temper-

ature of 340K σ(T) increases 106 times, and in EuO jump in conductivity at 50K

equals 1013 times.

General theory of insulator-metal PT has not been developed: the difficulty lies

not only in solving of “many-electron” problem, but also in a wide variety of crys-

talline structures and chemical compounds, in which these transitions occur. Other

than transitions in the metal-oxides, PTs that are similar in nature are found in many

chalcogenides.
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Three main theoretical models that explain different aspects of this complex

physical phenomenon will be considered.

1. The Mott model describes the insulator-metal transition in crystals with

pronounced localization of electrons in their orbitals. Such spatial localization

and formation of quasi-bounded states of d- and f-electrons is peculiar to
transition metals and rare earth element compounds. Localization lies in the

fact that valence electron is found near its ion rather for a long time τ. Therefore,
as it follows from uncertainty relation (Wτ�ћ), the width W of correspondent

band must be narrow in comparison with the band created by s- and p-electrons,
for which the value of τ in orders of magnitude is smaller.

In the dielectric phase narrow energy band electronic spectrum complicates

any charge transfer: Coulomb repulsion prevents transitions of localized

electrons from atom to atom. Energy of this repulsion in the so-called Mott

insulator plays the role of a band gap. Localized electrons, without participating

in conductivity, significantly increase the polarization of crystal and raise its

permittivity.

However, this state of quasilocalized electrons is not stable. The impact on

crystal by external fields (or small changes in crystal lattice caused by pressure or

other factors) may transfer electrons into nonlocalized states. This conversion

might be even energy favorable: kinetic energy of free electron movement

can match energy of Coulomb repulsion that prevents this movement. This

volatility makes possible a transition in which the width of localized states

in a band abruptly increases and the energy gap closes.

Localization of electrons in the “Mott insulator” is accompanied by the

magnetic ordering (most often, by the antiferromagnetic type of ordering). The
high-temperature phase, in which localization disappears, corresponds to the

nonordered paramagnetic phase. At low temperatures (in the ordered phase),

this magnetic ordering promotes the formation of specific spectrum of

electrons for the “Mott insulator.” Originating below critical temperature TC,
antiferromagnetic superlattice splits the energy band of electronic states on

two bands: subfilled and empty, separated by energy gap, which prevents

electrical conductivity.

2. The Wigner model of “insulator-metal” transition aims to explain the reason for

condensation of the gas of free electrons at low temperatures in the

nonconducting state. Following this simple model, positively charged ions,

localized in the periodic lattice, are replaced by distributed grid of positive

charges that compensates the negative charge of electronic gas.

Condensation in this model corresponds to a strong coupling, that is, when

potential energy U of interacting charged particles is greater than their kinetic

energy E: e2/r>ћ2/mr2, where r is distance, e is charge, and m is mass of

particles. From this inequality it is easy to determine that r>ћ2/me2¼a, where
parameter a corresponds to the Bohr radius of hydrogen-like electronic orbital.

Thus conditions of electronic gas condensation in the nonconductive lattice
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meet the inequality r>a, which means that the average distance between the

electrons of the “Wigner insulator” is greater than the radius of their orbit.

This assumption is equivalent to Coulomb energy predominance of over

kinetic energy. Kinetic energy of electronic gas increases in the event of

temperature rise, and at a certain (critical) temperature this results in “melting”

of “electronic sublattice,” and gas of free electrons gives rise to metal

conductivity. Wigner model usually can explain metallic type of conductivity in

the strongly doped semiconductors, as well as this model can describe some

features of the “insulator-metal” transition in the mixed valence oxides (such as

V2O3).

3. The model of excitons can also be used to explain critical increase in the free

charge carrier concentration, as well as the temperature hysteresis, observed

at switching from metal to dielectric phase. As demonstrated by Mott, electronic

spectrum with a slight overlap of two bands is similar to the semimetals.

This promotes localization of electron-hole pairs in the form of excitons (in

semimetals any band gap is absent, but the bands do not overlap: valence and

conductive bands only come into contact). Formation of excitons in crystal lattice

increases dielectric polarization (because electronic polarizability is

proportional to the cube of distance from electron to positive charge).

Accordingly, with the change of polarization in crystal its phonon spectrum also

changes because permittivity increases.

Interaction of excitons with each other and with crystal lattice results in the

increase of exciton concentration in a crystal, facilitating the process of their

formation, as the birth energy of bonded electron-hole pairs decreases.

Conditions for growth of exciton avalanche can occur even with small changes in

crystal lattice due to external influences (such as electrical field or pressure). This

is the reason for “excitonic instability” of dielectric: above a threshold

concentration the excitons disintegrate into free electrons and holes; as a

result, the dielectric is transformed into conductive material. The interaction of

excitons with phonons and dielectric permittivity increases because excitonic

polarization reduces frequency of optical phonons. This is equivalent to the

formation of bound exciton-phonon mode (soft oscillation mode) whose

frequency is reduced near PT, resulting in lattice instability, which is peculiar

to any PT.

Thus explanations of insulator-to-metal transition with a large jump in electronic

conductivity might be different. Numerous experimental cases of such conversion

can be explained from different positions, including the aforementioned theoretical

models. The main factor that unites these models is the instability of the crystal elec-

tronic spectrum, for which a jump in conductivity is observed. It is important to note

that, sometimes, during PT, instead of conductivity jump, the large polarization and

high permittivity occur.
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DIELECTRICS WITH UNSTABLE ELECTRONIC SPECTRUM [7]
Crystals that have high density of excitonic states are very promising materials for

high-temperature superconductor elaboration. In conventional superconductors—

metals and metallic alloys—PT to superconducting state is theoretically limited

by temperature of 25K. At higher temperatures, Coulomb repulsion exceeds the

attraction between conductive electrons that form Cooper pairs by electron-lattice

interaction, thanks to electron-phonon coupling.

However, for a long time theoretical studies pointed out on the possibility of dif-

ferent opportunities of electron attraction: by means of excitonic exchange. With

such mechanism, in principle, superconductivity can be obtained even at 300K (cur-

rently high-temperature superconductivity reaches a temperature of about 200K).

The term “exciton,” while discussing capabilities to get superconductivity,

should be interpreted comprehensively: any polarized excitation in the electronic

subsystem of a crystal might be understood as the exciton, including the variety

of vibrational modes of volumetric or surface type. As classic superconductors

are seen in the three-dimensional metals, while excitons can be extended only in

dielectrics, the excitonic superconductor has to be both metal and dielectric, repre-
senting a system of “crystal into the crystal.” Such system should be a complex sub-

stance, in which metallic subsystem allows free movement of electrons, while

dielectric subsystem is the environment for spreading of excitons, binding electronic

pairs in metallic subsystem. In this case, the dimensionality of a matter should be

decreased.

In order to apply the exciton mechanism to superconductivity, two basic systems

are offered:

1. The one-dimensional system (the 1D “needle”-like crystal, Little’s model), for

example, can be a long well-conductive molecule thread with easily polarizable

side radicals that could provide attraction of conduction electrons due to

excitonic transfer. The presence of excitons makes appearance of

high-temperature superconductivity possible, as they can compensate the

Coulomb repulsion of electrons. Unfortunately, obtaining superconductivity in

the ideal 1D crystal seems almost impossible owing to thermal fluctuations

(this is so-called R. Peierls prohibition1).

Nevertheless, in the 1D systems PT from the quasimetal phase to the high-ε
dielectric phase is possible, and this question will be discussed later.

2. The two-dimensional system (the 2D, “sandwich”-type crystal, V.L. Ginzburg

model) consists of the “quasi-metal” layers surrounded on both sides by dielectric

layers that should provide excitonic exchange, contributing to Cooper-type

pairs of electron formation and superconductivity in metallic layers.
1Note. In one-dimensional organic material (Bechgaard salt, TMTTF2ClO4), the superconducting

phase was found at ambient pressure with transition temperature TC ¼ 1.4 K. Several other similar salts

become superconducting only under increased pressure; all these are the exclusions from Peierls

theorem.
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The experimental verification of 2D models received full success: the following

investigation enables to find many materials with superconductivity, including

many high-temperature superconductors.
Electrical properties of 1D and 2D systems proved to be extremely

interesting, not only for theory of PT but also for new applications in electronics.

Results of numerous studies show opening of several classes of quasi-1D, quasi-

2D crystals with sharp anisotropy of both σ and ε, and various structural PTs,

caused by the instability of electronic spectrum with electron-phonon and

electron-exciton interactions.

Consider the model of quasi-one-dimensional metal. In some 1D needle-like

crystals at rather high temperatures (50–150K), conductivity shows temperature

peak (Fig. 10.22A), in which σ(T) is significantly higher than conductivity of any

extremely high-conductive metal at the same temperature (such as copper or silver).

One might suppose that high conductivity near its temperature peak is a result of

superconducting state fluctuations (but this state in the 1D system, as a rule, cannot

be realized entirely).

Calculations show that, following one-dimensionality condition (ideally thin

wire), the metal-type conductivity is incompatible with 1D system of any valence

of metallic atoms in a ground state (T¼0), but should acquire properties of dielectric

(R. Peierls theorem). Indeed, in the experiments the quasi-1D conductive system at
FIG. 10.22

Phase transition in TTF-TCNQ crystals: (A) conductivity σ3 (curve 1), magnetic susceptibility

χ3 (curve 2) and permittivity ε3 (curve 3); (B) density ρ of electronic states with energy

gap Δ below transition temperature; and (C) energy gap in electronic spectrum of

quasi-one-dimensional crystal.
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low temperatures mostly turns into dielectric. An example of such behavior is shown

in Fig. 10.22 for quasi-1D organic metal crystal: one of most studied 1D

conductors—conductive polymer TTF�TCNQ (tetrathiafulvalene-tetracyano-qui-

nodimethane). Anisometric ion (TCNQ)� demonstrates strong acceptor properties

and it can form salts, in which electronic transfer of charges is possible. Amongmany

such salts that have quasi-1D structure, the combination of TCNQ� with TTF+

should be noted, which plays the role of well-conductive cation (at 300K). Currently,

many crystal polymers of this type are investigated, and they form a class of quasi-1D

“metals”; however, most of them transits to the insulating phase at low temperatures.

Needle-like crystals TTF-TCNQ have strong anisotropy of their electrical prop-

erties. At high temperatures (on the side of metallic phase) conductivity of this

crystal along the “needle” (σ3) and transverse to it (σ1) varies about 500 times, while

in the point of PT the ratio σ3/σ1 reaches 105. This anisotropy characterizes the

degree of one-dimensionality of the studied crystal, which looks like a “clot of joint

needles.”

At low temperatures (on the side of insulating phase), conductivity of TTF�
TCNQ is very small, but a strong anisotropy becomes apparent in permittivity. Mea-

sured near liquid helium temperature at microwaves (when low-frequency relaxation

processes cannot give any dielectric contributions) crystal TTF�TCNQ shows

ε3¼3200 and ε1¼ε2¼6.

All characteristics in Fig. 10.22A are shown only for one direction—along pecu-

liar axis 3 of 1D crystal. It is important to note that at above transition temperature the

effect of “paraconductivity” is observed: the σ3(T) dependence is close to Curie-

Weiss law. However, such a “paraconductivity” cannot turn into superconductivity

below PT. At temperature TC, instead of superconductivity appearance, the σ3(T)
dependence shows a discrete-steps break, when conductivity becomes as small as

in dielectric. However, instead of large σ3 below TC, permittivity ε3 becomes abnor-

mally high, and it practically does not vary with temperature (Fig. 10.22A, curve 3).
At low temperatures, the extremely high value of ε3 in TTF�TCNQ reminds the

properties of displacement-type paraelectrics (such as SrTiO3 or KTaO3). Note that

in strontium titanate (and in potassium tantalite as well), a large value of permittivity

is observed (ε�103–104) without any microwave dispersion. In paraelectrics this is a

result of “soft phonon” frequency’s critical decrease, which corresponds to the

dynamic instability of crystal lattice. However, in case of TTF-TCNQ, the cause

of ε�103 lies in the peculiarities not of a phononic but of the electronic spectrum.
Magnetic susceptibility of TTF�TCNQ type-crystals is small, and throughout

studied temperatures change from paramagnetic to the diamagnetic susceptibility

(Fig. 10.22A). This is significantly different from the discussed 3D crystals of the

V2O5 type that also demonstrate PT from the high-temperature metallic phase to

the low-temperature dielectric phase: the V2O5-type crystals show the antiferromag-
netic ordering in their low-temperature phase. Therefore, in TTF�TCNQ the nature

of PT is different fromMott transition, where the low-temperature phase corresponds

to the dielectric phase with a completely filled valence band.
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Phonon spectrum of quasicrystals, based on neutron scattering study, is charac-

terized by a minimum in theω(k) dispersion at certain value of phonon quasi-impulse

(p¼ћk). This is so-called W. Kohn anomaly that is caused by electron-phonon inter-

action, and it is observed in such value of phonon quasi-impulse that equals to the

double quasi-impulse of Fermi electrons (k¼ 2kF). Note that in 1D metals the Fermi

surface consists only of two planes: +2kF and �2kF. Electron scattering with energy
conservation can occur only between these planes, and it is accompanied by the

change in impulse on 2ћkF. Exactly at this value of impulse the electron-phonon cou-

pling increases.

In TTF�TCNQ crystals, as well as in other type of quasicrystals, as temperature

decreases the Kohn anomaly (minimum in ω(k) dependence) becomes larger when

PT approaches. This anomaly results in the multiplication of unit cell at transition to
dielectric phase with the splitting-off of optical branch (or branches). One of these

branches becomes the “soft” mode, and this makes the connection to phonon spec-

trum with charge density waves that leads to high ε3 below transition temperature.

This is illustrated in Fig. 10.23. When approaching PT down from the metallic

phase, the Kohn anomaly appears in the acoustic branch of 1D metal and gradually

goes down (Fig. 10.23A). To simplify this model, Kohn anomaly is shown here at

wave vector k¼π/2a, but, in fact, such coincidence can only be a random and usually

is not observed.

Fig. 10.23B shows an intermediate (virtual) case of branches splitting: from the

acoustic branch “slowing down” the three optical modes and one acoustic mode are
FIG. 10.23

Changes in the phonon’s spectrum: (A) temperature-dependent minimums (Kohn anomalies

in acoustic mode); (B) mode frequency at T¼TC vanishes at wave vector k¼π/2a (virtual

case); and (C) new phase appearance with four times smaller Brillouin zone and three

optical modes, including two “soft” modes (O1 and O2); A
0, B0, C0—modulated electronic

structures in one-dimensional crystal that determines associated electron-phonon modes.
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conceived. From Fig. 10.23C it can be seen that after PT unit cell becomes increased

four times, two of splintered optical branches (O1 and O2) are the soft modes.

In the started cell of 1D metal (with lattice parameter a) all nodes are “neutral,”
and electronic density is distributed evenly (Fig. 10.23A0) (metal phase). Below PT

the displacement of atoms occurs: in the doubling cell (virtual case) atoms are

grouped to two (Fig. 10.23B0); in a new formed lattice atoms are grouped by four

(Fig. 10.23C0 that corresponds to Fig. 10.23C). The redistribution of electronic

density gives rise to a situation, when in the region of atoms the “thickening” of elec-

tronic density increases, and negative effective charge arises, while in the region of

atom “depression” the positive effective charge corresponds.

By this way, the wave of electronic density appears, which in this (very idealized)
case is commensurate with the lattice parameter (exactly four times). However, in

general, what can be implemented in all known experiments, the Kohn anomaly does

not arise exactly at k¼π/2a, but in the arbitrary place of Brillouin zone. Therefore

the structure of electronic density ismodulated, that is, it is incommensuratewith the
lattice parameter. This is exactly the reason for electronic spectrum instability.

Kohn anomaly in phonon spectrum is a well-known characteristic of many super-

conducting 3D metals and alloys, wherein electron-phonon interaction is the main

cause of superconducting PT. However, in a given case, the lattice instability of

Kohn anomaly type does not lead to superconductivity, but to the dielectric phase
appearance with ultrahigh value of permittivity. This low-temperature “dielectric

phase” of quasi-1D metal has some properties similar to superconductors: in such

dielectric the energy gap is disclosed in electronic energy spectrum (Fig. 10.22C),

but the pair of interacting electrons (or holes) is descended from different bands,
while Cooper interaction in the superconductors occurs between electrons, belonging

to the same energy band.

Therefore quasi-1D systems consisting of radicals with quasi-metal phase with

large conductivity at lower temperatures turn into the dielectric phase but with

the unstable electronic spectrum, which at elevated temperatures again transforms

into quasimetal. These properties, observed even at microwave frequencies, consti-

tute the evidence of 1D structure proximity to the superconductivity, while the Kohn

anomaly is the evidence of electronic nature of this PT.

Theory of 1D conducting systems was developed long before their experimental

realization. It was demonstrated for the first time byW. Peierls, who determined that

the structure of 1D metal at low temperatures should be changed in such a way that it

turns into the insulator. At that, crystal lattice must be reconstructed: lattice distor-

tion, caused by electron-phonon interaction, splits the partially filled energy band of

1D metal to the totally filled energy band and empty sub-band that corresponds to

dielectric. In Peierls theory, Coulomb interaction of electrons is not taken into

account; however, from the discussed Mott theory it can be seen that this interaction

results in low-temperature instability of metal phase. Defects in crystal lattice are

also favorable for insulating phase appearance instead of metal phase.

With temperature decrease in the electronic spectrum of Peierls-type insulator,

the energy gap Δ forms that tends to have a maximum at temperature
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T¼0K. This Δ(T) dependence further extends the analogy between metal-dielectric

and metal-superconductor PT. In addition, the phenomenon of “para-conductivity” is

observed (curve 1 in Fig. 10.22A) that can be interpreted as the fluctuations of super-
conducting phase, occurring near transition from quasimetal to high-polarized

insulator. This transition appears to be disproportionate, because the value 2kF is

not a multiple of π/a (a is the lattice parameter in the conductive phase). The mod-

ulated charge density waves in the structure of dielectric (originated below PT)

causes large and low-inertia high contribution to dielectric constant.

In the vicinity of PT, properties of 1D structure are very sensitive to the fluctu-

ations. Theoretically, for the violation of long-ordered structure, the break of order-

ing, originated only in one point, is sufficient. However, in the real quasi-1D

structures (thin, needle-like, but still thick macroscopic crystals), situation is differ-

ent, and stability of the system to fluctuations significantly increased due to

interaction between the neighboring “threads” of such structure. The degree of

“three-dimensionality” is qualitatively assessed by the high value of σ and ε anisot-
ropy of these crystals.

This 3D interaction can not only “extinguish” fluctuations, but also suppress the

Peierls transition. Due to this suppression, in some quasi-1D structures superconduc-

tivity becomes possible: for example, polymer (SN)x is a quasi-1D superconductor,

and in it, dielectric phase does not occur; however, its transition temperature is very

low (T¼0.3K).

The impact of fluctuations on superconductive PT is minimal in ordinary 3D

structures, where, for ordering violation, the break should occur on some surface
in a crystal. The 2D structures, in terms of resistance to the fluctuations, are in an

intermediate position, and as regards destruction of ordering in them, the

“fluctuating break” should be on the line (but not at a point, for lD structures). There-

fore in the quasi-2D structures the probability to obtain superconducting state is

much greater than in 1D structures (while the probability of high-polarizable dielec-

tric occurrence is lower than in the case of quasi-1D systems).

Currently, 2D structures of metal-insulator type are widely implemented, both in

the macroscopic level (in the form of alternating metal and dielectric films) and in the

microscopic level (atomic layers). The latter are the most interesting systems with

electron-phonon instability, leading to PT. The high-temperature superconductivity

discovered in 2D structures offers great opportunities for technical applications in

cryogenic electronics.

Electron-phonon instability in 2D systems, as in 1D systems, might result in PTs,

analogous to the Peierls transition. However, if in the lD structures the metal-

insulator transition is most typical, then in case of 2D structures the transition of

metal-semimetal looks more usual. In both cases, transitions are conditioned by

the electron-phonon interaction.

The dielectrics with superconducting phase transition. The peculiarity of elec-

tronic spectrum of semimetals leads to electron-electron pairing with Cooper pair

formation, in addition to their electron-hole “pairing” (energy gap formation as

the “forbidden band”, i.e., “dielectrization”), resulting in superconductivity. In latter
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case, the electron attraction (arising due to exchange by phonons) exceeds Coulomb

repulsion of electrons.

Not only in metals, but also in crystals with energy gap in their electronic spec-

trum (semiconductors and dielectrics that have increased concentration of charged

carrier), the conductivity at low temperatures, instead of a smooth decrease to zero,

can in spurts increase up to the infinite value. Coupling energy of Cooper pairs is

caused by the electron-phonon interaction; as a result, the pair of electronic cannot

be scattered by lattice vibrations, which leads to superconductivity. The very high
permittivity facilitates the formation of Cooper pairs: increased ε dramatically

reduces Coulomb repulsion of electrons.

It should be noted that that large ε at low temperatures is peculiar to paraelectrics

and virtual ferroelectrics. Indeed, the superconducting PTs in dielectrics was first

discovered in the doped strontium titanate (i.e., virtual ferroelectric with

ε�40,000 at T¼4K) and in the narrow-gap ferroelectric semiconductor (SnTe pos-

sessing ε�2000). Although in these materials the temperature of superconducting

transition does not exceed 0.3K, the possibility of superconductivity in them is cru-

cial. This is used in many investigations and, finally, resulted in the invention of

high-temperature superconductivity in the mixed oxides that are typical for ferro-

electric perovskite structure (for details see Section 5.7).

Phase transitions with ionic conductivity jump. In the ionic dielectrics, PTmay

occur with abrupt change in ionic component of electrical current (Fig. 10.24). As in

the case of electronic conductivity jump, ionic conductivity may be increased with

temperature by several orders of magnitude. Usually ionic conductors are liquid elec-
trolytes, that is, the melts or solutions of salts, acids, or alkalis, where charge transfer

is caused by mobile ions (positive or negative; accordingly, cations or anions).

Therefore conductivity of electrolytes (σ¼10�3–103S/m) is significantly lower

than electronic conductivity of metals, but large enough for technical use in electro-

lytic conductors (as well as in the sources of electrochemical power). While direct

current passes, the chemical composition of electrolyte varies due to the electrolysis.
FIG. 10.24

Conductivity σ (S/cm) temperature jumping at phase transitions in different superionic

crystals: 1—Li2S04; 2—AgI; 3—Ag2Hg4I6; and 4—Rb4Ag5I9.
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Ionic conductivity of usual solid compounds (crystals, glass, or ceramics), as a rule,

is small (at 300K σ¼10�1�10�8S/m) due to durable connection of ions in crystal

lattice. Exceptions are solid electrolytes, known also as superionic conductors.
Some ions in these electrolytes, owing to peculiarities of crystalline structure

(disordering of lattice structure, between-framework channels, etc.), may take sev-

eral equivalent positions, and, therefore, they can easily migrate when an electrical

field is applied to the material. For example, in the β-alumina (NaО-nAl2О3 at

n¼5…11), the cations Na+ can easily move between Al2O3 blocks; by the same

way, in combined crystal Ca2YF3 the anions of fluoride F
� can easily migrate. Solid

electrolytes are widely used in modern power sources, which have increased reliabil-

ity and power consumption.

A special case is phase transition in the ionic dielectric having low conductivity

(�10�10S/m) to superionic state with high conductivity: 1–102S/m (Fig. 10.24).

Increased ionic conductivity in superionic conductors is observed at temperatures

much lower than their melting temperature. Moreover, after these crystals are melt,

their ionic conductivity sometimes even slightly decreases, as compared with the

superionic solid phase.

From a microscopic point of view, PT to the superionic state is considered as a

“fusion” of one of sublattices of crystal (“partial melting”). It looks like the super-

ionic conductor consists of two sublattices. One of them is the hard regular structure

of ions (as usual, anions) while the second represents a highly disordered structure,

including mobile ions (usually—cations), and has a large number of vacancies. It is

assumed that the creation of internode vacancies (Frenkel defects) plays a major role

in superionic conductivity. Increased mobility of cations in the superionic phase is

explained by the cooperative interaction of Frenkel defects: the more the cations, the

easier they are transferred through internode states. When temperature increases to a

certain value, the avalanche of structural defects occurs, and conductivity rises

sharply (corresponding jumps are shown in Fig. 10.22).

The occupancy of internode states by cations may also critically rise, thanks to

restructuring of crystal near the PT. Thus basic lattice is changed by such a way that

cations are “squeezed out” in the internodes, thereby increasing electrical conductiv-

ity. The sharp increase in cation mobility at temperatures higher than PT is condi-

tioned by the decrease in energy barriers between equivalent unoccupied internodes.

Depending on structural features of the superionic conductor, its conductivity

may be not only isotropic, but also anisotropic. Strong anisotropy of ionic conduc-

tivity is possible in the peculiar directions of a crystal, along which potential barriers

are substantially reduced (down to�0.1eV). One-dimensional superionic conductiv-

ity occurs at PT in crystals such as Li2Ti3O7, LiAlSiО4, and others. However, super-

ionic conductivity in silver iodide-type crystals (AgI, Rb4AgI5, and similar others) is

almost independent of the direction (as it is expected in the crystals of cubic

symmetry).

At present, many crystals are studied with superionic conductivity, in which the

ions Li+, Na+, Ag+, and H+ take part. A separate but important case of such conduc-

tion is the protonic conductivity. Stripped of electronic shell, the ion H+, as compared
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with other cations, has not only a smaller mass, but also a very small dissipation sec-

tion during collisions. This causes unusually high mobility of protons that determine

electrical conductivity of many crystals that hold hydrogen (ice, some of order-

disorder-type ferroelectrics, polymers, etc.).

Technical devices with high ionic conductivity (solid electrolytes with jump in

conductivity near superionic PT) are used in automation and instrumentation. Solid

electrolytes are applied as elements of subminiature high-energy accumulation.

Using solid electrolytes, it is possible to create miniature electrical capacitors. Many

properties of superionic conductivity, such as transport of electrode material (usu-

ally, silver electrode can be transferred through a crystal), allow the use of superionic

crystals in the electrical elements (i.e., as electricity limiters or electric quantity

measurement). The jump in ionic conductivity near the superionic PT can be used

to control temperature.

Posistor effect in ferroelectric semiconductors. The anomaly in temperature

dependence of electrical conductivity in ordinary ferroelectrics near ferroelectric

PT usually is small; this transition does not change significantly the general nature

of activation-type increase in conductivity σ(T) with increasing temperature. The

point is that energy gap (forbidden band) in most ferroelectrics is large, and, there-

fore, they usually are considered as dielectrics but not as semiconductors.

However, by intense doping, it is possible to prepare ferroelectric semiconductors

with rather high conductivity. In some special cases near ferroelectric Curie point a

sharp decrease in conductivity can be seen (i.e., 102–104 times) with increasing tem-
perature. Experimentally observed multiple increases in resistivity in the doped

BaTiO3-type ferroelectric ceramics are shown in Fig. 10.25.
FIG. 10.25

Critical changes in specific volume resistance of ceramic posistors, which are doped with

neodymium and manganese ferroelectric solid solutions: 1—BaTiO3; 2—Ba(Ti,Sn)О3;

and 3—(Ba,Pb)TiO3.
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Unusual temperature change in conductivity in some ferroelectric semiconduc-

tors near transition from the polar (ferroelectric) phase to the nonpolar (paraelectric)

phase is observed in posistors (thermistors with positive temperature coefficient).

This effect can be seen in the doped oxide-type ferroelectric of barium titanate type.

Increased conductivity (rather low resistance) is peculiar only to the polar phase
(when temperature is below the Curie point). At transition to the nonpolar (paraelec-

tric) phase, the electrical resistance increases significantly. Typical to dielectrics and
semiconductors, it is possible to observe activation-type conductivity increase only

at further heating to temperatures much higher than the Curie point.

As shown in Fig. 10.25, resistance of posistor increases only within a narrow tem-

perature range—close to PT. It should be noted, that ferroelectric Curie temperature

can be changed using solid solutions; for instance, in ferroelectric solid solutions (Ba,

Pb)TiO3 transition temperature can be increased from 400 up to 600K, while in solid

solution (Ba,Sг)TiO3 it falls down from 400 up to 200K. Thus ceramic ferroelectric

semiconductors with effect of posistor can be elaborated for a very wide temperature

range—depending on technical requirements for such elements in electronics.

To obtain posistor, the ferroelectric ceramics based on barium titanate are com-

monly used. In the BaTiO3 doped by donor ions (La3+, Dy3+, or Ce3+) that partially

replace Ba2+ (or using ions Nb5+ to replace ions Ti4+), the conductivity in the polar

phase, as compared with pure BaTiO3, increases billions of times (σ�10�2S/cm).

Doped by lanthanum, BaTiО3, after synthesis and sintering at high temperature, turns

into a semiconductor with n-type conductivity, providing the electronic transfer
between titanium ions (Ti4+ and Ti3+).

The crystallites in this doped barium titanate ceramics are conductive as in the

ferroelectric, so also in the paraelectric phase. However, boundaries between crys-

tallites are able to change their electrical conductivity—depending on the presence or

absence of spontaneously polarized state. This is because during synthesis of

ceramics the oxygen is adsorbed by crystallite surface; next, oxygen diffuses into

the pores in crystallite boundaries. Additional oxygen atoms attract electrons from

nearby Ti3+ ions; these electrons are captured in traps, and thus the insulating barrier
arises between crystallites that can decrease conductivity of crystallite surface. At
the same time, the regular structure inside crystallites prevents diffusion of oxygen

and always remains highly conductive.

Below PT temperature (in BaTiO3 it is 130°C) its perovskite structure is sponta-
neously polarized, and this polarization creates a neutralizing effect for electrons

on the borders of crystallites, capturing in the traps in the boundaries of crystallites.

For this reason, the resistance of doped BaTiO3 in its ferroelectric phase is low,

because boundaries of crystallites have the same conductivity as the crystallite’s

body. From this model it is clear that in the ferroelectric single crystal posistor effect
is impossible.

Above PT barium titanate becomes paraelectric, and spontaneous polarization

disappears. The boundaries of crystallites become insulating, and the resistivity

increases, demonstrating posistor effect. Thus the increased conductivity in the polar
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phase of ferroelectric semiconductor of barium titanate type is due to the activating
influence of spontaneous electrical field.

Practical applications of posistors—ceramic elements with low “cold” resistance

and high “hot” resistance—are very wide ranging. Posistors are used in thermal-

controlling systems, in measurement technology, in devices that prevent thermal

and current overload, in engine-starting systems as well as in auto-control systems.

They are also used to protect overvoltage and short circuit currents, being connected

in series with the load: the current in posistors is limited by a safe level.

Thus posistors can be considered as one different type of thermistors—ceramics

elements, characterized by a large-temperature coefficient of resistance.
10.5 PHASE TRANSITIONS IN LIQUID CRYSTALS
It is essential for condensed matter physics that, in addition to crystals and liquids,

the “transitional” state exists—between the crystalline (anisotropic) and the liquid

(isotropic) substances. The liquid crystal (LC) can be defined as a thermodynami-

cally stable physical state, in which material maintains the anisotropy of physical

properties as solid crystal and the fluidity that is characteristic of liquid. This unusual
combination of properties enables widespread use of LC in modern electronics and

computer sciences.

It is assumed that LC state arises in the process of PT, which is degraded in a

certain temperature range. As is known, near PT the structure of a matter (and most

of its physical properties, conditioned by this structure) is ready to be changed even

under a weak influence of external fields—electrical, thermal, magnetic, optical, or

mechanical. This compliance of the LC opens a possibility for easy control of the LC

physical properties (first of all, control its optical properties) even in case of very

small controlling impact (mainly, using electrical field).

The first observations of liquid crystalline mesomorphic properties in some

organic compounds were carried out by F. Reinitzer about 100years ago. Currently,

thousands of organic compounds are known that are capable of forming LCs. The

main requirement of mesomorphism manifestation is, particularly, the geometric
anisotropy of molecules that should be anisometric, for example, being a long and

relatively narrow “spindle.” Depending on the geometry of molecules, LC can pass

through one or more mesophases (intermediate phases) before the final transition

into isotropic liquid occurs. Transitions to intermediate states can be caused by tem-

perature change (thermotropic mesomorphism) or due to influence of solvents (lyo-

tropic mesomorphism).

Classification of liquid crystals. Intermediate LC phase that exists between

crystal and normal liquid is often called the mesophase. The main types of molecular

ordering are the nematic (“filamentary”), the smectic (“polygonal”), and the chole-
steric (“screw”). The term “nematos” in Greek means “thread” and describes the 1D

ordering; “smegma” (also Greek word) means “soap” and corresponds to 2D order-

ing; it is typical for flat layers of strongly bounded molecules. A spiral structure in
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orientation of LC molecules is observed in the derivatives of well-known organic

matter—cholesterol.

The nematic liquid crystal (NLC) can be described by 1D arrangement of aniso-

metric molecules that form in a volume of NLC, the ordered “swarms”; they consist

of a large number (105–107) in the same way as targeted molecules (Fig. 10.26A).

Definite order in the direction of these molecules that tends to be installed parallel

to a common axis is characterized by the unit vector (or director) n. This is true for all

macroscopic anisotropic properties of NLC that are described by tensors. Orientation

of director in a space might be arbitrary; however, in practice, it is determined by

weak forces (such as orienting effect of vessel walls). Optical axes n and 2n are

indistinguishable. For example, if any separate molecule has a permanent dipole

moment, the number of dipoles directed “up” is exactly equal to the number of

dipoles directed “down,” so that the NLC system is usually not pyroelectric (or

ferroelectric).

The anisometric form is in the geometrical shape of molecule that is very differ-

ent from the usual quasispherical form; usually this shape looks like the elongated

ellipsoid. In the arrangement of such molecules, any long-range ordering is absent,

and, therefore, the X-ray photograph does not show Bragg-type diffraction peaks.

Correlation in the centers of gravity of neighboring molecules is similar to
FIG. 10.26

Temperature dependence of thermal conductivity χ, speed of sound vsound, and heat capacity
at constant pressure Cp for LCs in sequential process of change mesophase state; location of

LC molecules is also shown: (A) nematic phase, NLC; (B) smectic phase, SLC; and

(C) cholesteric phase, ChLC (SC—solid crystal, IL—isotropic liquid).
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correlation that exists in common liquid. At that, NLC can flow, in spite of very high

viscosity.

The dual nature of nematic phase (which is similar to liquid, but optically is uni-

axial) is most evident in the nuclear magnetic resonance (NMR) spectrum. Uniaxial

symmetry is defined by the splitting of lines (that is absent in conventional isotropic

liquid phase).

The smectic liquid crystals (SLCs) are characterized by a 2D molecular arrange-

ment. In smectic crystals, a stable flat of molecular layers exists with clearly defined

distance between the layers that can be measured by X-ray diffraction. In the volume

of SLCs these layers may be deformed (bent or curled), while maintaining strict

ordering between the nearest neighboring molecules (Fig. 10.26B).

There are many types of smectics, representing a variety of macroscopic textures

that vary during optical observations. In the SLC classification, three basic cases are
defined by letters A, B, and C. For example, many cholesterol compounds during

temperature decrease are converted into the smectics of type A, the main character-

istics of which have the following features:

• thickness of layers is close to full length of molecules;

• the “centers of gravity” of molecules have no long-range ordering inside

of each layer;

• each layer is a 2D liquid;

• system is optically uniaxial with optical axis z, perpendicular to the plane

of layers;

• directions z and �z are equivalent.

Requirement of sustainability between layers imposes a condition: rot n¼0. Thus

spiral arrangement of molecules is prohibited.

In smectics of A and C types each layer behaves as a 2D liquid, and smectics C is

optically biaxial. In smectics of B type the layers reveal periodicity and strength of

2D solids, that is, similarity to crystalline film. Of the three major phases of smectics,

type B in most ordered.

The cholesteric liquid crystals (ChLCs) in their molecular ordering resemble

nematics, but they have spiral orientation of spindle molecules that spontaneously

form the helical structure (Fig. 10.26C). In this case, long-range ordering in the

arrangement of “centers of gravity” of molecules is absent; they are primarily ori-

ented along axis, oriented by the director n.

However, n has no fixed direction in a space. If the helix axis is denoted through z,
then n will be described by the following components:

nx ¼ cos q0z+ϕð Þ,
ny ¼ sin q0z+ϕð Þ,

nz ¼ 0:
Direction of helix axis and angle ϕ are arbitrary; therefore, in the ChLCs another type

of symmetry violation is observed different from that in NLC. Their structure is
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periodic on z and, since n and2n again are equivalent, the spatial period L is a half-

step spiral:

L¼ π=|q0|:
Typical value of L is about 3000Å that is much larger than molecules. As L is com-

parable with the wavelength of light in the visible optic range, this periodicity leads

to light scattering. For helical arrangement of molecules, a condition rot

n¼�q0n 6¼0 can be implemented.

For different substances, the temperature range of the LCD phase existence can

be from 0.01 to 100 degrees. In this temperature range the PTs occur, determining

many characteristics of LCs. The first transition is partial fusion of solid crystal with
appearance of one of LC phases; in Fig. 10.26, this process is shown symbolically:

PTs can occur between different mesomorphic phases. Finally, with increasing tem-

perature, any partial ordering of anisometric molecules disappears and LC is trans-

formed into the isotropic liquid (IL).

Typical consecutions of PTs in LCs with temperature increase are:

SC!SLC!NLC! IL

SC!ChLC!NLC! IL

SC!SLC-A!SLC-C!…! ChLC! IL

SC!SLC!ChLC! IL

(SC—solid crystal, SLC—smectic phase; NLC—nematic phase; ChLC—cholesteric

phase; IL—isotropic liquid).

In some cases, LCs might have several smectic and cholesteric phases. All tran-

sitions between phases are usually reversible. In the neighborhood of mesomorphic

conversions almost all physical properties of substance change, including electrical

and optical properties; therefore the features of LC are very pliable. They vary

greatly in case of applied external fields, as well as under changing of light condi-

tions, temperature, and pressure. This is caused by the imbalance between molecular

interactions in LCs that is facilitated by the proximity of PT, when the structure of

LCs is unstable.

Therefore LCs are organic compounds, whose molecules are anisometric, having

sufficient “hardness” (that ensures stability of their orientation) and attracted to

each other by the forces of electrical nature (dipole, quadrupole, and more complex

interactions). Temperature interval ΔT of LC mesophase existence in pure com-

pounds is usually small. For example, in LC MBBA (p-methoxybenzaldehyde–p0-n-
butylamine), temperature interval ΔT might exist from 20 to 46°C; in other LC

EBBA (p-ethoxybenzalden–p0-n-butylamine), interval ΔT is from 35 to 80°C. How-
ever, in the mixtures of LCs this interval might be extended; for example, in the

eutectic MBBA-EBBA LC phase exists within the range, acceptable for technical

applications from �16 to +55°C.
There are several theories to explain the existence of LC state, and the most com-

mon is the “statistical” theory. According to this theory, the most important factor

that determines the likelihood of LC state is forces of intermolecular interaction,
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quite essential in some substances. At the transition from the anisotropic crystal state

to the LC state, molecules save their orientation (e.g., parallel to each other).

Typically, molecules of a substance, which have a tendency to form LCs, have

anisometric form. In such cases, the contribution of dipole-dipole component of

intermolecular interaction increases significantly, resulting in the additional gain

in energy that stabilizes the LC state. The magnitude of this energy is largely char-

acterized by the anisotropy of molecule polarizability that is characterized by

Δα¼αk�α?, where αjj and α? are polarizabilities in the directions parallel and per-

pendicular to the long axis of molecule.

Among a large variety of types of LCs, NLCs occupy a special place in terms of

their practical significance. They differ from other types of LCs by the uniaxial

ordering, in which molecules are arranged in such way that their long axes are par-

allel to each other.

In some substances, their molecules themselves might have no anisometric prop-

erties, but these molecules have the ability to aggregate with other molecules by the

creation of partially ordered structures. This ability, called the mesagenic, is the

main feature of some LC compounds. The study of relationship between molecules

and their building is the topic of mesagenic chemistry that is the basis of LC science.

One of most important parameters that characterizes mesagenic ability of any com-

pound is the width of the temperature range of mesophase existence. It is determined

that the more different the energies of intermolecular interaction are, directed along a

long axis of molecule and perpendicular to it, the wider is the temperature range of

mesophase.

For theoretical consideration of PT in the LCs Landau’s theory of PTs is usually

applied. As already mentioned, this theory is based on the assumption of analytical

capabilities to describe the state by using a conception of ordering parameter, as well
as the analytical description of free energy in the neighborhood of phase transition.

Full theoretical description of PT requires experimental determination of ordering

parameter and main thermodynamic properties of LC material.

The ordering parameter is not the same for all types of mesophase states. For

example, to describe transitions from the nematic phase to the isotropic phase, the

anisotropic part of diamagnetic susceptibility tensor as the ordering parameter can

be used. However, to describe transition from the nematic phase to the smectic phase

(A-phase), two quantities are usually used: the density of molecules in smectic layers

and relative displacement of layers.

Experimental methods for determining order parameters are very complex and

cumbersome. The measurement of thermodynamic parameters of LCs near their

PTs in most cases indicates that these are first-order transitions (transitions, accom-

panied by a jump in heat capacity with latent heat calorification). Therefore exper-

imental determination of transition temperature needs to use the differential thermal

analysis (DTA) method, when heat capacity change is determined by experimental

investigation of object while temperature changes.

Detection of PTs in the LC requires using the highly sensitive thermal detectors,

as the released transition heat PT is very small (in order of magnitude less than
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melting heat of other organic substances). For example, the transition “nematic phase

¼) isotropic liquid” is accompanied by melting heat of no >4J/m3, while the tran-

sition between “smectic A ¼) smectic C” phases is characterized by the energy

change of only 0.4J/m3. It is also worth noting that most studies should be provided

only with very small amounts of LC substance.

Requirements of high sensitivity of detection and strict linearity in the change of

temperature measuring unit should also take into account that a large group of LC

compounds is characterized by multiple transitions in a narrow temperature range.

It should be noted that near the PT all parameters of material are very sensitive to the

presence of impurities in LC material.
10.6 LARGE PARAMETERS AND GIANT EFFECTS
IN ELECTRONIC MATERIALS
During the last decades, several physical phenomena in electronic materials have

been discovered; some of them relate to the large values of main parameters in mate-

rials that many times exceed usual values. In part, but not always, these anomalies are

due to the proximity of the substance to PTs.

In somematerials such electrophysical effects were found to be tens and hundreds

of times stronger than previously known effects: researchers named these effects

“giant effects.” A number of these unusual effects already found important applica-

tions in science and technology, allowing design technical devices with very high

performance.

Large electrical and magnetic parameters [8]. As is well known, main electro-

dynamic parameters of material are electrical conductivity σ (characterizing charge

transfer in electrical field), dielectric permittivity ε (describing polarization, or

charge separation in electrical field), andmagnetic permeability μ (determining mag-

netic induction in matter in magnetic field). Recently it was discovered that in some

materials these parameters can take very large values that can find important appli-

cations in electronics.

Hyperconductivity can be seen in some conductors at low temperatures. It is dif-

ferent from the well-known superconductivity. In fact, conductivity σ is proportion-

ality factor between electrical current and applied field: j¼σE. However, in the

superconductors, E¼0; therefore σ might be considered as infinite quantity. In

hyperconductors σ is a definite quantity but very large. Unlike superconductivity,

which can be destroyed by a strong magnetic field (Meissner effect), hyperconduc-

tivity cannot be suppressed by a magnetic field.

At certain temperatures used in cryogenic technologies, namely, 77K (liquid

nitrogen boiling point), hyperconductor Be shows higher conductivity than any other

metal (even Cu), and this large σ can be applied in cryogenics. More convenient for

presentation is not σ but resistivity ρ¼1/σ (Fig. 10.27): it can be seen that ρBe<ρCu
at 77K. In the same way, at cryogenic temperatures below 40K the best hypercon-

ductor is Al: ρAl<ρCu.



FIG. 10.27

Temperature dependences of resistivity of Cu, Be, and Al.
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The reason for such behavior of beryllium is its largest concentration of free elec-
trons among metals: ne�2.5�1023cm�3. However, at room temperature, resistivity

of beryllium significantly surpasses resistivity of copper, which is explained by the

peculiarities in electron scattering in crystal lattice. However, at low temperatures,

this scattering significantly decreases, and the density of electrons becomes the pre-

vailing factor. However, below 40 K the mechanism of electron scattering on lattice

defects comes out on top, and again ρBe becomes larger than ρAl and ρCu. At much

lower temperatures, the aluminum becomes the best hyperconductor that ultimately

is followed by its PT into the superconducting phase at lower temperatures.

Large dielectric permittivity is of great interest in electronics, as it allows

decreasing the size of device components. In usual solid dielectrics ε¼2–10; how-
ever, in the ferroelectrics a record value of high-frequency permittivity εmax in the

Curie point was previously set: in BaTiO3 εmax�10,000 and in SrTiO3 εmax�40,000

(Fig. 10.28). Yet, the industry needs such components that have thermally stable
FIG. 10.28

Permittivity temperature dependences in PMN (1), Ba(Ti,Sn)O3 (2), BaTiO3 (3), and SrTiO3 (4).
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parameters in technical interval of about 200–400K, as very high peak values εmax in

ferroelectrics usually cannot be used in practice.

Therefore in high-capacity miniature capacitors the ferroelectrics with diffused
phase transition are applied: they have ε � 10,000 in the relevant temperature inter-

val (�60…+80°C). These relatively thermostable ferroelectric ceramics consist of

many ferroelectric districts with a different PT temperature that widens ε(T) depen-
dence, curve 2 in Fig. 10.28.

Recently the relaxor ferroelectrics are elaborated in which ε>50,000

(Fig. 10.29, curve 1). The physical reason for such large permittivity in relaxors

is the creation of such a structure in which highly polarizable nanoclusters stably
exist and contribute greatly to ε(T) over a wide temperature range (e.g., in compound

PMN¼Pb(Mg,Nb)O3). As was shown in Chapter 9, the theoretical limit for high-
frequency permittivity in solids can be estimated as εmax�3�105. It corresponds,

firstly, to εmax in ferroelectric Curie point and, secondly, to instantaneous value of

permittivity that can be achieved while switching of ferroelectric polarization (from

hysteresis loop εmax�∂P/∂E).
Large magnetic permeability is a very important parameter for application of

soft magnetic materials. It should be noted that most materials in nature have very

weak magnetics with μ �1: in diamagnetics μ�1 and in paramagnetics μ	1; cor-

respondent magnetic inductance B dependences on magnetic field H are shown in

Fig. 10.29A. Ferromagnetics demonstrate hysteresis in the B(H) dependence where

μmax�∂B/∂H is seen at coercive field.

High magnetic permeability is observed in the ferrites: μmax¼100–1000 and in

the ferromagnetic metals: in nickel μmax�500 and in iron μmax�10,000. The record

value of μmax�80,000 was obtained previously in the FeNi alloy, and for a long time

this material has been used in electrical engineering. Recently, using nanotechnol-

ogies, this value has been surpassed by >10 times. Physical mechanisms of such

super high permeability are, firstly, superparamagnetism (Fig. 10.29A) and, sec-

ondly, technologically made metallic spin glasses (nanoscale glassy alloys exhibit

excellent soft magnetic properties).
FIG. 10.29

Magnetic induction on field dependence in: (A) diamagnetic (1), paramagnetic (2),

ferromagnetic (3); superparamagnetic (4); (B) Metglas.
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At present, the maximal permeability of�1,000,000 is obtained inMetglas that is

an amorphous alloy produced by rapid solidification process. As shown in

Fig. 10.29B the very narrow rectangular hysteresis loop provides giant

μmax�∂B/∂H. In the disordered glassy-like structures, electronic spins can be easily
reoriented even in a small magnetic field.

Giant effects in electronic materials [8, 9] are not only interesting for the phys-
ics of materials but can be successfully used in technical devices.

Giant electrostriction. In the dielectric electrical polarization P¼ε0χE always is

accompanied by a reversible shift of connected electrical charges—electrostriction:

x¼R E2, where x is strain, E is electrical field, and R is coefficient of electrostriction.

This square dependence of strain on the electrical field in majority of dielectrics is

very small (x�10�5 in a strong field). Therefore in most cases the electrostriction is

negligible as compared with the linear piezoelectric effect: x¼d E, where d is the

piezoelectric module.

Nevertheless, electrostriction increases in the dielectrics that have large permit-

tivity (such as paraelectrics and ferroelectrics), but it grows to an outstanding value in

the relaxor ferroelectrics, for instance, in the PMN type: (Pb,Mg)NbO3 and its solid

solutions (Fig. 10.30).

Electrostriction proportional to square of permittivity in the PMN-type crystal ε is
large, so their deformation in electrical field can reach even 2%, which is much more

than that in best piezoelectrics. In contrast to the piezoelectric effect, in strong elec-

trical fields giant electrostriction shows no hysteresis, which is one important advan-

tage of active dielectric application in microactuators.

Besides ceramics and crystals, exceptionally large electrostrictive response (up to

4%) is observed in the electron-irradiated polyvinylidene fluoride-trifluoroethylene

copolymer.
FIG. 10.30

Electrically controlled deformation: 1—electrostriction in crystal PZN-4.5% PT;

2—piezoelectric effect in ceramics PZT-8.

https://en.wikipedia.org/wiki/Permeability_(electromagnetism)
https://en.wikipedia.org/wiki/Amorphous_metal
https://en.wikipedia.org/wiki/Alloy
https://en.wikipedia.org/wiki/Melt_spinning
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Giant magnetostriction is used for application in sound generators, for vibration

suppression, for direct and indirect control of motions, etc. This effect produces a

change in the shape and size of magnetic sample when it is put in the magnetic field.

Previously, magnetostriction was considered as a very weak effect (induced strain is

only 0.003% in usual magnetic).

However, in the rare earth metals (terbium, dysprosium, and some of their alloys)

the giantmagnetostriction effect is discovered at a point where strain is greater in two

orders of magnitude (Fig. 10.31). The reason for this is that the electronic clouds of

atoms that form lattice of such crystals are highly elongated, and they behave as non-

deformable. Under the influence of external magnetic field, electronic clouds of such

atoms forcefully rotate and push adjacent atoms, thus strongly deforming entire lat-

tice. The largest magnetostriction effect is seen near the morphotropic boundaries

between different phases. The alloy TbFe2 (with 2.6% strain) is now considered

as the best magnetostrictive material in modern engineering.

Giant magnetocaloric effect is manifested as essential cooling (or heating) of

magnetic material in the external magnetic field. Magnetic cooling has an extensive

area of possible applications at normal conditions with good prospects in production

of refrigerators. The point is that magnetic refrigerators can work at room tempera-

ture; these devices use magnetic materials with low Curie temperature (like gadolin-

ium) or various alloys of rare earth elements. The operating temperature range is

convenient to apply the magnetocaloric effect in devices such as home refrigerator,

air conditioner, as well as in various devices for cooling. Compared to traditional

gas-compression refrigeration, magnetic refrigeration is safer, more compact, has

a higher cooling efficiency, and it is more environmentally friendly, because it does

not use harmful ozone-depleting coolant gases.
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Giant magnetocaloric effect is typical for intermetallic compounds based on the

rare earth elements, such as silicide-germanide Gd5(Ge,Si)4. These materials provide

promising applications in magnetocaloric cooling. Yet there are other prospective

materials: Fig. 10.32 shows giant magnetocaloric effect in the compound

La0.8Na0.2�xMexMnO3 (0�x�0.15). In this composition, a second-order magnetic

PT from ferromagnetic to nonmagnetic state occurs at Curie temperature (Tc),
wherein temperature Tc can be controlled in the range from 335 to 260K when

the sodium deficiency rate is increased. The ability to tune temperature transition

close to room temperature is possible by changing sodium-deficiency content

as well.

Giant thermistor effects in critistors and posistors. Fig. 10.33 demonstrates dif-

ferent types of thermistors that use R(T) dependence. In metals, this effect is positive

and small, curve 1; in semiconductors the thermistor effect is much larger and neg-

ative, curve 2.
The critistors use very temperature-sensitive material near dielectric-metal phase

transition (curve 3 obtained for vanadium dioxide). Composition based on VO2

below 60°C is close to dielectric, but above 70°C it exhibits metallic behavior. In

a rather narrow temperature range, the resistance of critistor falls thousands of times.

At that, the critical temperature of critistor can be changed by selecting its chemical

composition.

The opposite but also critical R(T) dependence is seen as the posistor effect in
ferroelectric semiconductors (curve 4 in Fig. 10.33) [1]. Ferroelectric ceramics of

BaTiO3 type, owing to intense doping, acquires low resistance. With temperature

increase near the Curie point TC, this material shows a sharp increase in resistance
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(102–104 times). This effect is described in detail in Section 10.4. The technical

application of posistor ceramic elements with low “cold” resistance and high

“hot” resistance is very wide.

Field-controllable switching elements [9]. Electrical and magnetic fields may

act as the controlling factors on resistivity, which changes into tens and hundreds

of times.

From the beginning, a possibility of resistivity control bymeans of electrical field
is considered. A decrease in resistance in thousand times corresponds to the PT of

“insulator-metal” type, for example, in the VO2, as shown in Fig. 10.33 curve 3.

Below temperature �60°C, vanadium dioxide is wide-gap semiconductor (almost

dielectric), but above 65°C it exhibits metallic behavior: energy bandgap in VO2

almost disappears. As a result, in a narrow temperature interval, resistance of

VO2 decreases rapidly, as shown in Fig. 10.35A, curve “E � 0.”

However, if external electrical field is applied to VO2 (usually thin film is used

with interdigital electrodes), then the transition from “dielectric” phase into

“metallic” phase will start at a much lower temperature, for example at �45 °C,
and under controlled field, resistance decreases by thousand times, as seen by vertical

line 1!2 in Fig. 10.34A. The displacement of the PT in electric field is the physical

basis for vanadium oxide application as the switching elements: externally applied

electrical field promotes charge carrier liberation from their bounded state; thus fast

switching takes place at the conducting state. Electrically controlled metallic-type

optical reflection from VO2 film is used in electrically controlled optical devices.

Further, the possibility of controlling resistivity by means of a magnetic field is

considered. One example of effective magnetic control of resistance can be seen in

the perovskite structure manganites (Fig. 10.34B). These manganites are an



FIG. 10.34

Resistance control by external fields: (A) electrical field manages R in VO2; (B) magnetic field

manages R in (La1�x,Cax)MnO3 (dotted line 1!2 shows large fall in resistance).
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important family of oxides having colossal magnetoresistance. Of particular interest
are the compounds of (La1�x,Cax)MnO3 type, where concentration of Ca can vary

over a wide range: 0�x�1, wherein physical properties of manganite change dra-

matically. This system undergoes a series of PT with different types of ordering:

magnetic, structural, electronic.

In contrast to the previous case of VO2 electrical resistance control, in case of

(La1�x,Cax)MnO3 the low-temperature phase is highly conductive (“quasimetallic”)

with the ferromagnetic ordering but the high-temperature phase becomes a wide-

band semiconductor (nearly dielectric).
The mechanism of magnetic ordering is double exchange: Mn , O, Mn (dou-

ble electronic transfer via intermediate oxygen ion). Parallel ordering of spins in the

“M”-phase corresponds to low resistance, Fig. 10.34B, left part, H¼0 (low resis-

tance appears also at external magnetization). When temperature rises, growing ther-

mal movement in manganite lattice destroys the double-exchange mechanism, and

the ferromagnetic-type (conducting) phase turns into the nonmagnetic (nearly dielec-

tric) phase; correspondingly, the sharp increase in resistance occurs.

However, at increased temperature magnetic ordering in manganite can be

forcibly returned by the external magnetic field applying (see Fig. 10.34B, curve
H>0). At that, the resistance falls down 100 times, as shown by the dotted line

1!2. Induced by magnetic field “insulator-conductor” transition is otherwise called

colossal magnetoresistance. Grate change in resistivity under controlled magnetic

field (Fig. 10.35A) can be used in many electronic devices.

Thus both electrical and magnetic fields may shift transition temperature of the

“insulator-conductor” PTs, leading to enormous changing of resistivity. Therefore,

high-conductivity phase may be seen at higher temperature and low-conductivity

phase at lower temperature.



FIG. 10.35

External field control resistivity: (A) magnetic field influence at La0.67Ca0.33MnОx near the

Curie point, (B) electrical field influence at ZnO varistor (1) and SiC varistor (2).
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However, a large change in resistivity does not obviously correspond to the PT, as

it was in the case of VO2 critistors or in BaTiO3 posistors or in (La1-x,Cax)MnO3mag-

netoresistor. An interesting example of resistance change by 1000 times by means of

the electrical field application is shown in Fig. 10.36B. A Significant jump in resis-

tance (millions of times) is observed in the ceramic dielectric-semiconductor

elements—the varistors, for example, in the polycrystalline carborundum (SiC) or

in zinc oxide (ZnO).

Similar to low levels, at high levels of electrical field, varistors are characterized

by the linear (ohmic) behavior: j�E. In comparatively small electrical field, varistor

has high resistance (close to dielectrics), but in a strong electrical field the resistance

of varistor sharply decreases, and it becomes a typical semiconductor. Also, no sign

of electrical breakdown in this material can be seen: a large increase in current is

naturally restricted and cannot destroy varistor. Moreover, the characteristic j(E)
FIG. 10.36

Magnetic field manages resistivity: (A) suppressing of the Kondo effect (at H¼0) by external

magnetic field (H>0); (B) magnetoresistance in Fe-Cr multilayered structure.
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in varistors is reversible; increased current passing through varistor remains stable.

Therefore the phenomenon of varistors is quite different from conventional electrical

breakdown.

The features of carborundum varistors and zinc oxide varistors are similar, but for

zinc oxide the change in resistance is much more. Zinc oxide shows some other

advantages, associated with its broadband gap, a consequence of which is the high

breakdown voltage and the utility in high-power operations. For these reasons, ZnO

can be used as components in many electronic devices: in the piezoelectric nanogen-

erators, luminescent materials, light-emitting diodes, lasers, as well as in various sen-

sors, solar elements, etc.

Giant magnetoresistance is the effect observed in thin-film structures, com-

posed of alternating layers of high conductive ferromagnetics and low conductive

antiferromagnetics. External magnetic field strongly decreases the resistance of

such layers.

It is necessary to note that positive magnetoresistance (Gauss effect) is always

observed in metals and semiconductors, because it is conditioned by the twisting

of electron trajectory in the magnetic field. But the negative magnetoresistance is

a feature of ferromagnetics only: ordering of domains reduces the possibility of scat-

tering of conduction electrons on domain walls.

However, the giant effect (being also negative) far surpasses in size of all men-

tioned effects. To explain the giant magnetoresistance effect, it is better to start by

considering the Kondo effect. This effect is seen in nonferrous metals, containing

impurities of magnetic ions. The scattering of conduction electrons by magnetic

impurities becomes noticeable only at very low temperatures, resulting in the uncom-

mon increase in electrical resistivity when temperature decreases curve H¼ 0; at

low temperatures electron scattering on phonons is no longer significant).When tem-

perature tends to zero, magnetic moments of impurities can capture some of free

electrons, creating the opposite-spin clusters (whose structure is similar to that of

antiferromagnetics). Effective mass of moving through these clusters of electrons

largely increases, so the resistivity increases as well curve H¼O).

Applied magnetic field changes the opposite orientation of coupled spins into

their parallel orientation that partially suppresses the Kondo effect (Fig. 10.36A,

curve H>0). At that, the negative magnetoresistance appears (shown in

Fig. 10.36A) by the vertical dashed line. Therefore, at low temperatures, when back-

ground noise from phonons does not hinder observing this effect in a pure form, the

Kondo effect testifies that opposite orientation of adjacent spins promotes the

increase in resistivity, while external magnetic field gives rise to negative magneto-

resistance by means of magnetically induced parallel orientation of spins. To realize

the giant magnetoresistance effect in normal circumstances, several methods are

developed (see Chapter 6); see Fig. 10.36B for an example. In the magnetic field,

nanosized mixture of paramagnetic material (Cr) ferromagnetic (Fe) changes its

resistivity, because magnetic field orients spins in parallel and in this way enhances

conductivity.

https://en.wikipedia.org/wiki/Ferromagnetic
https://en.wikipedia.org/wiki/Electrical_resistivity
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1. Degrees of freedom of atomic particles in solids can be divided into two groups.

For some degrees of freedom the interaction energy of particles Uint is small in

comparison with thermal motion energy kBT. WhenUint≪kBT then appropriate
degrees of freedom behave as the collection of particles, that is, as “almost ideal

gas,” and applicability to use model of quasiparticles is justified. Conversely,
when Uint≫kBT, then appropriate degrees of freedom are usually ordered, but

this movement, too, can be described by introduction of quasiparticles.

2. If interaction energy Uint�kBT, then theoretical description of solids becomes

complicated: this case usually corresponds to the phenomenon of phase
transitions (PT). At specified temperature, in almost all substances the change

of physical properties is not gradual but abrupt: this spasmodic change is

the phase transition. The “liquid-vapor” (vaporization) phase transition is

A typical example, and another example is the “liquid-crystal” (crystallization)

transition. Both transitions refer to first order (PT-I), in which phases before

and after the transition point differ significantly from each other. One phase

replaces another phase just because it is more favorable energetically. To

make this change happen, the potential barrier, separating these phases, should

be overpass. Therefore, in the neighborhood of first-order phase transition

overcooling (or overheating) is expected.

3. In condensed state physics, mainly PTs within same physical state are
investigated (in solid crystals or liquid crystals (LCs)). Of particular interest are

PTs at which a new property appears in crystal, for example spontaneous

electrical moment in case of transition from the paraelectric to ferroelectric

phase. This type of transition is related to PT-II: at Curie temperature (T¼TC)
one phase ceases to exist, but it is replaced by another phase. At a point of

such transition both phases cannot be distinguished, but when system moves

away from this point, the difference between properties of phases gradually

increases.

4. Near the point of second-order phase transition crystal behaves in such a way

that conventional concept, based on quasiparticles, cannot adequately describe

experimental situation. Normally, exactly closest neighboring particles in a

crystal are considered as the strongly interacting particles, while the interaction
of distant particles might be neglected. However, near the phase transition, in

contrast, the interaction of neighboring particles compensates one another, and,
on this background, the interaction of those particles, which are at a distance
from one another, appears dominant. This interaction has a special character:

the probability of collective movements is larger than the probability of

individual movements. Abnormal increased role of collective movements is

confirmed by experiments: at temperature T¼TC crystal shows maximum of

specific heat, permittivity in ferroelectric tends to infinity as well as
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permeability in ferromagnetic (in superconductors conductivity actually

becomes infinite), and so on.

5. PTs in solids do not obviously correspond precisely to second-order type of

transitions (PT-II), but sometimes in some respects they can approach phase

transition of first order (PT-I). Energy in the vicinity of PT-II varies

continuously, so any temperature hysteresis should be absent; at that,

derivatives of energy functions are changed abruptly. However, in case of PT-I,
just the basic energy functions of crystal show a stepped changing, and in

the vicinity of a transition temperature hysteresis is observed. These transitions

in solids include the PTs of insulator-metal type, when small conductivity

of dielectric becomes large (almost of metallic type).

6. Microscopic mechanisms of PTs are conditioned by various electrical,

mechanical, thermal, and other interactions in crystals. PTs are very often

caused by the interaction of electronic and phonon subsystems. Therefore such

transition occurs with a significant change as in phonon spectrum, so also

in electron energy spectrum.

7. Macroscopic theory of PTs is based on thermodynamic potential expansion on

the powers of ordering parameter. As the ordering parameter, the most

important characteristic of crystal is selected—which changes at transition. For

example, in most of ferroelectrics the ordering parameter is spontaneous

polarization, in ferroelastics it is mechanical deformation, in ferromagnetics it

is spontaneous magnetization, etc.

8. In ferroelectrics of order-disorder-type behavior of a crystal shows large

microwave absorbance as in the ferroelectric so in the paraelectric phase. With

regard to practical applications, some interest might have strong anisotropy

of microwave absorbance that is possible to use in millimeter and

submillimeter wave polarizers.

9. Ferroelectrics of displacement type above their phase transition practically

have no dielectric dispersion (in paraelectric phase); correspondingly, their

losses above the Curie point are small that might have application in the

microwave tunable devices. Below the Curie point microwave absorbance

of ferroelectrics increases owing to domain wall relaxation (losses in single

domain crystals in displacement-type ferroelectrics remain small).

10. Ferroelectrics with partially disordered structure exhibit the degraded

(diffused) phase transition that is characterized by extended ε(T) maximum.

With few exceptions, ferroelectrics with diffused phase transition are

common solid solutions, characterized by nonuniform allocation of structural

ions. An exceptional case of diffused phase transition crystals is the

relaxor ferroelectrics whose distinctive feature is extraordinary “softening”

in their dielectric, elastic, and optical properties over a wide range of

temperatures.
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11. In relaxor ferroelectrics electrically induced piezoelectric effect is challenging
for many electromechanically controlled devices. Based on relaxors,

electrostrictive actuators are used in precision positioners, miniature ultrasonic

motors, adaptive mechanical dampers, etc. Promising fields of application

of nonhysteresis electrostrictive actuators are mechanically tunable microwave

phase shifters and dielectric filters. An important attribute of most mentioned

electronic devices is their high-low inertia of operation.

12. Relaxor ferroelectrics have large ε in a wide temperature interval; this property

is very important for applications in many electronic devices (micromechanics

and microdrivers). Displacement, produced by actuator, is determined by

value of relaxor ferroelectric permittivity. To estimate the limitations in the

operation rate of relaxor-based electronic devices, frequency dispersion of

relaxor ε should be studied in a wide frequency range. It is assumed that

dominating contribution to relaxor ferroelectric permittivity is

electromechanical coupling of polar clusters. Therefore the quickness of

response in relaxor-based devices is determined by sound velocity of relaxor

ferroelectric.

13. In addition to solid active dielectrics, the liquid-crystal dielectrics are widely
used in electronics. In this case the “transitional” state between crystalline

(anisotropic) and liquid (isotropic) substance is used. Liquid crystal (LC) state

is a thermodynamically stable physical state, in which a matter maintains

anisotropy of physical properties (typical for solid crystals) and can flow (that

is characteristic of liquids). This unusual combination of properties makes a

widespread application of LCs in modern electronics and information

technology. The fact is that LC is in a permanent state of phase transition that is

“blurred” in certain temperature range, making the LC is very sensitive to

controlling fields.

14. Intermediate LC phase (between normal crystal and ordinary liquid) is often

called as the mesophase, and cardinal types of molecule ordering are the

nematic ordering (“filamentary”), the smectic (“polygonal”), and the

cholesteric (“screw”) ordering. In the neighborhood of phase transition,

low-intensity external influences can greatly change electrical, mechanical,

and optical properties of LCs.

15. During the last decades, many physical phenomena in electronics materials have

been discovered; some of them relate to the large values of main parameters in

materials that many times exceed usual values. In part, but not always, these

anomalies are due to the proximity of the substance to the PT. Conductivity,

permittivity, and permeability in some materials can hundreds of times exceed

the parameters of conventional electronic materials.

16. In some materials such electrophysical effects are found that are tens and

hundred times more strongly manifested than previously known effects:
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researchers named these effects “giant effects.” They are giant electrostriction,
magnetostriction, magnetoresistance, magnetocaloric effect, critistor and

posistor effects, as well as controllable by electrical and magnetic field

switching properties of electronic elements.
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anharmonicity, 106

arbitrary waves, 106

Born’s theory of lattice dynamics, 106

Debye’s model of specific heat, 110

Debye’s quantum theory of heat capacity, 106

Einstein’s quantum theory of heat capacity, 106,

109

law of heat capacity constancy, 106

law of specific heat constancy, 106

mass specific heat, 104–105
specific heat, 104–105
volumetric specific heat, 104–105

Crystallography, 13

Crystals

lattice defects in
defect formation, 37

1D defects-dislocations, 43

2D and 3D defects, 44

zero-dimensional (point) defects, 38–39
structural peculiarities of

basic structures of dielectrics, 30

basic structures of semiconductors, 29

coordination polyhedron, 26

covalent crystals, 27

ionic crystals, 27

solid solutions, 35

typical structures of metals, 28

symmetry of

Bravais cells, 18, 19t

Bravais lattices, 17

classes of symmetry, 17

crystallography, 13

crystal syngonies, 20, 20t

Curie principle, 22
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elementary parallelogram, 17

enantiomorphism, 16

highest category of symmetry, 20

highly symmetric crystals, 14

inversion axes, 16

lattice translation vectors, 13

limiting symmetry group, 14, 15f

linear periodic structure, 18–19
lowest category of symmetry, 20

middle category of symmetry, 20

mirror-rotary axis, 14

physical and crystallographic installations, 22

vs. physical properties, 21

point symmetry operations, 13

polar axis, 14–16
reciprocal lattice, 24

rotation symmetry axis, 14

symmetry element, 16–17
symmetry elements and operations, 13

symmetry plane, 14
Curie constant, 233

Curie-Weiss law, 561–562
Current density, 168

Cyclotron effective mass, 479–480
Cyclotron resonance, 479

D

Damped waves, 89f, 90

De Broglie wavelength, 488

Debye model, 320–322
Debye’s model of specific heat, 110

Defect formation

Frenkel mechanism, 38

linear defects, 37

planar defects, 37

point defects, 37

Schottky defects, 38

screw dislocation, 37–38, 37f
structurally insensitive properties, 38

structurally sensitive properties, 38

thermal fluctuations, 38

volume defects, 37

Deformation type-induced polarization, 290

Dember effect, 455–456
Density of elastic energy, 80

Density of thermal energy, 168

Diamagnetics, 279

Diamagnetic susceptibility, 635f, 636

Diamagnetism, 226, 229

Diamond, 53–54
Diamond-type semiconductors, 410–411
Dielectric containing defects, 378
Dielectric crystals, 198

Dielectric losses

classification of, 349, 350f

conductivity, 353–354, 353f
loss tangent, 351–352, 352f
magnitude of, 349

quasielastic polarization, 356–358, 357f
relaxation polarization
Debye equations, 351f, 354

frequency dependence, 354

power density, 354–355
reactive conductivity, 354–355, 355f
temperature dependences of, 355–356, 356f
Dielectric-metal electrode, 366

Dielectrics, 114

Clausius-Mosotti-Lorentz equation, 331–336
dielectric losses, 349–360
electrical polarization (see Electrical

polarization)

electrical properties, 288

electroconductivity in, 360–383
mechanical properties, 287–288
spectroscopy, 358

thermally activated polarizations, 319–330
thermal properties, 287–288
transport phenomena, 288–289

Dielectrics and semiconductors, bonding in,

4–5, 5f
Dielectric spectroscopy

dielectric spectrum, 359–360
dispersion frequency, 360

Kramers-Kronig relations, 358–359
Differential nonlinearity parameter, 296

Differential permittivity, 612f, 613

Differential thermal analysis (DTA)

method, 648

Diffused phase transition, 651

Diffusion, 41

Diffusion coefficient, 42–43
Diffusion transfer, 121

Dipole thermal polarization mechanism

Boltzmann distribution, 321

Debye model, 320–322
electrical field, 319–320
Langevin function, 322

nonlinearity of, 322–323
polar crystals, 320

relaxation time of, 320

Dipole-type structural polar motive, 588, 588f

Direct intrinsic absorption, 457–460
Direct lattice, 24

Discreteness of energy spectrum, 486
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Disordered magnetics

diamagnetism, 229

Lanzheven-Curie paramagnetism, 234

nuclear magnetism, 240

paramagnetism, 232

Pauli paramagnetism in metals, 239

spin of electron, 239

temperature dependence of magnetic

susceptibility, 238

Dispersion forces, 11

Displacement-type paraelectrics, 561

Displacement type PT, 607f, 609–610
Donor-acceptor bond, 8, 411–412
Doped semiconductors, 471. See also Extrinsic

semiconductors

Doped superlattice, 498–499, 499f
Double refraction, 483

Drift velocity, 168

Drude-Lorentz equation, 293

Drude’s model, 181

Dulong-Petit law, 109, 117–118
Durability, 71

Dynamic computer memory (DRAM) devices, 349

Dynamics of electrical polarization

electrical conductivity, 337, 337f

far-IR (ionic lattice) polarization
displacement-type paraelectrics, 347–348,
347f

electromagnetic waves, 346

electronic and ionic contributions, 345, 345f

integrated dielectric films, 349, 349t

ionic crystal permittivity, 343, 344f

longitudinal oscillations, 343

mechanisms of losses, 350, 351f

one-dimensional crystal, 343

oscillator model, 342

permittivity of, 344–345
quasielastic displacements of ions, 342

quasielastic lattice polarization, 343

semiconductors of AIIIBV and AIIBVI, 348

sensitive indicators, 350

temperature dependence of permittivity,

346–347, 347f
fast and slow polarization processes, 336–337
geometrical capacity, 336–337
optical polarization, 340, 341f

relaxation polarization

complex value, 339–340
Debye dispersion formula, 338

equilibrium state, 338–339
reactive current, 339

relaxation character, 338
surface charge density, 338

saturation current, 337

Dynamic theory of Born, 112

E

Edge dislocation, 43

Effect of magnetoresistance, 173

Eight electrothermal effects, 514–515
Einstein’s quantum theory of heat capacity, 106,

109

Elastic energy, 534

Elasticity, 71

Elastic stiffness and elastic compliance

bulk modulus of elasticity, 80–81
Cauchy relations, 81

compressibility, 80

density of elastic energy, 80

Hooke’s law, 78

Lame parameters, 82

Poisson’s ratio, 81

shear modulus, 81

Young’s modulus, 81

Elastic waves in crystals

acoustoelectronics, 88

amplification, 91

anisotropic crystals, 91

bulk piezoelectric elements, 85, 85f

damped waves, 89f, 90

discrete atomic chain, 84

dispersion relation, 84

elastic continuum, 83

elastic force, 83

elastic piezoelements, 87, 88f

longitudinal waves, 84

Love waves, 89f, 90

MEMS, 87

nondamping waves, 90

piezoconsole, 87–88, 88f
piezoelectric motor, 86f, 87

piezoelectric transformer, 85–86, 85f
piezoelectronics, 86

Rayleigh waves, 89, 89f

SAW filter, 91, 91f

space-time periodic process, 82

Stoneley waves, 89f, 90

ultrasonic and hypersonic surface waves, 91–92
wave propagation, 82–83

Electrets

residual (quasipermanent) polarization of
additional activation impact, 552

electroelectrets, 555

electrostatic field, 552
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heterocharge formation, 553

homocharge formation, 553

photoelectrets, 554–555
polarized state exists, 551

radioelectrets, 555–556
thermoelectrets, 553–554, 554f
triboelectrets, 556

thermally stimulated depolarization, 556

Electrical aging, 294

Electrical boundary conditions, 521

Electrical breakdown

in crystals
AHCs, 389, 389f

criterion of, 391

defect-free crystals, 390

dielectric samples, 387–388, 387f
elastic shock wave, 390

electrical field, 389–390
experimental data, 387f, 388

exponential increase, 388

features of, 389

longitudinal optical mode, 390–391, 390f
one-avalanche mechanism, 391

optical (laser) breakdown, 392–393
pinching, 391

temperature, 391

thin films, 386f, 391–392
in dielectrics

dependence of, 393–394, 393f
electrodegradation (aging)

(see Electrodegradation (aging) of

dielectrics)

fragile dielectrics, 396

frequency, 396, 396f

physics of, 394

second kind, 394

solid dielectrics, 393

temperature of, 394–395, 395f
thermal equilibrium, 394

general regularities of

dependence of, 386–387, 386f
development time of, 387

electrochemical processes, 385

electrothermal breakdown, 384–385
first stage, 384

identity of principal mechanism, 386

maximal voltage for, 386

second stage, 384

volt-second characteristic, 385, 385f

local destruction, 383–384
Electrical charge transfer, 168

Electrical conductivity of heavy-fermion systems,

195–196
Electrical conductivity of metals

carriers, 168

charge transfer description, 170

current density, 168

density of thermal energy, 168

drift velocity, 168

effect of magnetoresistance, 173

electrical charge transfer, 168

electrical current, 168

frequency dependence, 170

Hall’s effect, 172

hyperconductivity, 176

mobility, 168

Ohm’s law, 168

response time and free path of electrons, 174

skin effect, 175

temperature dependence, 169

Wiedemann-Franz law, 169–170
Electrical current, 168

Electrical polarization, 59

capacitance measurements, 309

conductivity, 291–292
dielectric contributions, 307, 308f, 310, 310f,

312f

dielectric losses, 293

dielectric spectra, 311

dielectric spectroscopy, 307

dipoles thermally activated polarization, 306

dynamics of, 336–349
electrical breakdown, 293

electrochemical breakdown, 294

electroconductivity, 290–291
electronic thermally activated polarization, 305

electrothermal breakdown, 293–294
field-induced electrical moment, 301

impact ionization, 292

ionic crystals, 311

ionic thermally activated polarization, 305

Lorentz dielectric permittivity, 309–310
macroscopic description of, 289
dielectric anisotropy, 295f, 297–298
dielectric constant, 296

dielectric nonlinearity, 296–297
dielectric susceptibility, 294–295
electrical induction, 295

tensor of permittivity, 298–301, 300f
migratory polarization, 306–307
molecular crystals, 311

polar dielectrics, 308–309
quasielastic (see Electronic quasielastic

polarization)

quasielastic polarization, 301–304, 302–303f
relative permittivity, 290
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Electrical polarization (Continued)

relaxation dispersion, 293

space-charge, 290

surrounding cations, 305

thermal chaotic motion, 305

thermally activated jumps, 304

thermally supported, 290

Electrochemical breakdown, 385

Electrochemical potential, 125–126
Electroconducting, 628f, 629

Electroconductivity in dielectrics

charge carrier classification, 362, 363f
classification of, 362, 363f

electronic conduction, 362

ionic conduction, 363

SCLC, 364

charge carrier generation, 364–365
charge carrier injection and nonlinear

conductivity

bipolar injections, 376, 380–381
electronic emission into vacuum, 377

metal-insulator, 377

monopolar injections, 376–380
Ohmic conductivity, 376

SCLC, 376

electronic conduction, 366–367, 366f
frequency dependence of conductivity

delay of slow polarization, 381

plasma resonance, 383

ionic conductivity

in crystal, 367

electrolytes, 367

experiment, 367

movement of, 367

potential barriers, 368–369, 368f
supported by electrical field, 368

surface conductivity, 370–372
temperature dependence of, 369–370, 370f

mechanisms of charges transport, 365–366,
365f

mobility of electrons, 373

polaron (hopping) electrical conductivity, 374

Electrodegradation (aging) of dielectrics, 385

current density, 398–399, 398f
dielectric durability, 397

direct voltage, 397

durability of, 396f, 397

F-centers, 399

inorganic dielectrics, 397–399
irreversible, 397

reversible, 396

solid dielectric, 398

thermally activated processes, 397
titanium-containing ceramics, 399

Electroelectrets, 555

Electroinsulating, 628f, 629

Electromechanical coupling

coefficient, 533

in piezoelectric, 533–537
Electronic paramagnetic resonance (EPR), 238

Electronic properties of metals

band theory of metals, 185

classic electronic theory of metals, 180

Fermi energy level, 182

Fermi surface, 183–184
quantum distribution of electronic gas, 181

Electronic quasielastic polarization

Bohr’s model, 313–314, 313f
definition, 303, 311

energy band theory, 315

Gauss system, 314

least inertial polarization mechanism, 312–313
negative ions, 314

permittivity, 315

semiconductors of diamond structure, 315

universal mechanism, 312–313
Electronic semiconductors, 471

Electronic thermal conductivity, 446

Electronic thermal polarization

chaotic movement, 326

F-centers, 328

photoactivation, 328

relaxation time of, 326–327
rutile, 327, 327f

weakly bounded electrons, 326

Electronic-type semiconductor, 444

Electron-phonon interaction, 209

Electrons, 121–122
in atoms
Bohr radius, 147

Coulomb force of attraction, 146

electronic cloud, 145

fundamental constants, 146

helium atom, 149

lithium atom, 149

quantum oscillator, 147–148
Schr€odinger’s equation, 146

in crystals

copper, 152, 153f

crystal lattice constant, 150–151, 151f
electronic energy spectra, 151, 152f

emission spectra, 151

Fermi level, 151

overlapping areas, 149–150
sodium atom, 149–150, 150f
valence band, 153
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in metals, dielectrics, and semiconductors

acoustical phonons, 162

adiabatic approximation, 163

bands of electronic spectrum overlap,

164

bands of electronic spectrum without

overlapping, 158

band theory, 163

big orbital space, 156

bosons, 161

comparison of energy bands, 158, 159f

covalent crystals of semiconductors,

160

electrical properties, 154

electron-hole plasma, 161

energy bands, 157

energy-band structure, 155

fermions, 161

long acoustic waves, 162

macroscopic crystal, 163

magnon/spin wave, 162

mechanical properties, 155

one-electron approximation, 155–156
optical phonons, 162

optical properties, 154–155
phonon, 161

photon, 161

quantum fluid, 161

quasicontinuous energy bands, 156

quasiparticle, 161

strongly interacting particles, 160

thermal properties, 155

valence electrons, 159

weakly interacting waves, 160

Electron scattering of metals

on crystal defects, 187

electrons collision with each other, 191

on phonons, 189

resistance caused by scattering, 188

Electrosonic waves, 91

Electrostriction

coefficient, 538, 543

definition, 516

electrical controlling, 539–540, 540f
electrically induced piezoelectric effect,

540–544
electromechanical coupling, 540

electromechanical effects, 521

feature of, 519

giant, 520, 538–539
limits by boundary conditions, 538

linearized electrostriction, 519–520, 541–542,
543f
mechanically free dielectrics, 538

piezoelectric module, 541

quadratic (“even”) effect, 537–538
tensors of, 538

Elementary crystal cell, 263

Elementary movements in solids

adiabatic approximation, 121–122
anions, 121–122
atomic scale, 122–123
bosons, 123

cations, 121–122
collective motions, 122–123
diffusion transfer, 121

electrons, 121–122
exciton, 123–124
fermions, 123

hole, 124

local vibrations, 122–123
magnons, 123–124
movement of structural defects, 121

phonon, 124

photon, 123–124
plasma, 122

plasmon, 125

polariton, 125

polaron, 124

wave clots, 122, 122f

Enantiomorphism, 16

Energy spectrum of electrons, 416, 419–421,
420t

Enthalpy, 96

Entropy, 96

Equatorial effect, 268

Ettingshausen effect, 467, 471–472
Exciton, 123–124
Excitonic absorption, 457, 458f, 463–464, 464f
Excitonic instability, 633

Excitons, 41

thermal conductivity, 446, 448

Explosive electron emission, 167

External photoelectric effect, 453

Extrinsic semiconductors

acceptors, 433–434, 434f
donors, 434–438, 434f, 436–437f
high-purity crystals, 432–433
problems, 433

F

Faraday effect, 482–483, 483f
Far-infrared polarizations, 315–319
Far-infrared region, 465

Fermi-Dirac distribution, 125, 373

Fermi-Dirac energy distribution function, 443
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Fermi-Dirac statistics, 127

Fermi energy, 171, 182

Fermions, 123, 125

heavy, 195

Fermi surface, 183–184
Fermi velocity, 171

Ferrimagnetism, 260–261
Ferrites, 228, 263

based on rare-earth elements, 263

Ferroelastics

acoustic lattice vibrations, 579

definition, 576

gadolinium molybdate, 578

improper ferroelectric, 578–579
lead orthophosphate, 579

mechanical stiffness of, 577

mechanical stress, 577

optical diffraction grating, 579

phase transition, 578–579
spontaneous deformation changes, 577f, 579

temperature dependence, 577f, 579

Ferroelectrics, 509–510, 566–575, 567–568f,
570–571f, 573f, 576f, 580–585

Ferroelectric semiconductors

posistor effect, 642, 642f

Ferrogarnets, 265

Ferromagnetic Curie point, 248, 279

Ferromagnetic phase transition, 258

Ferromagnetism

anisotropy of magnetic properties, 254

antiferromagnetic structures, 241

antisymmetric wave function, 245

collinear magnetic structures, 242–243, 242f
domain structure, 250

exchange integral, 245

heat capacity, 249

intrinsic magnetic moment, 241

magnetic hysteresis, 253

magnetic sublattices, 241

magnetization curve, 252

magnetocaloric effect, 258

magnetomechanical effect, 243

magnetostriction, 255–256
manganese, 246

Mendeleev’s periodic table, 241

noncollinear magnetic structures, 242–243, 242f
noncompensated antiferromagnetism, 242

nonequivalent positions, 242

overlapping orbitals, 245

permanent magnets, 254

physical nature of, 243

spontaneous magnetization, 245
strong magnetism, 240

temperature characteristics, 246–247
thermal expansion and invar effect, 257

Fick’s law, 42–43
First-order phase transition (PT-I)

Ehrenfest’s classification, 602

entropy, 603–604, 604f
heat Cp(T) temperature dependence, 604

Landau’s theory, 606

overheating and overcooling, 603

polynomial form, 606

thermal expansion coefficient, 604

thermal hysteresis, 603

thermodynamic potential, 602, 603f

Flexoelectricity, 587

Fluorite (CaF2) structure, 31

Fourier’s heat conduction law, 113

Free electronic gas, 28

Free energy, 125–126
Frenkel defects, 641

Frenkel exciton, 41, 464

Frenkel mechanism, 38

Frequency dependence of conductivity, 170

Fullerenes, 55, 56f, 232

Fullerites, 55

G

Gallium arsenide, 426–427, 426f
Galvanomagnetic effects

compression effect, 472

definition, 466

even and odd effect, 467

Hall’s effect, 467–468
longitudinal, 472

magnetoresistance, 470

particle motion, 467

transversal, 471

Galvanothermomagnetic

longitudinal effect, 472

transversal effect, 471–472
Gapless semiconductors, 158

Germanium

bandgap energy profiles, 425f, 426

effective mass tensor for, 424, 424t

intrinsic concentration in, 429, 429f, 432

Giant and colossal magnetoresistance, 275

Giant effects in electronic materials

electrostriction, 652

field-controllable switching elements, 655,

656–657f
magnetocaloric effect, 654, 654f

magnetoresistance, 657f, 658
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magnetostriction, 653

thermistor effects in critistors and posistors, 654,

655f

Giant electrostriction, 520, 538–539, 652
Giant magnetocaloric effect, 258–259, 653, 654f
Giant magnetoresistance, 657f, 658

Giant magnetostriction, 256, 265, 653

Glassy semiconductors, 412

Graphene, 55

Graphite, 54, 232

Gyromagnetic resonance, 264

H

Hall’s effect, 172, 437, 467–470, 470f
Hall sensors, 469

Heat capacity, 97–98
Heat capacity of ferromagnetic, 249

Heat transfer in semiconductors, 446

Helium atom, 149

Heteropolar bond, 8

High-permittivity dielectrics

electronic polarizability, 558

electronic polarization, 559

electronic shell displacements, 558

thermal stable microwave dielectric, 563t
ceramics, 563–564
permittivity and quality factor for, 549t, 563

special quality factor, 563
High-temperature superconductivity (HTS), 211

High-temperature superconductors (HTS), 205

Hole, 124

Hole-type semiconductor, 444

Homeopolar bond, 8

Hooke’s law, 78

Hot probe method, 437

Hund’s rule, 235

Hybrid ionic-covalent bond, 9

Hydrogen bond, 12, 64

Hyperconductivity, 176

I

Ideal gas of magnons, 144–145
Impact ionization, 292

Improper ferroelectrics, 578–579, 615
Indeterminacy principle, 375

Indirect bandgap semiconductors, 426

Indirect intrinsic transitions, 457, 460–462,
460–462f

Inelastic scattering of neutrons, 140

Inert gas crystals, 33–34
Inorganic crystalline semiconductors

AIII BV compounds, 411–412
AIII BV1 compounds, 412

AIVBVI compounds, 412

amorphous, 412–413
binary compounds, 411

chemical compound semiconductors, 410–411
conductors and dielectrics, 409

monoelement semiconductors, 410

oxide glassy semiconductors, 412

silicon carbide (SiC), 412

ternary compounds, 411

Inorganic dielectrics, 294, 397–398
Insulator-to-metal transition

definition, 629

energy-band theory, 630

model of excitons, 633

Mott model, 632

one-electron approximation, 630

vanadium oxide, 630–631, 631f
Wigner model, 632

Integral of movement, 419

Integrals of motion, 418–419
Interacting nearly impenetrable charged spheres, 6

Interband absorption, 457, 462–463, 462f
Interband magneto-absorption, 481

Internal force field, 419

Internal photoelectric effect, 454

Intrinsic absorption

direct, 457–460
indirect, 457, 460–462, 460–462f
valence bond photoionization, 458

Intrinsic polarization, 588

Intrinsic semiconductors

band diagram and flat model, 427, 428f

concentration of electrons and holes in, 432

definition, 431

electronic and hole conductivity components,

430–431
Fermi level in, 444

generation and recombination, 431

thermal ionization, 428–429
valence bond violation, 429

Invar alloys, 283

Invar effect, 257

Invar-type metallic alloys, 257

Inverse piezoelectric effect, 517, 527–533
Inversion in time, 225

Ion-electron emission, 167

Ionic bond, 5–6
Ionic (far IR) polarization, 315–319
Ionic quasielastic polarization, 311, 316–317
Ionic residues, 2

Ionic thermally activated polarization, 305
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Ionic thermal polarization mechanism

electrostimulated local diffusion, 325

equiprobable positions of, 324, 324f

nonlinearity of, 325–326
relaxation time, 326

saturation of, 326

structural defects, 323

Irreversible dielectrics, 288

Isomorphism, 36

Isothermal permittivity, 551

J

Josephson effects, 209

K

Kikoin-Noskov effect, 478–481, 478f, 481f
Kinetic energy, 96

Kinetic processes in semiconductors

electrical conductivity, 438f
charge carrier scattering, 442

drift velocity, 438

in electrical field, 445

electron and hole mobility, 442–443, 443f
Fermi level, 443–445
generation and recombination of charge

carriers, 439–441
thermal conductivity, 438f

bipolar, 446–447
electron, 446

excitons, 446, 448

heat transfer, 446

phonon, 446

photon, 446–447
thermoelectric effects, 438f

mechanisms of, 448–449
Peltier effect, 450–451
Seebeck effect, 448

Thomson effect, 451

Kohn anomaly, 637

Kondo effect, 169, 658

L

Lame parameters, 82

Landau diamagnetism, 231

Landau’s theory, 605

Langevin function, 322

Lanthanoid compression, 236

Lanzheven-Curie paramagnetism, 234

Lattice defects in crystals

defect formation, 37

1D defects-dislocations, 43

2D and 3D defects, 44
zero-dimensional (point) defects, 38–39
Law of equipartition, 106–107
Law of specific heat constancy, 106

Least inertial polarization mechanism, 312–313
Left-handed materials (LHM), 58

Liddeyn-Sachse-Teller relation, 558, 561–562
Light absorption mechanisms

excitonic, 457, 458f, 463–464, 464f
impurity absorption, 457, 458f, 463

interimpurity, 457

intraband, 462–463, 462f
intrinsic absorption
direct, 457–460
indirect, 457, 460–462, 460–462f
valence bond photoionization, 458

phonon absorption, 465

plasma absorption, 457, 458f, 465

Linear double refraction, 267

Linear electromechanical phenomena, 514

Linear expansion coefficient, 98

Linearized electrostriction, 519–520, 520f,
541–542, 543f

Linear pyroelectric, 566

Linear thermal expansion coefficient, 179

Liquid conductors, 165

Liquid crystals (LCs)

in phase transitions, 601–602

ChLCs, 645f, 646

definition, 644

mesagenic, 648

mesomorphic properties, 644

mesophases, 644

multiple transitions, 649

NLC, 645, 645f

ordering parameter, 648

phases, 647, 650f

SLCs, 646

statistical theory, 647–648

Lithium atom, 149

Lithium niobate crystal, 539, 540f

Local vibrations, 122–123
London’s penetration depth, 207

Longitudinal galvanothermomagnetic effect, 472

Lorentz dielectric permittivity, 309–310
Lorentz model for local field calculation

continuous medium, 333–334
macroscopic field, 334

permittivity calculation, 335

physically infinitesimal volume, 334

polar molecule, 335

solid isotropic dielectrics, 335

temperature parameter, 336
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Lorentz oscillator model, 620

Lorenz number, 169–170
Love waves, 89f, 90

Low ionization energy, 2

Lithium-ion batteries, 62

M

Magnesium, 28, 28f

Magnetically hard nanomaterials, 272

Magnetic cooling, 258

Magnetic electronics, 222

Magnetic field, 222–223
Magnetic field sensors, 173–174, 471
Magnetic field strength, 223

Magnetic flux, quantization of, 207

Magnetic hysteresis, 253

Magnetic induction, 223

Magnetic moment, 223

Magnetics

antiferromagnetic, 228

antiferromagnetic interaction, 259

axial vector, 224–225
diamagnetism, 226

disordered
diamagnetism, 229

Lanzheven-Curie paramagnetism, 234

nuclear magnetism, 240

paramagnetism, 232

Pauli paramagnetism in metals, 239

spin of electron, 239

temperature dependence of magnetic

susceptibility, 238

ferrimagnetism, 260–261
ferrites based on rare-earth elements, 263

ferromagnetic, 227

ferromagnetism

anisotropy of magnetic properties, 254

antiferromagnetic structures, 241

antisymmetric wave function, 245

collinear magnetic structures, 242–243, 242f
domain structure, 250

exchange integral, 245

heat capacity, 249

intrinsic magnetic moment, 241

magnetic hysteresis, 253

magnetic sublattices, 241

magnetization curve, 252

magnetocaloric effect, 258

magnetomechanical effect, 243

magnetostriction, 255–256
manganese, 246

Mendeleev’s periodic table, 241
noncollinear magnetic structures, 242–243,
242f

noncompensated antiferromagnetism, 242

nonequivalent positions, 242

overlapping orbitals, 245

permanent magnets, 254

physical nature of, 243

spontaneous magnetization, 245

strong magnetism, 240

temperature characteristics, 246–247
thermal expansion and invar effect, 257

field strength, 223

giant magnetostriction, 265

inversion in time, 225

low-inertia reorientation, 221–222
macroscopic examination, 225

magnetic dipole, 221

magnetic electronics, 222

magnetic field, 222–223
magnetic moment, 221

magnetic semiconductors and dielectrics,

265–266
magnetization, 223

magneto-optical phenomena, 266

microscopic processes, 225

monocrystalline ferrites, 265

moving charges, 221

nanomagnetic materials

computer memory devices, 272–273
giant and colossal magnetoresistance, 275

interstices, 274

magnetically hard nanomaterials, 272

magnetoelectronics, 274–275
ratio of surface to volume, 269

soft magnetic nanomaterials, 269–270
tunneling magnetoresistance, 278

nuclear demagnetization, 225

nuclear magnetic resonance, 225

paramagnetics, 226–227
permanent magnets based on rare-earth alloys,

264

polar vector, 224–225
rare-earth microwave ferrites, 264

Magnetic semiconductors and dielectrics, 265–266
Magnetic sublattices, 241

Magnetite, 263

Magnetization, 59, 223

Magnetocaloric effect, 258

Magneto-dielectric composites, 262

Magneto-dipole mechanism, 256

Magnetoelastic effect, 256–257, 283
Magnetoelectrets, 556
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Magnetoelectrical ceramic composite material, 58

Magnetoelectronics, 274–275
Magneto-optical effects

birefringence, 483

electrical properties at oscillations, 484–485
Faraday effect, 482–483, 483f
impurity magnetoabsorption, 481–482, 482f
interband magneto-absorption, 481

magnetoplasma phenomena, 483–484
optical phenomena, 484

photoelectromagnetic effect, 478–481, 478f,
481f

Magneto-optical Kerr effect, 267–268
Magneto-optical phenomena, 266

Magnetoplasma resonance method, 483–484
Magnetoresistance effect, 173

Magnetoresistive Gauss effect, 470–471
Magnetostriction, 255–256, 283
Magnons, 123–124

antiferromagnetics, 144, 144f

Bohr’s magneton, 141

Bose-Einstein condensation, 144

conductive electrons, 145

electronic spin precession, 142–143
ideal gas of magnons, 144–145
integer spin, 143–144
intrinsic property, 141

long-wave acoustic phonons, 142–143
one-dimensional crystal, 142, 142f

ordered magnetic crystals, 141

source of a magnetic field, 141

source of the electrical field, 141

spin waves, 142

temperature dependence, 145, 145f

Mass specific heat, 104–105
Maxwell-Boltzmann distribution, 125

Maxwell-Boltzmann statistic, 125

Maxwell distribution, 126

Maxwell law, 466

Mechanical boundary conditions, 521–522
Mechanical properties, 71

continuous homogeneous medium, 72

durability, 71

elasticity, 71

elastic stiffness and elastic compliance, 78–82
elastic waves in crystals, 82–92
failure, 71

Hooke’s law, 72

mechanical strain tensor, 75–78
mechanical stress tensor, 72–75
MEMS, 71

of metals, 180
plasticity, 71

wave propagation, 71–72
Mechanical strain tensor

elastic deformation, 78

inelastic deformation, 78

intrinsic property, 77

limit of proportionality, 78

linear strain, 76

one-dimensional model, 75–76, 76f
perfectly elastic body, 78

“pure shear” strain, 77

residual deformation, 78

second-rank tensor, 76–77
thermal deformation, 77

thermal expansion, 77

three-dimensional model, 75–76, 76f
two-dimensional model, 75–76, 76f

Mechanical stress tensor

field tensor, 74

imaginary hyperboloid, 74

material tensors, 74

one-dimensional model, 72–73, 73f
shear stresses, 74

static equilibrium, 72

surface acoustic waves, 73

three-dimensional model, 72, 73f

two-dimensional model, 72, 73f

Mechanisms of lattice thermal conductivity, 115

Mechanoelectrets, 556

Meissner effect, 206, 206f

Meridional Kerr effect, 268

Mesagenic, 648

Mesophases, 644–645
Metacoverings, 61

Metafilms, 61

Metal bond, 4

Metallic luster, 167

Metals, 113

defining features of, 166–168
electrical conductivity
carriers, 168

charge transfer description, 170

current density, 168

density of thermal energy, 168

drift velocity, 168

effect of magnetoresistance, 173

electrical charge transfer, 168

electrical current, 168

frequency dependence, 170

Hall’s effect, 172

hyperconductivity, 176

mobility, 168
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Ohm’s law, 168

response time and free path of electrons, 174

skin effect, 175

temperature dependence, 169

electronic conductivity, 165

electronic properties of metals and Fermi surface

band theory of metals, 185

classic electronic theory of metals, 180

Fermi energy level, 182

Fermi surface, 183–184
quantum distribution of electronic gas, 181

electron scattering

on crystal defects, 187

electrons collision with each other, 191

on phonons, 189

resistance caused by scattering, 188

liquid conductors, 165

mechanical properties, 180

special electronic states

band theory and heavy fermions, 196

electrical conductivity of heavy-fermion

systems, 195–196
heavy-fermion system features, 202–203
magnetic properties of heavy-fermion metals,

194–195
metals with intermediate valence, 192

specific heat in metals with heavy fermions,

193

specificity of rare-earth metals, 198

valence instability of rare-earth elements, 199

superconductivity

anomaly of heat capacity at phase transition,

207

electron-phonon interaction, 209

high-temperature superconductivity, 211

Josephson effects, 209

magnetic field influence, 205–206
Meissner effect, 206

quantization of magnetic flux, 207

zero resistance, 205

thermal properties

linear thermal expansion coefficient, 179

tensosensitivity, 179

thermal capacity, 177

thermal conductivity, 177

thermoelectromotive properties, 178

very low resistive, 165

Metals with intermediate valence, 192

Metamaterials, 56–62
Microelectromechanical systems (MEMS), 71

Microscopic Lorentz model, 308–310
Microwave magnetic resonance, 264
Microwave photon, 130

Microwave technique, 354

Middle-field theory, 415–416
Migratory polarization

circuit of, 329–330
dielectric contribution of, 330

effective permittivity, 329

for example, 329

frequency dispersion, 307

inhomogeneous dielectric, 329f, 330

macroscopic mechanisms of, 328–329
piezoelectric and pyroelectric textures, 307

space-charged polarization, 306–307, 329, 329f
Miller indices of edge, 23

Minibands, 500

Mobile point defects, 41

Mobility, 168

Molar specific heat, 104–105
Molecular bonds, 11

Monochromatic acoustic waves, 133–134
Monocrystalline ferrites, 265

Monoelement semiconductors, 410

Monomers, 35

Monopolar injections, 376–380
Mott-Gurney law, 378

Mott model, 632

Movement of structural defects, 121

Mudgee-Righi-Leduc effect, 477–478

N

Nanocomposite, 62

Nanomagnetic materials

computer memory devices, 272–273
giant and colossal magnetoresistance, 275

interstices, 274

magnetically hard nanomaterials, 272

magnetoelectronics, 274–275
ratio of surface to volume, 269

soft magnetic nanomaterials, 269–270
tunneling magnetoresistance, 278

Nanomaterials

amorphous materials, 52

Bernal polyhedra, 52, 53f

carbine, 54f, 55

carbon nanotubes, 55, 56f

classification of carbon structures, 53–54, 54f
diamond, 53–54
fullerenes, 55, 56f

fullerites, 55

graphene, 55

graphite, 54

MgO structure, 53, 53f
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Nanomaterials (Continued)

weak van der Waals forces, 55

Neel temperature, 259

Negative index materials (NIM), 58

Negative refractive index, 58, 59f, 60

Negative temperature coefficient, 166

Nematic liquid crystal (NLC), 645, 645f

Nernst-Ettingshausen effect, 474, 475f

longitudinal electrical field, 476

transverse electrical field, 474–476
Nernst’s effect, 467, 472

Nine linear effects, 513, 513f

Noncentrosymmetric dielectrics, 297

Noncompensated antiferromagnetism, 242

Nondamping waves, 90

Nondegenerated doped semiconductors, 469

Nondegenerate semiconductors, 466, 466f

Nonlinearity of ionic polarization, 318

Nonlinear pyroelectric, 566

Nonpolar (simple) covalent bond, 7

Nonpolarized (isotropic) ferroelectric ceramics,

529

Nonselective (indiscriminate) absorption, 462–463
Nuclear demagnetization, 225

Nuclear magnetic resonance, 225

Nuclear magnetism, 240, 278

Nuclear paramagnetism, 233

O

Ohm’s law, 168

1D defects-dislocations, 43

edge dislocation, 43

screw dislocation, 44

One-electron approximation, 465

One-electron band theory, 185

One-electron task, 416

One-ion mechanism, 256

Optical nonlinearity, 296

Optical phenomena in semiconductors

absorption coefficient, 452–453
external photoelectric effect, 453

internal photoelectric effect, 454

light absorption (see Light absorption

mechanisms)

photoluminescence, 453–454
photoresistivity, 454–455, 455f
photovoltaic (Dember) effect, 455–456
reflection coefficient, 452

Optical polarizations, 311–319
Orbital magnetism, 278

Orbital paramagnetism, 233

“Order-disorder” phase transitions, 36
Order-disorder type ferroelectrics, 571, 572t, 573f,

615–617, 616f
Ordering parameter

critical degree of freedom, 607

definition, 608

displacement type, 607f, 609

in ferroelectrics, 607

Landau’s theory, 605

in liquid crystals, 648

macroscopic value, 606

microscopic characteristics, 602

order-disorder type, 607f, 609

temperature dependence of, 608, 608f

thermal motion, 607

zero-rank tensor, 607

Organic metals, 166

Organic semiconductors, 413–414, 413f
Oscillator model and elastic waves, 108

Oscillatory movements, 457

Oxide glassy semiconductors, 412

P

Paraelectrics, 509–510
of displacement type
Curie-Weiss law, 560

displacement-type paraelectrics, 561–562
“order-disorder” type, 560–561
perovskite-type structures, 561

second-order phase transition, 560–561
shell model, 562

soft vibration mode, 561–562
nonlinearity of, 580–585, 583f

Paramagnetics, 226–227
Paramagnetism, 232

Parameter of lattice, 4–5
Pauli paramagnetism in metals, 239

Pauli principle, 630

Peierls prohibition, 211–212
Peltier effect, 450–451
Penrose mosaic, 50, 51f

Perfect dielectrics, 160

Permanent magnets, 254

based on rare-earth alloys, 264

Permittivity frequency dispersion, phase transition

displacement-type ferroelectrics, 420t, 618, 619f,

620, 621f

order-disorder-type ferroelectrics, 615–617, 616f
Perovskite (CaTiO3), 33

Phase transitions (PTs)

with conductivity anomalies
electroconducting or electroinsulating, 628f,

629
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electronic spectrum, 629

insulator-to-metal transition (see Insulator-to-

metal transition)

sudden change in, 628–629, 628f
crystal symmetry, 601–602
in dielectric properties

displacement type, 609–610
ferroelectrics with PT-II, 610, 612–613
morphotropic phase transitions, 622–623, 623f
order-disorder type, 609–610
permittivity frequency dispersion

(see Permittivity frequency dispersion,

phase transition)

relaxor ferroelectrics, 623–624, 624–626f, 628
dielectrics with unstable electronic spectrum

ionic conductivity jump, 640

one-dimensional system, 634

posistor effect in ferroelectric semiconductors,

642, 642f

quasi-one-dimensional metal, 635–639, 635f,
637f

superconducting phase transition, 639–640
two-dimensional system, 634

external influence, 601–602
first-order PTs (PT-I)

Ehrenfest’s classification, 602

entropy, 603–604, 604f
heat Cp(T) temperature dependence, 604

Landau’s theory, 606

overheating and overcooling, 603

polynomial form, 606

thermal expansion coefficient, 604

thermal hysteresis, 603

thermodynamic potential, 602, 603f

giant effects in electronic materials

electrostriction, 652

field-controllable switching elements, 655,

656–657f
magnetocaloric effect, 654, 654f

magnetoresistance, 657f, 658

magnetostriction, 653

thermistor effects in critistors and posistors,

654, 655f

large electrical and magnetic parameters

hyperconductivity, 649, 650f

large dielectric permittivity, 650–651,
650–651f

large magnetic permeability, 651

in liquid crystals, 601–602
ChLCs, 645f, 646

definition, 644

mesagenic, 648
mesomorphic properties, 644

mesophases, 644

multiple transitions, 649

NLC, 645, 645f

ordering parameter, 648

phases, 647, 650f

SLCs, 646

statistical theory, 647–648
lowest nonzero partial derivative, 602

ordering parameter, 602, 605–609
second-order PTs (PT-II)

heat Cp(T) temperature dependence, 604

Landau’s theory, 606

polynomial form, 606

symmetry changes abruptly, 604

temperature dependence, 605–606
thermal expansion coefficient, 604

thermodynamic potential, 602, 603f

solid materials, 601

π-bond, 8
Phonons, 124

absorption, 457, 465

acoustic modes, 133

center of the Brillouin zone, 137–138
chaotic acoustic waves, 133–134
Debye frequency, 133

Debye’s theory, 131

diatomic crystal diamond, 138, 138f

dispersion, 134

electrical force, 136

first Brillouin zone, 133

fluctuations of density, 139

gas of quasiparticles, 131

group velocity, 132–133
inelastic scattering of neutrons, 140

ionic crystal, 135, 135f

longitudinal optical waves, 135, 135f

macroscopic field, 136

monochromatic acoustic waves, 133–134
one-dimensional monoatomic crystal, 131

optical phonons, 134

oscillatory spectrum of aluminum, 140, 140f

permittivity, 136

phase velocity, 132–133
quantization of elastic waves, 139

spatial dispersion, 135–136
thermal conductivity, 446

transverse optical waves, 135, 135f

wave of displacements, 131–132
Phosphorescence, 453–454
Photoconductivity, 414

Photoelectrets, 554–555
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Photoelectromagnetic effect, 478–481, 478f, 481f
Photoelectronic emission, 167

Photogeneration, 431

Photoluminescence, 453–454
Photonic crystals, 62

Photonic/optical metamaterials, 60

Photons, 123–124
“black-body” radiation, 129

corpuscular theory, 129

de Broglie ratio, 130

dispersion law, 130

duality in the nature, 129

microwave photon, 130

neutral particle, 129

spin of a photon, 130

thermal conductivity, 446–447
wave theory, 129

wave vector, 130

zero mass, 130

Photoresistivity, 454–455, 455f
Photovoltaic (Dember) effect, 455–456
Piezoelectric effect

application of, 510–511
barium titanate, 525

electrical boundary conditions, 521

electrically induced, 519–520
electromechanical coupling in, 533–537
electromechanical effects, 516

electromechanical properties, 521

electrostriction, 516, 520, 537–544
intermediate conditions, 522

inverse piezoelectric effect, 517, 527–533
linear effects, 518, 518f

linearity, 519

linearized electrostriction, 519–520, 520f
matrix representation, 522–523
mechanical boundary conditions, 521–522
mechanical stress, 513f, 516–517, 517f
microsystems and microelectronic components,

515–516
modulus components, 522–523, 523t, 524f, 525
practical application of, 515

in quartz, 517–519, 518f, 523, 524f
Rochelle salt crystal, 527

scientific and technical fields of, 510–511
spatial distribution of, 519

technical application of, 515

transverse, 518

Piezoelectricity, 288, 516

Piezoelectric modulus, 517

Piezoelectric square, 530

Piezoelectric transformer, 85–86, 85f
Piezoelectronics, 86, 510

Pinch effect, 472–474
Plasma, 122

Plasma absorption, 457, 458f, 465

Plasma resonance, 465

Plasmon, 125

Plastic deformation, 288–289
Plasticity, 71

Poisson’s ratio, 81

Polar covalent bond, 8

Polar crystals, 10

Polar dielectrics, 308–309
electromechanical and electrothermal properties,

510

ferrielectrics and ferroelastics, 575–579
ferroelectrics
and antiferroelectrics, 566–575
and paraelectrics (see Paraelectrics)

high-permittivity dielectrics (see High-

permittivity dielectrics)

interdependence in

cause of noncentrosymmetry in crystals, 586

experimental illustrations, 589, 590–592f
intrinsic polarity modeling, 587, 588f

micromachining, 510

piezoelectric effect, 510–511, 515–527
primary effects in

elastic, electrical, and thermal effects, bonding

diagram for, 513, 513f

impact-response method, 511, 511t

linear and nonlinear, 512, 513f

magnetoelectrical ffects, 512

trivia/conventional responses, 511

vector field, 512

pyroelectrics and electrets, 544–557
Polar effect, 268

Polariton, 125

Polarization switching, 580

Polaron, 41, 124

Polaron (hopping) electrical conductivity

Coulomb interaction, 374

movement of, 375

self-trapping electron, 374

size of, 374–375, 375f
Polaron-type charge carriers, 362

Polar vector, 224–225
Polymorphism, 21, 36

Polytypicism, 35–36
Posistor effect, 642, 642f

Potassium dihydrogen phosphate (KDP), 311

Potential energy, 96

Power actuators, 265
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Practically free electrons, 170

Precession, 264

Primary pyroelectric, 547

Primary pyroelectric coefficient, 547

Principle of Le Chatelier, 230–231
Protonic conductivity, 641–642
Pseudolinear “piezoelectric effect,”, 541–542
Pure/undoped semiconductors. See Intrinsic

semiconductors

Pyroelectric effect, 541

Pyroelectric group, 22

Pyroelectricity, 288

Pyroelectrics, 509

ancient sources, 545

capacitance of, 551

classes of, 549, 549t

crystal symmetry, 549

current flows, 545

efficiency of, 550

electrical boundary conditions for, 549–550
electrically free, 549–550
electrical phenomenon, 545

electrocaloric effect, 551

electrodes, 545

hidden (or latent) internal polarity, 546

isothermal permittivity, 551

linear pyroelectric crystals, 551

nonlinear, 550

one-dimensional model of, 546–547, 547f
piezoelectric conversion of thermal strain, 547

polar polymers, 551

secondary effect, 548

single-domain structure, 545–546
solid-state energy converter, 544

spatial distribution of, 548, 548f

symmetry and physical mechanism of, 545

temperature change, 546

thermal energy in, 544

tourmaline and lithium sulfate crystals, 545, 547

volumetric piezoelectric effect, 546

Q

Quantization of magnetic flux, 207

Quantum dimensional effects, 488

ballistic conductivity of nanoscale conductors,

494–496, 495f
de Broglie wavelength, 488

density of states, 488–489
energy spectrum of electrons, 489

infinite crystal quantum properties, 489–490,
489–490f

quantum dot, 493–494, 493f
quantum well, 490–492, 490–491f
quantum wire, 491f, 492–493, 493f
resonance tunneling, 496–497, 497f
superlattices (see Superlattices)

Quantum-dimensional levels, 490

Quantum distribution of electronic gas, 181

Quantum-mechanical tunneling, 273

Quantum statistics

Bose-Einstein statistics, 128

collectivization, 128

distribution function, 127

electrochemical potential, 127–128
Fermi-Dirac statistics, 127

laws of quantum mechanics, 126–127
many-boson system, 128

Maxwell-Boltzmann statistic, 125

Pauli principle, 127

quantum gas, 128

temperature of degeneracy, 127

Quasicrystals

“amorphous” inclusions, 51

icosahedral clusters, 49

irrational numbers, 50

linear chain of atoms, 50

long-range order, 49–50
metal glasses, 49

microsymmetry, 52

molten aluminum-manganese, 47–48
order of rotary symmetry axes, 47

Penrose mosaic, 50, 51f

regular convex polyhedra, 48, 48f

shechtmanite, 48–49, 51
structure of, 49

Quasielastic electronic polarization. See Electronic

quasielastic polarization

Quasielastic polarization, 301–304, 302–303f
Quasi-impulse, 418–419
Quasiparticles in solids

different elementary movements in solids
adiabatic approximation, 121–122
anions, 121–122
atomic scale, 122–123
bosons, 123

cations, 121–122
collective motions, 122–123
diffusion transfer, 121

electrons, 121–122
exciton, 123–124
fermions, 123

hole, 124

local vibrations, 122–123
magnons, 123–124
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Quasiparticles in solids (Continued)
movement of structural defects, 121

phonon, 124

photon, 123–124
plasma, 122

plasmon, 125

polariton, 125

polaron, 124

wave clots, 122, 122f

electrons in atoms and in crystals, 145–153
magnons, 141–145
phonons, 131–140
photons, 128–131
quasiparticle statistics, 125–128

Quasipermanent (residual) polarization of electrets

additional activation impact, 552

electroelectrets, 555

electrostatic field, 552

heterocharge formation, 553

homocharge formation, 553

photoelectrets, 554–555
polarized state exists, 551

radioelectrets, 555–556
thermoelectrets, 553–554, 554f
triboelectrets, 556

R

Radioelectrets, 555–556
Radioelements, 58

Rapid solidification process, 651f, 652

Rare-earth metals, 198

Rare-earth microwave ferrites, 264

Rayleigh waves, 89, 89f

Reciprocal lattice, 24–26
Reflection coefficient, 452

Reflection spectrum, 465

Regular convex polyhedra, 48, 48f

Relative permittivity, 290

Relaxation polarization

dielectric losses
Debye equations, 351f, 354

frequency dependence, 354

power density, 354–355
reactive conductivity, 354–355, 355f
temperature dependences of, 355–356, 356f
temperature-frequency dependence, 355, 356f

dynamics of electrical polarization

complex value, 339–340
Debye dispersion formula, 338

equilibrium state, 338–339
reactive current, 339

relaxation character, 338
surface charge density, 338
Relaxor-ferroelectric ceramics, 515–516
Relaxor ferroelectrics, 623–626, 624–626f, 628,

651, 651f

Residual (quasipermanent) polarization of

electrets. See Quasipermanent (residual)

polarization of electrets

Resonance tunneling, 496–497, 497f
Resonant dispersion, 311

Response time and free path of electrons, 174

Righi-Leduc effect, 477

Rochelle salt crystal, 527

Rochelle salt dielectric spectrum, 359–360, 360f
Rutile (TiO2) structure, 31

S

s- and p-electronic orbitals, 185

Schottky defects, 38

Schrodinger equations, 414–415
Screw dislocation, 37–38, 37f, 44
Secondary effects, 515

Secondary electron emission, 167

secondary pyroelectric coefficient, 548

Secondary pyroelectric effect, 547

Secondary radiation, 453–454
Second-order phase transition (PT-II)

ferroelectrics with
nonpolar (paraelectric) phase, 610–612, 611f
polar phase, below the Curie point, 612–613,

612f

PT-I close to PT-II, 613–615, 613–614f
heat Cp(T) temperature dependence, 604

Landau’s theory, 606

polynomial form, 606

symmetry changes abruptly, 604

temperature dependence, 605–606
thermal expansion coefficient, 604

thermodynamic potential, 602, 603f

Seebeck effect, 448

Seeming permittivity, 309

Semiconductors, 113–114
characteristic feature of, 409

conductors and dielectrics, 409

electronic bonds in, 410

extrinsic semiconductors (see Extrinsic

semiconductors)

fundamentals of band theory of
adiabatic approximation, 415

band structure of AIIIBV semiconductors,

426–427, 426f
conduction band of silicon and germanium,

425f, 426
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effective mass, 422–426, 422f, 424t, 425f
electronic energy bands in, 414–415
energy spectrum of electrons, 419–421, 420t
filling of permitted bands, 421–422
one-electron approximation, 415–416
quasi-impulse, 418–419

impurities or defects, 410

inorganic crystalline

AIII BV compounds, 411–412
AIII BV1 compounds, 412

AIVBVI compounds, 412

amorphous, 412–413
binary compounds, 411

chemical compound semiconductors, 410–411
conductors and dielectrics, 409

monoelement semiconductors, 410

oxide glassy semiconductors, 412

silicon carbide (SiC), 412

ternary compounds, 411

insulator property, 409

intrinsic (see Intrinsic semiconductors)

kinetic processes in, 438–451
in magnetic field

compression effect, 472–474
free charge carriers, 465

galvanomagnetic effects

(see Galvanomagnetic effects)

Hall’s effect, 468–470, 470f
magneto-optical effects (see Magneto-optical

effects)

magnetoresistance, 470–471
nonequilibrium conditions, 466

thermomagnetic effects (see Thermomagnetic

effects)

optical phenomena in, 452–465
organic, 413–414, 413f
potential wells, barriers, and tunneling

Broglie wave, 487

discreteness of energy spectrum, 486

isoenergetic tunneling, 486

microparticle in, 486–488
quantum dimensional effects

ballistic conductivity of nanoscale conductors,

494–496, 495f
de Broglie wavelength, 488

density of states, 488–489
energy spectrum of electrons, 489

infinite crystal quantum properties, 489–490,
489–490f

quantum dot, 493–494, 493f
quantum well, 490–492, 490–491f
quantum wire, 491f, 492–493, 493f
resonance tunneling, 496–497, 497f
superlattices (see Superlattices)
Semimetals, 232

Shear modulus, 81

Shechtmanite, 48–49, 51
Shockley-Read-Hall recombination, 441

Short elastic waves, 115

σ-bond, 8
Silicon

bandgap energy profiles, 424, 425f

drift mobility of electrons in, 442–443, 443f
effective mass tensor for, 424, 424t

intrinsic concentration in, 429, 429f, 432

Silicon carbide (SiC), 412

Skin effect, 175

Smectic liquid crystals (SLCs), 646

Soft magnetic nanomaterials, 269–270
Solid solutions, 35

Sommerfeld constant, 240

Space-charged polarization, 306–307
Space-charge (migration)-induced polarization,

290

Space charge limited current (SCLC), 364

Special electronic states of metals

band theory and heavy fermions, 196

electrical conductivity of heavy-fermion

systems, 195–196
heavy-fermion system features, 202–203
magnetic properties of heavy-fermion metals,

194–195
metals with intermediate valence, 192

specific heat in metals with heavy fermions, 193

specificity of rare-earth metals, 198

valence instability of rare-earth elements, 199

Specific heat, 96, 104–105
Sphalerite and wurtzite structures, 29–30
Spin magnetism, 278

Spin of a photon, 130

Spin of electron, 239

Spin paramagnetism, 233

Spin-polarized electrons, 266

Spintronics, 274–275
Spontaneous magnetization, 245

Spontaneous polarization, 566.

See also Pyroelectrics

Spontaneous thermostriction, 257

Stable thermodynamic state of polar dielectrics, 566

Standing waves, 535

Stoneley waves, 89f, 90

Superconductivity of metals

anomaly of heat capacity at phase transition, 207

electron-phonon interaction, 209
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Superconductivity of metals (Continued)

high-temperature superconductivity, 211

Josephson effects, 209

magnetic field influence, 205–206
Meissner effect, 206

quantization of magnetic flux, 207

zero resistance, 205

Superionic conductors, 640–641
Superionic electrical conduction, 366

Superionic transition, 629

Superlattices

acoustic properties of, 500–508
band engineering, 498

composite, 498

definition, 498

doped, 498–499, 499f
energy diagram of, 498, 499f

heterojunctions, 497–498
minibands, 500

solid-state structures, 500

Superparamagnetics, 270–271
Synthetic metals, 166

T

Temperature dependence of conductivity, 169

Tensosensitivity of metals, 179

Ternary compounds, 411

Tetrathiafulvalene-tetracyano-quinodimethane

(TTFTCNQ), 635–636
Thermal capacity of metals, 177

Thermal conductivity, 98

bipolar, 446–447
dielectrics, 114

electron, 446

excitons, 446, 448

Fourier’s heat conduction law, 113

heat transfer, 446

mechanisms of lattice thermal conductivity, 115

metals, 113

of metals, 177

phonon, 446

photon, 446–447
semiconductors, 113–114

Thermal expansion, 98, 257

anisotropy, 102

Debye temperature, 99

linear expansion coefficient, 98

simple model, 99

thermal expansion coefficient, 99, 99f

volumetric coefficient, 98

Thermal ionization, 428–429, 439
Thermally activated polarizations

dipole
Boltzmann distribution, 321
Debye model, 320–322
electrical field, 319–320
Langevin function, 322

nonlinearity of, 322–323
polar crystals, 320

relaxation time of, 320

electronic

chaotic movement, 326

F-centers, 328

photoactivation, 328

relaxation time of, 326–327
rutile, 327, 327f

weakly bounded electrons, 326

ionic

electrostimulated local diffusion, 325

equiprobable positions of, 324, 324f

nonlinearity of, 325–326
relaxation time, 326

saturation of, 326

structural defects, 323

migratory polarization

circuit of, 329–330
dielectric contribution of, 330

effective permittivity, 329

for example, 329

inhomogeneous dielectric, 329f, 330

macroscopic mechanisms of, 328–329
space-charge polarization, 329, 329f

Thermally stimulated current (TSC), 556–557,
557f

Thermally supported (relaxation)-induced

polarizations, 290

Thermal properties

absolute temperature, 97

constant temperature, 96–97
constant volume, 96–97
crystal heat capacity
anharmonicity, 106

arbitrary waves, 106

Born’s theory of lattice dynamics, 106

Debye’s model of specific heat, 110

Debye’s quantum theory of heat capacity, 106

Einstein’s quantum theory of heat capacity,

106, 109

law of heat capacity constancy, 106

law of specific heat constancy, 106

mass specific heat, 104–105
specific heat, 104–105
volumetric specific heat, 104–105

enthalpy, 96

entropy, 96

free energy, 96

heat, 97

heat capacity, 97–98
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internal energy, 96

internal energy of movement, 95

kinetic energy, 96

potential energy, 96

specific heat, 96

thermal conductivity, 98

thermal expansion, 98

anisotropy, 102

Debye temperature, 99

linear expansion coefficient, 98

simple model, 99

thermal expansion coefficient, 99, 99f

volumetric coefficient, 98

Thermal properties of metals

linear thermal expansion coefficient, 179

tensosensitivity, 179

thermal capacity, 177

thermal conductivity, 177

thermoelectromotive properties, 178

Thermoconductivity, 113

Thermocouple, 448

Thermoelastic effects, 514

Thermoelectrets, 553–554, 554f
Thermoelectric effects, 448–450
Thermoelectricity, 438f

mechanisms of, 448–449
Peltier effect, 450–451
Seebeck effect, 448

Thomson effect, 451

Thermoelectromotive (thermal EMF) properties,

178

Thermogeneration, 431

Thermoionic emission, 167

Thermomagnetic effects

longitudinal temperature gradient, 477–478
Nernst-Ettingshausen effect, 474, 475f
longitudinal electrical field, 476

transverse electrical field, 474–476
transversal temperature gradient, 477

Thermostriction, 283

Thomson effect, 451

Traditional theory of ferroelectrics, 566

Transversal galvanothermomagnetic effect,

471–472
Transverse electrical field, 474–476
Traveling waves, 535

Triboelectrets, 556

Tunneling magnetoresistance, 278

2D and 3D defects

physics of modulated structures, 46

surface of a crystal, 45

3D (volumetric) defects, 46
U

Ultrasound emitter, 530

Ultrasound receiver, 530

Uniform heating, 102–103
Unit cell of inverse lattice, 418

V

Valence angles, 7

Valence electrons, 2

Valence instability of rare-earth elements, 199

Valence shells, 2

van der Waals bonds, 11, 64

Van Vlack paramagnetism, 230f, 238

Voigt effects, 483

Volumetric coefficient, 98

Volumetric piezoelectric effect, 546, 588

W

Wannier-Mott excitons, 464

Wave clots, 122, 122f

Wave function, 415–418
Wave propagation, 71–72
Weighting factor, 202

Wiedemann-Franz law, 169–170
Wigner model, 632

Y

Young’s modulus, 81

Z

Zeeman effect, 267

Zero-dimensional (point) defects

atomic crystals, 40–41
diffusion, 41

excitons, 41

impurity atom, 39–40, 40f
interstitial atom, 39–40, 40f
ionic crystal, 40

1D defects-dislocations, 43
edge dislocation, 43

screw dislocation, 44

polaron, 41

Schottky defects, 39, 39f

structure violation, 38–39
2D and 3D defects

physics of modulated structures, 46

surface of a crystal, 45

3D (volumetric) defects, 46

vacancy, 39–40, 40f
Zero-dimensional (0D) nano-object, 493, 493f

Zero energy, 487–488
Zero resistance of superconductors, 205
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