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Preface

The author of the book is Dr. Yuriy Poplavko, a professor at the Microelectronics
Department of the Kiev Polytechnic Institute, founded 120years ago by Dmitry
Mendeleyev and now called the National Technical University of Ukraine named
after Igor Sikorsky. The electronic material sciences is studied and taught at the
department for many years, and Dr. Yuriy Poplavko published in this area several
books in Russian and Ukrainian; this book extends this experience.

Electronic materials science is part of “Solid-state physics” but accommodated to
the electronic engineering. In general, modern materials sciences cover a very wide
range of issues, but in this book mainly the electrical properties of metals, semicon-
ductors, dielectrics, and magnets are described; in particular, those that are of impor-
tance for specialists in electronics.

Electronics is a science and engineering discipline that concerns study and appli-
cation of electrical phenomena inherent in substances (mainly, solids). Based on
these studies, electronic devices are created, as well as the art of electronic circuits
and systems construction is developed. It is also possible to define electronics as a
science of electrons interaction with electromagnetic fields or as a science and meth-
odology of creating electronic materials, instruments, and devices. Theoretical prob-
lems of electronics concern with the study of electrons interaction with macroscopic
fields inside the workspace of an electronic device as well as with the study of inter-
action of electrons with microscopic fields of ions, atoms, molecules, or crystal lat-
tice. Practical problems of electronics boil down to design of electronic devices that
perform various functions, such as conversion and transmission of information, con-
trol, computing as well as the energy supplying.

Thus, electronics materials sciences are important for specialists in electronics. It
should be also noted that at present not only educational, but also monographic lit-
erature, cannot keep pace with rapid development of materials science, in other
words, of an applied solid-state physics. This concerns many areas of knowledge
and technology—from the preparation of materials to the electronic devices. In this
context, nanophysics and nanotechnology are particularly fast-growing areas, and it
is clear that they are never mentioned in the books on solid-state physics issued
20-30years ago.

This book presents considerably simplified mathematical treatment of theories,
while emphasis is made on the basic concepts of physical phenomena in electronic
materials and their simple explanation. Most chapters are devoted to the advanced
scientific and technological problems of electronic materials; in addition, some new
insights of theoretical facts relevant for technical devices are presented. This approach
of presentation is due to the contemporary tendency for mutual penetration and syn-
thesis from different fields that at first glance belong to different areas of science.

First Vice-Rector of National Technical University of Ukraine

“Igor Sikorsky Kiev Polytechnic Institute”

Full Member of the Academy of Sciences of Ukraine Yuriy Yakimenko
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Electronics primarily use crystals, polycrystals (ceramics), glasses, composites,
amorphous substances, liquid crystals, and substances produced by the compaction
of nanocrystalline structures.

Crystals are characterized by well-ordered (near-perfect) internal structure that
can be described by three-dimensional (3D) spatial periodic pattern. Distinctive
property of crystals is their translational symmetry, that is to say, the elementary cell
composed of a few atoms can be “infinitely” translated in all directions, creating a
regular crystal lattice. From outside, crystals are usually separated by the faces, that
is, smooth flat surfaces that converge at strictly defined angles.

Although a crystal may not be shaped like a polyhedron, it will still manifest such
characteristics that will allow distinguishing strictly ordered crystalline state from
any disordered glassy or amorphous state. Crystals are characterized by a certain
symmetry of their physical properties that correspond to symmetry of internal struc-
ture. This symmetry determines many physical characteristics of crystal, especially
the anisotropy of its electrical, thermal, mechanical, and magnetic parameters.
Fig. I.1 shows photos of natural quartz (SiO,) and KH,PO, crystals artificially grown
from aqueous solution, and these crystals are widely used in electronics.

Polycrystals consist of a large number of very small crystals (crystallites).
Although the macroscopic structure of polycrystalline sample seems disordered,
its microscopic component parts (i.e., crystallites or blocks) are high-grade crystals
with perfect microscopic structure, and, therefore, the polycrystal practically has the
same properties as single monolithic crystals (Fig. 1.2).

The glass-like and amorphous-state solids are distinguished by the absence of
any distant (translational) symmetry. Distribution of atoms in these bodies is
characterized not by a long-range ordering (as in crystals) but by the neighbor order-
ing. In the range of several nearby atoms, the structure of glass appears as being
ordered, thus enabling to determine specific coordination number for neighbors.

xiii
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A
FIG. 1.1

Crystals of quartz (A) and ammonium dihydrophosphate (B).
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FIG. 1.2

Scheme of crystallites (grains) with its borders (A) and block (mosaic) structure inside the
crystallites (B).

However, the crosscorrelation arrangement of remote atoms in a glass is violated.
Nevertheless, the ordering of glassy state is higher than that in the amorphous state,
which means that the coordination number is more definite in glass than in the amor-
phous state of a solid.

Other ordered solids also may have great importance for practical use in electronics.
This applies primarily to two-dimensional (2D) systems (like films). In the 2D
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systems, a strictly ordered structure is seen only in plane. If such planar structure is reg-
ularly repeating in the semiconductor chip (creating superstructure), its electronic prop-
erties can be characterized by so-called quantum wells that is a typical characteristic of
2D nanostructures.

Fig. 1.3 shows well-known 2D system—graphene, which has great prospects in
electronics.

FIG. 1.3

FIG. 1.4

Models of nanotubes.
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Accordingly, the linear (wire-like) systems belong to 1D nanostructures, where
translation-like ordering is observed only along one direction (“quantum threads’).
The porous silicon can be, in particular, attributed to these systems. However,
another well-studied quasi-1D structure is shown in Fig. 1.4, carbon nanotubes.

There are also systems whose dimensions along all three orthogonal directions
are commensurate with the distance between atoms. Such zero-dimension (0D) sys-
tems can be considered as “quantum dots,” in which only 10-10° atoms are the
ordered system. Fig. [.5 demonstrates germanium quantum dot grown on silicon sub-
strate. On the area of one square micron, more than 1,000 of these quantum dots can
be accommodated.

FIG. 1.5

Three-dimensional images of quantum dot image using a scanning electronic microscope.
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FIG. 1.6

Zinc oxide nanostructures used in sensors: (A) hexagonal nanocrystals; (B) thin tubular
nanocrystals.
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Nanostructures are characterized by a huge variety of shapes. Fig. 1.6 gives exam-
ples of ZnO nanostructures that can be used in various sensors (humidity, gas, and
even smell sensors).

“Scalp-like” finest ZnO nanocrystals shown in Fig. I.6B actually have an arrange-
ment that is thousands of times denser than human hair.

CONNECTION BETWEEN ELECTRONIC MATERIALS
PHYSICS AND GENERAL PHYSICS

Technical university course of electronic materials science, also known as condensed
matter physics or solid-state physics, usually is studied in the final part of a series of
physics courses so that it can be knowledge gained by students in previous courses of
physics. The mapping between solid-state physics, classical mechanics, quantum
mechanics, and relativistic mechanics is illustrated in Fig. I.7. Solids-state physics
is located between classical and quantum mechanics.

Fig. 1.7 shows that classical physics is a field of research of low velocities v (as
compared with the speed of light c¢) and a certain ratio of Planck constant 7 to the
action parameter S. Planck constant has a physical dimension of “momentum” that
is the product of “energy X time = impulse X length.” The action parameter S char-
acterizes movement of particle when its way is multiplied by its impulse. At that,
both axes used in Fig. .7 are dimensionless, because the dimension of § is the same
as the dimension of Planck’s constant 7.

Condensed matter physics (which is the generalization of solid-state physics) is
based not only on classical mechanics, but also on principal methods and notions of
quantum mechanics (see Fig. I.7). Einstein’s relativistic mechanics is not used in the
solid-state physics, but some of laws of relativistic quantum mechanics are important

v
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mechanics . quantum
‘mechanics

——
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L

FIG. 1.7
Connection between different areas of physics.
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for understanding the nature of magnetism in atoms, thin films, and nanosized struc-
tures. Solid-state physics explores the nature of solid body formation and its structure
(atomic and energetic), as well as its basic physical properties—electromagnetic,
optical, thermal, mechanical, and others—that contribute to widespread use of solids
in electronics, instrumentation, electrical, and mechanical engineering.

Electronic materials science examines rather complex spatial lattices composed
of microscopic particles—atoms, ions, or molecules. The forces acting between par-
ticles have a predominantly electrostatic origin. Although atom as a particle is neu-
tral, its electrical charges are not localized at a single point; they are slightly spaced.
Therefore, during the formation of a solid body, in which atoms are located close to
each other, the opposite charges attract each other, while charges with equal sign
push off. Thus, the forces acting between atoms have both attraction and repulsion
in them. The influence of one atom on the motion of electrons in another atom is such
that the resultant force is always the force of attraction.

The mutual attraction of atoms (or ions, or molecules) that acts at a long distance
is actually the cause of formation and existence of solids. However, the attraction
dominates only until atoms come near each other so closely that they almost collide.
Then the repulsion begins to dominate, as those forces are short-range ones. At a suf-
ficiently small distance, the repulsive force becomes equal to the force of attraction;
then a few atoms or ions form the molecule, whereas a whole set of atoms constitutes
the solid body.

For materials science, it is important to establish the nature of repulsive forces. As
electron is 100,000 times smaller than atom (so as atomic nucleus), from the point of
view of classical mechanics the atom looks like “emptiness,” as the space occupied
by electrons and nucleus is so small. However, solid-state physics (especially in its
important section—crystallography) makes quite a reasonable assumption that atom
(or ion) behaves as slightly deformable but solid ball. For this reason, a widely used
concept in materials science and solid-state physics is the atomic or ionic radius (data
for atoms and ions of various elements can be seen in reference tables). One can
assume that crystal can be represented in a form of regular lattice, composed of solid
balls (ions, atoms, or molecules). High “hardness” of apparently empty atom balls is
explained by quantum mechanics; namely, when atoms approach each other, the pos-
sible space for bound electrons rapidly decreases, because uncertainty of respective
coordinates diminishes. According to Heisenberg’s uncertainty principle, the posi-
tion x and impulse p of a particle cannot be established simultaneously with arbi-
trarily high precision: Ax-Ap > 7/2. The shorter distances between atoms lead to
greater uncertainty in impulse and, thus, to an increase in the magnitude of impulse.
As a result, the kinetic energy of electrons increases as well as their total energy,
which finally results in repulsion. Energetically favorable position for atoms imposes
certain distances between them. Therefore, repulsive force, which provides balance
in the solid structure, has quantum nature.

Basic materials of electronics are semiconductors, metals, insulators, magnetics,
and nanomaterials. Obviously, most important for electronics are their electrical
characteristics, and, among them, electrical conductivity (o). Besides, this parameter
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is very convenient for the classification of solids. The unit for measurement of con-
ductivity is [S/m] (Siemens per meter). It determines current density j [A/mz] in a
given material, arising under applied electrical field £ [V/m] according to Ohm’s
law: j =cE. It is important to note that temperature dependence of conductivity
o(T) is quite different for various types of electronics materials (Fig. 1.8).

In dielectrics and metals, the 6(T) dependences are opposite. While in dielectrics,
with temperature rise, conductivity increases exponentially (because atomic thermal
motion in a matter generates new charge carriers), in metals conductivity decreases
approximately as 7~ ' owing to charge carrier scattering on the lattice thermal vibra-
tions. Therefore, at low temperatures, conductivity in metals becomes very large,
reaching infinity when at zero temperature (in case of superconductivity). In dielec-
trics, in contrast, low-temperature value of ¢ becomes close to zero, because charge
carriers are not generated in the absence of thermal motion (and any radiation
effects). Even at room temperature (7' = 300 K), dielectrics have very low conduc-
tivity (o < 107'°S/m), and for this reason they are often are referred to as “electrical
insulators.”

With regard to 6(T) dependence, metals and dielectrics are qualitatively different
(see Fig. .8). Yet in semiconductors the o(T) dependence looks like in dielectrics;
the difference lies in much higher conductivity of semiconductor. If temperature
becomes higher, this difference becomes less noticeable (in dielectrics and semicon-
ductors, charge carriers appear through the temperature-driven activation process).

Various properties of solid materials are related to the nature of their chemical
bonds and to energy spectrum of electrons. The study of atomic structure and elec-
tronic energy spectra of crystalline and noncrystalline solids is a fundamental prob-
lem of solid-state physics, because it facilitates a conscious search for materials with
predetermined properties.

O 4 log a, (S/m)‘
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FIG. 1.8

Temperature dependence of conductivity in solids: (A) normal scale, (B) logarithmic scale for
o and inversed temperature.
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Distinguishing characteristic of solids is their structural ordering that is depen-
dent on positions of neighboring atoms. The correlation of their position may man-
ifest itself exclusively in the short-range ordering of atoms. In the amorphous solids,
a short-range ordering is significantly limited; sometimes, their atomic regulation
may be restricted to the microcrystallites that are disordered with respect to each
other. However, most solids have the long-range ordering, that is, undistorted crystal
lattice that extends to relatively large areas. A wide variety of possible geometric
structures and spatial relationships in lattices leads to a large number of different phe-
nomena in solids.

Any crystal may manifest some deviation from ideal geometric structure. In addi-
tion, any physical body has a finite size; thus a crystal is always limited, either by
external surfaces or by internal borders between crystallites. This assertion is trivial,
but it is essential for many physical phenomena. It is not possible to entirely neglect
the disturbances in body of a real crystal, caused both by the inclusions of foreign
atoms in main lattice and by the impurities and violations of local lattice periodicity.

The thermal motion of atoms in crystal lattices also leads to a deviation from
strict periodicity. Indeed, periodic lattice reflects not real positions of atoms, but their
imaginary equilibrium positions, where they would find themselves at temperature
of absolute zero; only this case corresponds to the ground state of a crystal. Each
deviation from the ground state means a disturbance. However, at normal tempera-
tures, these deviations are so small that ordered lattice dominantly determines prop-
erties of a crystal.

The properties of electronics materials are, at first approximation, reduced to two
complex problems:

» Determining the ground state of solids and reasons for its stability (i.e., clarifying
the nature of forces that hold atoms in lattices).

» Describing behavior of solids under external influences (i.e., justifying and
predicting various physical properties of solids such as electrical, thermal,
mechanical, etc.).

The first set of complex problems are characterized by terms such as crystal struc-
ture, nature of chemical bonds, cohesion forces, and energy of bonding. However, it
is only at first glance the solution of these problems is independent of behavior of
solids under the external influences. In fact, solution to the first problem can be
obtained only through a settlement of the second problem, because each experiment
implies the disturbance of ground state. Any conclusions about properties of solids in
the ground state can be made after investigation on how it is affected by the applied
electrical field, temperature, exposure to light, etc.
Several external important impacts will be discussed in this book:

* Electrical field. First of all, the charge transfer should be studied, that is, electrical
current. This investigation would enable phenomenological classification of
solids as metals, semiconductors, and dielectrics. The mechanism of electrical
charge transfer in an electrical field also makes it possible to determine



Introduction

mechanisms of conductivity (electronic or ionic). Second, the investigation of
solids in the electrical field enables to study the mechanism of electrical charge
separation, that is, electrical polarization, whose nature may be electronic, ionic,
and dipole.

* Magnetic field. Different responses of solids to the impact of magnetic field
depend on their chemical composition and structure. They give rise to such
phenomena as diamagnetism, paramagnetism, ferromagnetism, and
antiferromagnetism (and their combinations—ferrimagnetism). The widely used
investigation method is the magnetic field application during charge transfer
phenomena study in the electrical field. These additional parameters give rise to a
number of emerging effects and allow to obtain significant information about
main properties of solids.

o Temperature gradient. It determines the direction of energy flow from hotter to
colder areas of solids. It is noteworthy that simultaneously with heat transfer the
electrical charge transfer is also possible. The energy and charge transfer can be
described by various mechanisms.

» [llumination by light. Absorption, reflection, and scattering of light provide
important information about interaction of electromagnetic waves with various
solids.

» [rradiation by electrons, positrons, neutrons, and other corpuscular particles
serve as probe to study various properties of solids.

» Dosed implantation of additives into the crystal lattice enables to get important
information about crystal properties. This might be done through foreign atom
inclusion into crystal structure, formation of vacancies, and atomic substitutions
in a lattice, etc.

SOME COMMENTS ON THEORETICAL APPROACHES

Theoretical description of all the listed phenomena by using any universal model
seems impossible. Therefore it is necessary to apply approximations. Therefore in
specific cases of investigation, the simplified models should be used, which are suit-
able for a given problem. The purpose of various theories of solids should be eventual
reduction of various theoretical facets of phenomena into unified concepts.

One of such concepts is based on the idea of quasiparticles, which are elementary
excitations in the solids. In fact, even in case of very weak impact on solid the intro-
duced energy cannot be delivered exclusively to one element of crystal indepen-
dently of all others. The point is that the strong interaction exists between all
particles of a crystal (atoms, ions, and electrons), and, therefore, the energy, even
being applied to a single particle, should be rapidly distributed between other parti-
cles. This process can be modeled by emission and absorption of quanta of energy
attributed to imaginary particles. The concept of quasiparticles, which corresponds to
various forms of excitation in solids, can be considered as the basic principle for
solid-state physics.

I
XXi
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Thus the object of study is a solid in the excited state. Excitation energy can be
thermal energy that is imposed from outside or appear as external violation of crystal
lattice. The energy of thermal excitation is transferred to different subsystems of a
solid. For example, it can be transferred to valence electron or to ion, as well as it can
appear as kinetic energy of ionic lattice vibrations or as the energy of coupled spins in
a ferromagnetic.

The excited state that lies close to the energy of ground state may be characterized
by relatively small number of the independent oscillators. This method is used in the
lattice dynamics of solids to describe small oscillations of a lattice around its equi-
librium positions. Thus complicated collective vibration state is decomposed into the
normal independent vibrations. These vibrations can be quantized, and the corre-
sponding quanta are the phonons, the example of elementary disturbances. In some
sense, they resemble elementary excitation quanta of electromagnetic field—
photons.

The second example of formal description, simplifying multiparticle system with
strong collective interaction, is as follows. An idea is introduced that the motion of
charged particles can be described as a “gas” of charged particles. Obviously, each
particle must push off other similar particles from its surroundings. Formally, this
case can be described by the assumption that there is no interaction between parti-
cles, because any observed particle is accompanied by the “cloud” of opposite sign
charges that partly compensate the charge of given particle. Thus, the interaction,
which means other particles’ influence on a movement of given particle, can be
replaced by the inertial charged cloud that the given particle should “entail” during
its motion. In such a way, the system of interacting particles is replaced by the system
of noninteracting particles; however, dynamic properties of new quasiparticles are
changed.

In solid-state physics, there are many examples of elementary excitation. Along
with phonons, which are quanta of lattice vibrations, there are collective excitations
of electrons in metals, called p/asmons. In the same way, magnetic spin system can
be described by spin waves with corresponding quanta—the magnons. In addition, in
dielectrics the elementary electronic excitations are the polarons, while in the semi-
conductors they might be the excitons. The nature of various quasiparticles might be
different. When describing electrons, it is necessary to consider that during their
movement through a crystal they are exposed to different interactions. Therefore
moving electrons can be described as different quasiparticles, depending on the
nature of interaction. Electrons can behave as free electrons, or polarons (escaped
electrons), or excitons (bound by local interactions), or Cooper pairs, etc.

The violations of crystal lattice, such as localized impurity atoms (or vacancies)
in the crystal lattice, can also be modeled by elementary excitations. These elemen-
tary excitations, at first approximation, can be considered as noninteracting. In a
more refined approach, their interactions also must be taken into consideration. How-
ever, in this case, a concept of “excitation” is also applicable, and it can be taken into
consideration by methods of the perturbation theory.
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Even when it is possible to neglect interaction of elementary excitations of the
same type, the question of interaction between different types of excitations remains
an important problem. With this approach, a significant variety of phenomena in
solids can be investigated. The process of establishing equilibrium in solids also
requires considering the interaction of quasiparticles, that is, energy exchange
between different systems of elementary excitations.

The concept of elementary excitations should be applied only in case of weak
deviations from a ground state. If the number of collective excitations and quasipar-
ticles is quite large and the relationship between them is too strong, then the
described theoretical model becomes very complicated due to a large number of
details, and the concept of quasiparticles ceases to be effective.
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Before describing the most diverse properties of materials used in electronics, it is
necessary to consider the features of their structures, in which these properties are
realized.

The formation of crystal, amorphous, and other substances from atoms is accom-
panied by a decrease of the energy in a system as compared to unconnected atoms.
The minimum energy in solids corresponds to a regular arrangement of atoms that
agrees with the specific distribution of electronic density between them. In accor-
dance with the electronic theory of valence, interatomic bonds are formed due to
the redistribution of electrons in their valence orbitals, resulting in a stable electronic
configuration of noble gas (octet) due to formation of ions or of shared electron pairs
between atoms.

ATOMIC BONDING IN METALS, SEMICONDUCTORS,
AND DIELECTRICS

Any connections of atoms, molecules, or ions are conditioned by electrical and mag-
netic interactions. At longer distances, electrical forces of attraction dominate
between particles whereas, at short distances, repulsion of particles increases
sharply. The balance between such long-range attraction and short-range repulsion
is the cause of the basic properties of substances. The atomic connection is attribut-
able to the restructuring of atomic electronic shells, thus creating chemical bonds. In
other words, chemical bonds are the phenomenon of atomic interaction by means of
overlap of their electronic clouds, and this is accompanied by a decrease of the total
energy of a system.

Electronic Materials. https://doi.org/10.1016/B978-0-12-815780-0.00001-3
© 2019 Elsevier Inc. All rights reserved.
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2 CHAPTER 1 Structure of electronic materials

Chemical bonding is characterized by both energy and length. A measure of bond
strength is the energy, expended in case of bond destruction, or the energy gained
during compound formation from individual atoms. Consequently, the energy of
chemical bonds equals the work that must be expended to separate particles that
are constrained, or to alienate them from each other on the infinite distance [1].

During the formation of chemical bonds, exactly those electrons that belong to
the valence shells play a major role because their contribution to solid body forma-
tion is much greater than that of the inner electrons of atoms. However, division into
ionic residues and valence electrons is a matter of convention. For example, in metals
it is sufficient to consider that valence electrons are transformed into conduction
electrons whereas all other electrons belong to ionic residues.

In the atoms of a metal, their outer electronic orbits are filled with a relatively
small number of electrons that have low ionization energy. When these atoms come
together (i.e., when crystal is formed from atoms), the orbits of valence electrons
strongly overlap. As a result, valence electrons in metals become uniformly distrib-
uted in a space between cations, and these electrons have a common wave function.
Therefore valence electrons in most metals are fully collectivized, and thus such
crystals constitute a lattice of positively charged ions crowded by “electronic
gas.” Unlike, for example, covalent bonds, the complete delocalization of electrons
is a distinctive feature of metallic bonds.

It is in this way that the spatial distribution of valence electrons lies at the heart of
the classification of solids (dielectrics, semiconductors, and metals). The division of
crystals into different classes suggests that solids consist of:

* ionic residues, that is, nuclei themselves and those electrons that are so strongly
associated with their nuclei that the residues formed cannot significantly change
their configuration as compared with the atom;

» valence electrons, that is, electrons, the distribution of which, in solids, may
differ significantly from the configuration existing in isolated atoms.

The spatial distribution of electronic orbitals of certain atoms has a strong influence on
the bond strength and their direction. Fig. 1.1 schematically shows how major elec-
tronic orbitals for s-, p-, and d-states of electrons in the atoms might look. Only the
s-orbital is characterized by spherical symmetry. In contrast, the p-orbital has a very
specific form, and this is especially true for the d-orbitals: their forms are considered to
contribute to the specific properties of transition metals. Rare earth metals have f-elec-
trons, and they may play a dual role: as residue electrons of “atomic core” and as “free”
electrons (because of their complexity, f-orbitals are not shown in Fig. 1.1).

Thus during chemical bond formation, valence electrons play a dominant role
because, at crystal formation, their contribution is much greater than that of elec-
trons, which form atomic internal orbitals in the residues.

A classification of the possible bonds of particles in crystals is shown in Fig. 1.2.
This division is rather conditional, because it corresponds to simplified models.
In many cases, the actual bonding is more complicated and often presents as an inter-
mediate case between simple models.



1.1 Atomic bonding in metals, semiconductors, and dielectrics

FIG. 1.1
Forms of s-, p-, and d- orbitals: angular dependence of square wave functions.

I Bonding in crystals I

| Metallic ” Covalent ” Tonic ” Hydrogen ” Molecularl

FIG. 1.2

Various models of atomic bonds in crystals [2].

Molecular and metallic bonds are shown at the opposite sides of the scheme,
because they are absolute opposites. In molecular crystals, electrons usually are
completely locked in their molecules (or atoms; Fig. 1.3A). The nuclei are sur-
rounded by spaces (shown as black balls), where the density of the electronic cloud
reaches significant values.

The simplest examples of molecular bonds are atomic crystals of solid inert
gases: neon, argon, krypton, and xenon. These have completely filled electronic
shells, and such a stable electronic configuration undergoes only minor changes dur-
ing the formation of solids. Therefore, the inert gas crystal is an example of a rigid
body with strong electron bonding exclusively inside atoms, whereas the electron
density between atoms is rather small, because all electrons are well localized near
their own nuclei.

.
3
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(A) (B)

FIG. 1.3

Two-dimensional image of electrical charge distribution: (A) molecular crystal, in which
quadrupole electronic fluctuation (+ — ... — +) results in the attraction of atoms, whereas

partial overlapping of electronic shells leads to repulsion («...—), thereby balancing this
attraction; (B) metal crystal, black circles represent positively charged atomic residues,
immersed in electronic gas.

The metal bond. As already noted, in metal atoms their outer electronic orbitals
contain a rather small amount of electrons that have low ionization energy. When
such atoms come closer (i.e., when a metal crystal or alloy is formed), orbitals of
valence electrons largely overlap each other. As a result, these electrons become dis-
tributed almost uniformly in the space between ions (Fig. 1.3B). Indeed, X-ray stud-
ies have practically indicated a uniform electronic density in the lattice of metals.

Therefore valence electrons in metals are a joint collective in the crystal as a
whole, and metal represents the lattice of positively charged ions wherein the
“electronic gas” exists. This is a reason for the delocalization of metal bonds; more-
over, metal bonds are unsaturated and nondirectional. Metals are, among crystals,
characterized by the highest coordination number (CN) of ions (usually in metals,
this number is 12; it is the number of the nearest neighbors to a given particle).
For comparison, it should be noted that in ionic crystals this number is often 6 or
8. Similarly, the CN in the covalent crystals is even smaller—it is 4 for semiconduc-
tors with a diamond structure.

The bonding in dielectrics and semiconductors differs significantly from metal
bonds. Fig. 1.4 schematically shows the energy dependence on the distance between
atoms for bonds in basic types of dielectrics and semiconductors (metal bonds are not
shown). Between particles (atoms, molecules, or ions) when creating a semiconduc-
tor or dielectric material, at relatively large distances, the forces of attraction dom-
inate: the corresponding energy is negative and characterized by the curve /. At short
distances, the force of repulsion becomes much more powerful; its energy is positive
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(©) (D)

FIG. 1.4

Dependence of attraction energy (1), repulsion energy (2), and total energy (3) on the
distance between particles r: (A) ionic bond, (B) covalent bond; (C) molecular (quadrupole)
bond; and (D) hydrogen bond.

and characterized in Fig. 1.4 by curve 2. The total potential energy of interaction
between particles is shown by curve 3 that the minimum energy corresponds to a
stable distance between the interacting particles (this is parameter of lattice).

The strong repulsion between approaching atoms or ions can be modeled by dras-
tic energy dependence: Uyep, ~ r~® ... r~'2; this dependence characterizes the mutual
impenetrability of electronic orbitals: electronic shells of neighbor atoms or ions can
penetrate each other only very slightly. This is the reason that atoms, ions, or mol-
ecules can be presented by the “hard spheres” of certain radii, the size of which
remains practically unchanged [3].

The attraction forces that tie atoms, ions, and molecules together in solids are of
an electrical nature. It should be noted that crystals are classified just by the nature of
attraction forces. As shown in Fig. 1.4, the main types of chemical bonds in dielec-
trics and semiconductors are the covalent, ionic, molecular, and hydrogen bonds.
The metal bond (not shown in Fig. 1.4) can be considered a limiting case of the
covalent bond.

The ionic bond. Ionic crystals (such as sodium chloride, Na* Cl™) are chemical
compounds formed from metal and nonmetallic elements. The energy of ionic attrac-
tion varies with distance rather slowly; therefore ionic bonds are the most long
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FIG. 1.5

Two-dimensional image of electronic charge distribution in: (A) ionic crystal, where ion
attraction is balanced by partial overlapping of electronic shells; (B) covalent crystal, black
diffused circles represent atomic residues surrounded by regions, where electronic density
reaches significant values.

ranging in comparison with others. Similar to atomic or molecular crystals (shown in
Fig. 1.3A), ionic crystals can be characterized by such a distribution of electronic
charge that is almost completely localized near ions. In the simplest model of the
ionic crystal (Fig. 1.5A), ions are “nearly impenetrable charged balls.” This approx-
imation is rather suitable for ions that have completely filled electronic shells.

Typically, cations and anions acquire electronic configuration of the inert gas,
and therefore the charge distribution in them has an almost spherical symmetry. lons
with opposite charges attract each other due to long-range Coulomb forces; therefore
the energy of their attraction varies with distance very slowly: Uy ~7 ' (Fig. 1.4A).
At the same time, the repulsive energy of ions is inversely proportional to the intera-
tomic distance: Uyep ~ r~® ... r~ ' (depending on the properties of the given crystal).
Therefore the ionic crystal can be considered a molecular crystal in which the lattice
is built, not from atoms, but from the ions (e.g., ions Na* and CI~ in the rock salt).
Thus charge distribution in the ion, located in a solid body, is only slightly different
as though it were an isolated ion. It is important that particles, which form ionic crys-
tals are not neutral atoms: between ions, large electrostatic forces exist that play a
major role and determine the main properties of ionic crystals (that differ signifi-
cantly from the properties of molecular crystals).

Thus in the simplest model of an ionic crystal, all ions are presented as
“interacting nearly impenetrable charged spheres”; this approximation is sufficient
for ions with entirely filled electronic shells. Whereas in the atomic (or molecular)
crystal, all electrons remain /ocked in their native atoms, in the ionic crystal, valence
electrons are moved from cations to anions.

Therefore the ionic bond occurs between particles of two types, one of which eas-
ily loses electrons, forming positively charged ions (cations) and other atoms that
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readily get electrons then form, respectively, negatively charged ions (anions). Most
of the electropositive cations belong to groups I and II of the periodic table, whereas
most anions belong to groups VI and VII.

As arule, ions in crystals are packed tightly, as each of them is surrounded by the
largest number of oppositely charged ions. Stabilization of the ionic solid structure
takes place at CNs 6, 8, and, occasionally, even 12. It should be noted that ionic radii
vary noticeably with the value of the CN. Ionic bonds, unlike metal bonds, are sat-
urated, but, as in metals, they are not directed [4].

The covalent bond in crystals is typical for semiconductors. The dependence of
binding energy on interatomic distance is shown in Fig. 1.5B; attractive forces in
case of covalent bonds are not so long ranging as in the case of the ionic bond:
the attraction energy changes with distance as 7> ... r~ .

In principle, the nature of the covalent bond is very close to that of the metal bond;
however, in covalent crystals, valence electrons are shared only between the nearest
neighboring atoms whereas, in metals, valence electrons are shared within the crystal
lattice. Usually, a covalent bond (i.e., homeopolar bond) is formed with a pair of
valence electrons that have opposite spin directions. During covalent chemical bond
formation, the reduction of total energy is achieved by the quantum effect of
exchange interaction. The simplest example of a covalent bond is the hydrogen mol-
ecule H,, wherein both electrons belong simultaneously to both atoms.

The diamond might be a classic example of a covalent crystal (Fig. 1.5B), where
carbon atoms are located in a rather roomy configuration: their CN is only 4. There-
fore, diamond (as with semiconductors of similar structure—germanium and silicon)
is characterized by a comparatively high-density electronic cloud in the atomic inter-
stitials: electrons are concentrated mainly near the lines connecting each carbon atom
with its four nearest neighbors. Although diamond is dielectric, the high charge den-
sity in areas between atoms is a characteristic feature of semiconductors.

Covalent bonds, unlike metal bonds, are strongly directed; moreover, they are
saturated. The saturation of a covalent bond is the ability of atoms to form a limited
number of covalent bonds. The number of bonds formed by the atom is determined
by its outer electronic orbital. The directivity of covalent bonds is caused by their
peculiar electronic structure and geometrical shape of electronic orbitals (the angles
between two bonds are the valence angles).

Sometimes, covalent bonding might have pronounced polarity and increased
polarizability that determines many chemical and physical properties of correspon-
dent compounds. The polarity of a covalent bond is due to the uneven distribution of
electronic density accruable to a difference in the electronegativity of atoms (there-
fore covalent bonds are divided into nonpolar and polar bonds). The polarizability of
bonds can be expressed by the nonsymmetric spontaneous displacement of binding
electrons [5].

The following polar connections are distinguished [4]:

» The nonpolar (simple) covalent bond arises from the fact that each atom provides
one of its unpaired electrons, but the formal charge of atoms remains unchanged,
because atoms that form the bond equally have a socialized electron pair.
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» The polar covalent bond, wherein atoms are different, the degree of overlap of the
socialized pair of electrons is determined by the difference in the
electronegativity of atoms. The atom with a greater electronegativity more
strongly attracts electrons; therefore its real charge becomes more negative. With
the electronegative charge an atom acquires, there is additional positive charge of
the same magnitude.

» The donor-acceptor bond arises when both connecting electrons are provided
by one of the atoms (called the donor) whereas the second atom, involved in
the formation of a bond, is the acceptor. When creating this pair, formal
charge of the donor is increased by one and the formal charge of the
acceptor is reduced by one. The electron pair of one atom (donor) goes into
a common use, whereas another atom (acceptor) provides its free orbital,
because the donor atoms usually serve atoms that have more than four
valence electrons.

* The 6-bond and m-bond are approximate descriptions of some types of covalent
bonds in different compounds. Therefore the 6-bond is characterized by the
maximum electronic cloud density along the axis joining the nuclei of atoms. The
formation of the n-bond is characterized by the lateral overlap of electronic
clouds “above” and “below” the plane of the 5-bond.

Unlike metallic coupling, the emergence of a covalent bond is accompanied by such
redistribution of electronic density that its maximum localizes between the interact-
ing atoms. As in metals, in case of a covalent bond, the collectivization of the outer
valence electrons is seen, but the nature of electronic allocation is different from that
in metals. In the ground state of covalent crystals, that is, at T=0K, there are no par-
tially filled electronic energy bands.

In other words, the covalent crystal cannot be described by uniform distribution
of electronic density between atoms, as is typical for simple metals. Conversely, in
covalent crystals, the electronic density is increased along the “best destinations,”
leading to chemical bonds. The stronger the covalent bond, the greater the overlap
of electronic clouds of interacting atoms. If this bond is formed between similar
atoms, the covalent bond is the homeopolar and, when atoms are different, it is
the heteropolar.

In cases where two interacting atoms share one electron pair, a single connection
is formed; when there are two electron pairs, the double bond is created, and when
there are three electron pairs, a friple bond is created. The distance between bound
nuclei is defined as the length of the covalent bond. Bond length decreases when the
order of the bond increases. For example, the length of a “carbon-to-carbon” bond
depends on multiplicity: for a C—C bond, its length is 1.54 x 10~ nm; in case of a
C=C bond, the length is 1.34x 10 'nm, whereas for C=C, it is only
1.20 x 10""nm [3]. With an increase of the bond order, its energy increases.

The directivity of covalent bonds characterizes the features of electronic density
distribution in atoms. For instance, in germanium and silicon crystals (that have a
diamond structure), each atom is located in the center of a tetrahedron, formed by
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(A) (B)
FIG. 1.6
Structure of main semiconductors: diamond (A), sphalerite (B), and wurtzite (C) [6].

four atoms, their closest neighbors (Fig. 1.6A). In this case, tetrahedral bonds are
formed when each atom has only four nearest neighboring atoms.

Most covalent bonds are created by two valence (hybridized) electrons—one
from each interacting atom. In case of such a connection, the electrons are localized
in the space between the two atoms; thus the spins of these electrons are antiparallel.
As shown in Fig. 1.5B, the plane scheme can give only an approximate representa-
tion of the actual location of atoms. In fact, the relative position of these atoms in real
crystals can be quite complex, as shown in Fig. 1.6B and C. The structure of the min-
eral sphalerite (zinc sulfide, ZnS) is typical of A"™BY semiconductors, such as gal-
lium arsenide. The wurtzite structure (calcium selenide, CaSe) is typical of A"BY!
semiconductors.

Simplified schemes of electronic density distribution in covalent and ionic crys-
tals are shown in Fig. 1.7A and B. However, sphalerite and wurtzite belong to polar
crystals that have a hybrid bonding.

The hybrid ionic-covalent bond. As with the model of a “purely covalent” struc-
ture, a model of a “purely ionic” crystal is idealized. In real crystals (especially, in
some A"™BY and A"B'"Y types of semiconductors and in active dielectrics), the inter-
mediate case between ionic and covalent bonds exists. In the covalent silicon crystal
(Fig. 1.7A), electrons are equally distributed around atoms; therefore, the electronic
density between atoms is rather large. In an ionic crystal, the attraction of cation and
anion is compensated by the repulsion of partially overlapping electronic shells.

The concept of intermediate type bonds agrees with the theory of ion deformation
by their polarization. This may occur, for example, by the distortion of an anion’s
electronic orbital, mainly by the different electronegativities of adjacent ions. There-
fore, the electronic density between ionic residues increases, that is, the mixed
covalent-ionic bond with a greater degree of charge separation becomes the polar
bond. The exact presence of such bonds determines the noncentrosymmetric struc-
ture of some crystals. The hybrid ionic-covalent bonding is the main cause of pyro-
electric, ferroelectric, and piezoelectric properties. Most such active (functional)
dielectrics belong to crystals or to other ordered polar systems (liquid crystals, elec-
trets, polar polymers, etc.). Thus the physical hypothesis, relevant to the nature of the
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(A) (B ' ©)
FIG. 1.7

Simplified scheme of transition from covalent and ionic bonds to mixed polar bond: (A) in
covalent bond, electronic density (p) distribution is quite symmetric (arrows symbolize
opposite orientation of spins in connecting electron pair); (B) in ionic bond, cation and anion
are attracted (big arrows), whereas a small overlap of electronic shells ensures repulsion
(small arrows); electronic density distribution is almost symmetric, (C) asymmetric mixed
bond that leads to polar properties of crystals, wherein both attraction and repulsion are seen:
a covalent bond is formed by electron pair with opposite spins; electronic density distribution
is asymmetric, and can be characterized by displacement §.

internal polarity (which is not caused by an external electrical field), deserves par-
ticular attention. This hidden (or latent) polarity manifests itself in polar crystals as
the ability to provide electrical (vectorial) response to any nonelectrical scalar, vec-
tor, or more complicated tensor impacts [5].

The tendency of polar crystals to generate an electrical response on nonelectrical
impact leads to their generation of electrical potential under uniform heating of crys-
tals (pyroelectricity) or under uniform deformation (piezoelectricity). These are
mostly crystals with hybrid ionic-covalent bonding. Exactly this peculiarity causes
a reduction in crystal symmetry; therefore polar crystals always belong to noncen-
trosymmetric classes of symmetry.'

It is obvious that the primary cause of the peculiarities of polar crystals is the
asymmetry of electronic density distribution along atomic bonds. The fundamental
reason for this asymmetry is a distinction in the electronegativity of atoms (a physical
property that describes the tendency of an atom to attract electrons). Electronegativ-
ity depends on atomic number, as well as on the size and structure of outward
(valence) electronic orbitals [1]. The higher the atomic electronegativity, the stron-
ger the aptitude of atoms to attract electrons toward themselves.

'Comments. In contrast, crystals with exclusively ionic bonds as well as crystals with exclusively cova-
lent bonds are nonpolar. Usually, they belong to the centrosymmetric classes of crystals: in typically
ionic crystals, a central symmetry exists, and there are no special orientations in atomic connections. In
the same way, simple covalent crystals also belong in centrosymmetric structures: each atom provides
for bond one unpaired electron; thus four socialized electron pairs are located symmetrically.
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The difference of atoms by electronegativity might be very substantial. Therefore
atoms with higher electronegativity strongly attract conjunctive electrons, and its
true charge becomes more negative. Conversely, the atom with lower electronega-
tivity acquires an increased positive charge. Together, these atoms create a polar con-
nection and, correspondingly, the noncentrosymmetric structure. Simultaneously,
such connections do not lead to the appearance of internal fields, but can provide
apeculiar response to external impact that is quite different in various noncentrosym-
metric crystals.

For example, in case of directional mechanical influence onto a polar crystal, an
electrical response arises (piezoelectric effect). The point here is that the elastic dis-
placement of atoms compresses (or stretches) their asymmetric connections, and
thereby induces electrical charges on the crystal surface (piezoelectric polarization).
In contrast, if atomic connections in crystal are centrosymmetric, no electrical
response is possible to any uniform mechanical impact (however, the inhomogeneous
thermal or mechanical impact makes atomic bonds asymmetric, which results in the
appearance of an electrical response in any crystal).

The fact is that, in many crystals (e.g., in various semiconductor compounds), the
type of bonding has an intermediate character between covalent and ionic. It is note-
worthy that under conditions of very high pressure, any material with ionic or cova-
lent bonding would acquire the property of a metal bond, and the material would turn
into a metal. Thus very high pressure leads to a forced convergence of atoms with
great overlap of their outer electron shells. (It should be noted that, in some rare
cases, even at normal pressure, a phase transition of “dielectric-metal” is possible;
this transition might be stimulated by temperature change or by an external electrical
or magnetic field) [5].

The energy of ionic, covalent, and metallic chemical bonding is characterized by
similar orders of magnitude. In this respect, they are much inferior to molecular bonds.

Molecular bonds (van der Waals bonds) always exist, but only when much
stronger valence bonds are absent do these molecular bonds become the main type
of chemical connection, primarily, in molecular crystals. Forces of attraction in this
case are relatively small, being short range: the energy of intermolecular attraction
varies with distance as Uy ~r* ... 1% (Fig. 1.4C). It is evident that this kind of
attraction is weak in comparison with ionic and covalent forces; therefore van der
Waals bonds are additive and nonsaturated.

In case of nonpolar molecules, the forces of attraction are due to the accidental
deformations of electronic shells. Quantum fluctuations of electronic density in mol-
ecules always exist; thereby, virtual electrical dipoles (or quadrupoles) lead to
molecular attraction (in Fig. 1.4C, van der Waals bonding is shown schematically
and only as dipole-to-dipole interaction). The electronic polarizability of orbitals
determines optical dispersion in materials; therefore forces of attraction of this type,
sometimes, are called dispersion forces.

In case of polar molecules, the orientation interaction also contributes to the
usual molecular interaction. The influence of a molecule’s intrinsic (permanent)
dipole onto the induced dipole of another molecule is the inductive interaction.
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In general, in case of van der Waals bonding, the main contribution is provided by
the dispersive forces; however, when molecules have large dipole movements, the
contribution of the orientation effect might be significant. As a rule, the inductive
interaction is negligible [4].

The hydrogen bond appears between hydrogen atoms and the electronegative
atoms P, O, N, Cl, and S belonging to other molecule. The nature of this bond lies
in the redistribution of electronic density between atoms, conditioned by the hydro-
gen ion H' (proton; Fig. 1.4D). Crystals with hydrogen bonds (dielectrics and semi-
conductors) show properties similar to molecular crystals, but there is a reason to
allocate them to a special class. Hydrogen is unique in the following respects:

« the residue of hydrogen ion is a “bare” proton measuring approximately 10~'? cm
(i.e., 10° times smaller than any other ion);

» hydrogen needs only one electron to constitute a stable helium type; the
electronic shell (unique among other stable configurations having only two
electrons in the outer shell);

 the ionization potential (energy required to remove an electron from an atom) in
hydrogen is high: 13.6eV (in alkali-halide metals, it is ~4eV).

Because of these properties, during crystal structure formation, the effect of hydro-
gen may differ significantly from the influence of other elements. Due to the high
ionization potential of the hydrogen atom, it is difficult to completely remove its lone
electron. Therefore the formation of ionic crystals with hydrogen occurs differently
than, for example, in the case of alkali-halide metal crystals [2]. The hydrogen atom
may not behave in a crystal as a typical covalent atom: when the H atom loses its
electron, it can create only a single covalent bond, shared with another atom.

Because the size of the proton is approximately 10> cm, it is localized in the sur-
face of large negative ions; therefore such a structure arises, which cannot be formed
with any other positive ions. The energy of the hydrogen bond is less by order of mag-
nitude than the energy of the covalent bond, but it is greater than the energy of van der
Waals interactions in the order of magnitude. Although hydrogen bonds are not very
strong, they play an important role in the properties of correspondent crystals.

The hydrogen bond is directional; molecules that form the hydrogen bond tend to
have a dipole moment that indicates the polar nature of this bonding. In some crystals,
the hydrogen bond leads to their piezoelectric, pyroelectric, and ferroelectric prop-
erties. Furthermore, it should be noted that molecular and hydrogen bonds are very
important in various structures of liquid crystals.

SYMMETRY OF CRYSTALS

In many solids, structural symmetry plays a crucial role for the explanation of prop-
erties. Different materials are most frequently used in electronic special effects in
crystals, polycrystalline materials, and polymeric films due to the peculiarities of
their macro- and microsymmetries.
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A crystal is a body that, due to its intrinsic properties, is limited by flat surfaces—
crystal faces. A more complete definition of crystal should characterize such peculiar
intrinsic properties that distinguish crystallized substance from amorphous materials
and can explain the multifaceted shape of a crystal. The relationship between the out-
ward geometry and the internal structure of crystal and its physical properties is set-
tled by crystallography. It studies the physical properties of crystals through a
specific method—the symmetry that connects physical properties of crystals with
their structure. The physics of crystals formulates certain principles that establish
a community of crystal symmetry and their physical phenomena; these major prin-
ciples were advanced by Neumann and Curie [7].

The manifestation of symmetry in geometric forms is the ability of the shape to
regularly repeat its parts. In other words, the reason for a geometrically correct exter-
nal crystal shape is the regularity of the internal structure that lies in the spatial lattice
of a crystal. This spatial lattice is the abstraction that allows the description of proper
and regular alternation of atoms, molecules, or ions, and results in the macroscopic
shape of the crystal. This lattice is infinite, and it is constructed by the translation of
the unit cell of the crystal along crystallographic coordinates by endless repetition in
a space with identical structural units. As a simple example, Fig. 1.8 shows various
two-dimensional (2D) translations of unit cells on the surface. All imaging pairs of
vectors a; and b; are lattice translation vectors, but they are not primitive vectors.

The metric of the unit cell of crystal is determined by the ideal distance between
the nearest atoms or ions of a similar kind. In most simple crystals, for example, in
the majority of metals the structural unit consists of only a single atom. In dielectric
crystals, the unit cell may comprise a plurality of atoms, ions, or molecules. The crys-
tal lattice may be built as a result of unit cell translational transformation, in other
words, by various point symmetry operations [6].

The symmetry elements and operations. To describe the symmetry of a crys-
tal’s physical properties as well as to determine the symmetry of geometric forms, a
quite ordinary idea is to consider only single space elements (the unit cell of crystal).
In the theory of symmetry, the object of study is the figure, that is, a certain set of
spatial points.

The imaginary geometrical object, over which symmetry operations are per-
formed, is the symmetry element of the finite figure. As symmetry elements, the
planes, axis, and center of symmetry (center of inversion) may be used.

FIG. 1.8

Unit cells in a two-dimensional lattice.
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The symmetry operation involves combining the point (or part of a figure) with
another point (or part of the figure). Both combined parts of figure are symmetric.
The point symmetry operation should be left in place at least on one point of the fig-
ure. It is the intersection point of all elements of symmetry. If symmetry operations
are applied to three-dimensional (3D) figures, the twists and turns as well as the
inverted turns and the reflection in a plane of symmetry are selected.

The symmetry elements are distinguished as first and second types. The former
includes the symmetry plane, rotary axis of symmetry, and the center of inversion
(center of symmetry). Complicated symmetry elements, such as inversion axis
and rotary-reflection axis, belong to the second type of symmetry elements.

The symmetry plane is a mirror-reflecting plane that provides a combination of
symmetrically equal points; when recording symmetry elements of a particular class
of a crystal, the plane of symmetry can be referred to as P. For example, the mirror
plane, being a plane in the cube diagonal, divides the cube into two equal mirror-
mating parts. In the international system, the mirror plane is represented by the letter
m. It perpendicularly bisects all segments, connecting balanced (symmetrically
equal) points.

The rotation symmetry axis of n-order is denoted as L,. When a figure turns by a
specific angle of @ = 360°/n (called elementary angle), a superposition of symmetric
points (equal compatible) can be realized. The rotary axes are denoted as 1, 2, 3,4, 5,
6, 7, ..., oo, where the numbers indicate the order of axis.

For example, Fig. 1.9 shows a set of elements of the symmetry of a cube, which
has a center of symmetry (in the cube geometric center), three axes 4 (fourth order),
four axes 3 (third order), six axes 2 (second order), three planes of symmetry parallel
to the faces of a cube, and six diagonal planes of symmetry. Due to the large amount
of symmetry elements, the crystals of cubic symmetry are called highly symmetric.
Other classes of crystals have much smaller number of symmetry elements.

If an arbitrary figure, and not a crystal, is considered, there could be any order of
the rotary axis. For example, the sphere has an infinite number of rotational axes,
including axes of infinite order. The cylinder has a single axis of infinite order
and an infinite number of axes of order 2 (Fig. 1.10).

In certain cases, combining of a figure with its initial position must be made not
only by elementary rotation angle, but also by the auxiliary reflection plane, perpen-
dicular to the axis about which the figure rotates. The complex axis (or axis of
complex symmetry) is the mirror-rotary axis L,; Operations that function by
mirror-rotary axes can be implemented with the help of an inversion axis (denoted
also as L,,;).

The order of the rotary axis of the crystal and mirror rotary axes is strictly limited.
These axes can be only of the first, second, third, fourth, and sixth orders. If there are
several symmetric axes, the axis with an order higher than 2 is the principal.

Both ends of a rotary symmetry axis might be different, in this case, it is the polar
axis; for instance, in Fig. 1.11A, the polar axis 4 extends through a tetragonal pyr-
amid. Polar axes are typical of a certain type of crystals (non centrosymmetric clas-
ses). As shown in Fig. 1.11, the b plane of symmetry m is perpendicular to the axis 4;
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Elements of symmetry of cube: axes of symmetry are numbered whereas planes of symmetry
are denoted by the letter m.
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FIG. 1.10
Geometric figures representing the limiting symmetry group [7].
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FIG. 1.11

Polar and bipolar rotary axes of 4th order: (A) tetragonal pyramid; (B) tetragonal bipyramid;
and (C) tetragonal prism.

in this case, the symmetry of a figure is referred to as 4/m. If the axis lies in the plane
of symmetry, delimiters are not needed: 4m. To refer to the symmetry of various
crystals, it is possible to use designations: m, 2m, 3m, 4m, and 6m. Markings of
the first-order axis of symmetry are not used: that is, “1” near the sign “m” is not
needed as an axis of symmetry of first order is always present (when one turns
the figure on 360°, any figure will coincide).

Besides the usual symmetry axes, the inversion axes exist. Such an axis of order n
(axis L,;) combines the joint action of a rotary axis and inversion center. The center of
symmetry (the inversion center) is a singular point inside a shape (or inside the unit
cell) that is characterized by the fact that any straight line drawn through the center of
symmetry (denoted by symbol C) meets the same (respectively) point figures on the
opposite side of the center at equal distances. A symmetric transformation in the cen-
ter of symmetry is the mirror image point (Fig. 1.11B). At this point, as in a photo-
graphic lens, the image is inverted.

Sometimes, two symmetrically equal figures cannot be superposed other than by
reflection. For example, in Fig. 1.12, two molecules of an organic compound are dis-
played (these do not have rotational axes of symmetry). The figures that can be super-
posed with each other only by the mirroring are the enantiomorphous ones. The
phenomenon of enantiomorphism in crystals is expressed by the formation of left
and right forms (e.g., in quartz crystal), which reflects “enantiomorphism” in its
physical properties. For example, in the left form of crystals, the rotation of the polar-
ized light plane is clockwise, whereas in right form, it is counterclockwise. This phe-
nomenon is important from the viewpoint of the practical use of such crystals.

The concept of the “symmetry element” is broader than the concept of “symmetry
operation.” The symmetry element includes all degrees of operation. For example,
the axis of symmetry 4 (otherwise denoted L,) implies a set of operations, including
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FIG. 1.12
Enantiomorphism in certain molecules [6].

4°= 1, 4l = 4, 4= 2, and 43=4"", The first operation is the operation of identifica-
tion, the second is the turn on 90°, the third is the turn on 180° (turns on 180° in oppo-
site directions are equivalent), and operation 4° is the turn on 270° in a certain
direction, equal to the rotation in the opposite direction 90° (4 1).

The classes of symmetry are characterized by a set of crystal symmetry elements
that describes a possible symmetric transformation. For each crystal, the unit cell can
be chosen from which the whole crystal lattice can be built via translations
(translations are such displacements that can multiply the unit cell to create a
crystal).

As a simple example, Fig. 1.13 illustrates some 2D cells (2D lattice). On a plane,
each unit cell is defined by two axes (the basis vectors), from which the basic ele-
mentary parallelogram can be constructed. Such parallelograms must fill the entire
plane of the 2D crystal with no gaps. It is important to note that, in the 2D crystal,
only five different types of lattices are possible with a different set of symmetry ele-
ments (such elementary lattices are the Bravais lattices).

In the 3D space, the unit cell of a crystal lattice is the parallelepiped, built on
three basic vectors (Fig. 1.14). The points of intersection of base vectors, composing
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FIG. 1.13

Basic two-dimensional lattices: (A) square with |a|=|b|, ¢ =90°; (B) hexagonal with
|a|=|b|, ¢=120°; (C) rectangular, |a| # | b|, ¢=90°; and (D) centric rectangular (axes are
shown as for primitive, so for rectangular unit cells |a| # | b| and ¢=90°).
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FIG. 1.14

Choice of unit cells for different classes of crystals: (A, B, and C) elementary translations
on X, Y, and Zdirections (called crystallographic coordinate system); a—angle opposite to
X-axis; p—angle opposite Y axis; and y—angle opposite Z-axis.

the spatial lattice, are the junctions. A junction may be located, as in material par-
ticles, in the center of gravity of the particle (or group of particles). As in the 2D
(plane) lattice grid, the volumetric 3D primitive unit cell of a crystal does not depend
on its shape and it has a constant size for a given lattice.

The spatial crystal lattice is based on parallel transport of the unit cells that are
touching each other by whole faces, filling the entire space without gaps. Thus the
choice of elementary translations is not unique; therefore the shortest of these are
usually selected that correspond to basis vectors a, b, and ¢ of a lattice. This choice
is always carried out by such a way when unit cell would have the maximal number of
symmetric elements, and thus can represent the point group of symmetry of the entire
lattice. The symmetry of the crystal structure limits the choice of unit cells that can
describe it. The choice of the base, and therefore the lattice itself, must comply with
the symmetry of crystal structure.

All variety of crystals in 3D structures can be described using only 14 types of
lattices (Bravais lattices). They differ by the choice of unit cells and are classified by
crystal syngony. Therefore three directions, outgoing from a single point of the
selected parallelepiped, should be taken as the coordinate axes of a crystal, and thus
define the crystallographic axes X, Y, and Z (Fig. 1.14).

The rest of the unit cell parameters are the angles between axes: a—between axes
Y and Z; f—Dbetween axes Z and X; and y—between axes X and Y. Primitive Bravais
cells are the main cells that allow crystal classification by the crystallographic syn-
gonies. Any crystalline structure can be presented with one of 14 Bravais cells listed
in Table 1.1.

Any linear periodic structure can be obtained by elementary translation. To
choose a cell, three guided conditions should be used:

+ the symmetry of the unit cell must correspond to the highest symmetry of the
crystal;

+ the unit cell should have largest possible number of identical angles, or corners
and edges; and

+ the unit cell should have the minimal volume.



Table 1.1 Fourteen Bravais Cells

Crystal System
(Lattice Basis)
Triclinic a#b #c;
a fty#90°

Monoclinic a#b #c;
a=y=90° f#90°

Rhombic (orthorhombic)
a#b#c; a=p=y=90°

Trigonal (rhombohedral)
a=b=c; a=p=y#90°

Tetragonal a=b #c;
a=p=y=90°

Hexagonal a=b #c;
a=120° p=y=90°

Cubic a=b=c;
a=p=y=90°

Primitive

Lattice type
Base- Body-
Centered Centered
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Next, different types of Bravais lattices are usually distinguished as primitive,
volume-centered, border-centered, base-centered, and rhombohedral. Division along
the crystallographic syngonies determines a choice of the coordinate system and the
triples of basis vectors ay, a,, and as, or, in other words, the metric (y, f, and a and a,

b, or ¢).
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Table 1.2 Distribution of Syngonies of Crystallographic Point Groups

Syngonies Classes of Symmetry
1 Triclinic 1,1
2 Monoclinic m, 2/m
3 Orthorhombic mm2, 222, mmm
4 Trigonal 3,3,3m, 32,3m
5 Tetragonal 4, 4/m, 4mm, 422, 4/mmm,4,42m
6 Hexagonal 6, 6/m, 6Bmm, 622, 6/mmm,6,62m
7 Cubic 23, m3,43m, 432, m3m

According to the syngonies, there are seven types of crystal structures: triclinic,
monoclinic, hexagonal, rhombohedral (trigonal), orthorhombic, tetragonal, and
cubic. There are 32 classes of symmetry possible in structures with 3D point sym-
metry, and their distribution in crystal syngonies are shown in Table 1.2 [7].

The items used in this set of symmetry elements are not a random choice but are
strictly legitimate mathematical groups. The aggregates of these symmetry elements
are introduced according to certain rules. Symbolic images of 10 polar crystal classes
are shown further in this work; it is only within these classes that pyroelectric and
ferroelectric properties can possibly exist.

The principal peculiarity of the lowest category of symmetry is the lack of such
symmetry axes that they are greater than the second order. The lowest categories of
symmetry are classified as triclinic, monoclinic, and orthorhombic syngonies. The
triclinic lattice is the only one that has no elements of rotational symmetry or mirror
planes. The lowest-category structures are rarely encountered in nature, and they
have lattices based on a cell with three unequal edges and three unequal angles.

In crystals belonging to the middle category of symmetry, a symmetry axis obvi-
ously exists, which is beyond the second order (major axis). In addition to the major
axis, the structure might have a plane m and the center of symmetry C. The middle
categories of symmetry are the trigonal, tetragonal, and hexagonal crystal systems.

The crystals of highest category of symmetry are crystals of cubic symmetry
(cubic system); their main distinguishing feature is the presence of four threefold
axes (4L5).

Among the many thousands of natural and artificially synthesized crystal struc-
tures studied to date, more than half account for the highest category of symmetries.
Almost all metals and their alloys crystallize in a cubic system with class m3m or in a
hexagonal class 6/mmm. The semiconductors, such as germanium and silicon, are
also classified as m3m class; however, the vast majority of semiconductors, including
gallium arsenide (GaAs), is related to the point group of cubic symmetry 43m
(sphalerite-type structure), as well as to the point group of the hexagonal system
6m2 (wurtzite structure).

Almost no substances crystallize in the groups 4, 3, 6, and 432.
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Connection between symmetry and physical properties. The characteristic
features of crystals are their symmetry and anisotropy. The properties of some aniso-
tropic crystal, unlike isotropic crystal, exhibit very high sensitivity to external influ-
ences. Influences such as heat, mechanical stress, and electrical and magnetic fields
(or adding foreign atoms into crystal) can change conditions of the dynamic equilib-
rium of the crystal’s constituent particles, that is, they can change the symmetry of
the crystal and, thus, change its properties. The ability to manage properties using the
abovementioned external influences allows the creation of crystal-based converters
of various types of energy.

The connection between the physical properties of crystals and their symmetry
was formulated by Von Neumann:

The symmetry of physical properties of a crystal is not lower than the symmetry of
its structure.

This means that the structure of crystal, in any case, comprises all elements of the
properties’ symmetry (but may also have other symmetric elements).

The application of Neumann principle in specific experimental situations was
detailed by Pierre Curie. In accordance with the Curie principle, a crystal, being
under the impact of external influence, demonstrates such symmetry elements as
are common to a crystal in the absence of impact, and the symmetry of impact itself
in the absence of a crystal. Thus in the system “crystal-impact,” only the common
element of symmetry remains. A geometric illustration of the Curie principle may
be the superposition of two symmetric figures: this gives a figure possessing only
those symmetry elements that are common to both figures at a predetermined point
in their mutual arrangement.

Thus the concept of symmetry is expanding. Symmetry is regarded as a state of
space that is characteristic of the environment in which a phenomenon occurs. For
example, the following factors should be taken into account during crystal growth:

 the status and structure of the environment (e.g., solution or melt);

» the movement of seed during crystal growth with respect to the environment in
which the crystal is forming; and

+ the impact of other physical factors on growing crystals.

The shape of the grown crystal retains only those elements of its own symmetry that
coincide with the symmetry of the medium; therefore some of the crystal’s symmetry
elements disappear externally. Only those elements of proper symmetry should be
accepted that coincide with the symmetry of the environment.

Thus the crystal responds to changes in the conditions of crystallization. There-
fore different natural shapes of a crystal correspond to crystallization conditions.
Under essentially different physical and chemical conditions, the minerals of the
same composition acquire different structures (phenomenon of polymorphism).
For example, the forms of pure carbon are polymorphic: cubic diamond, hexagonal
diamond, multilayer graphite, globular fullerene, quasi-1D carbon, flat graphene,
cylindrical nanotubes, etc.
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Using the known point symmetry of a crystal, the Curie principle allows to pre-
dict what physical effects (typical for a given symmetry) can occur. However, the
symmetry conditions (that follow from fundamental laws) are considered as not nec-
essary, but rather as sufficient, because of their “abstract” nature for implementation
to a physical phenomenon.

Direct and inverse piezoelectric effects can occur only in 20 of the 32 possible
classes of crystals, each of which is characterized by its symmetry group. These
groups comprise a set of symmetry elements: axes of symmetry and planes of sym-
metry. Crystals with the center of symmetry cannot be piezoelectric. There are
11 such classes of crystals out of 32 (however, there is another class 432 that refers
to the noncentrosymmetric classes, but piezoelectricity is not observed in it in spite of
the center of symmetry being absent).

The 10 polar groups of crystals that exhibit a pyroelectric effect are called the
“pyroelectric group” (Fig. 1.15). A common feature of this group is that they lack
certain elements of symmetry: the center of symmetry, transverse plane of symmetry,
and any axes of symmetry of an infinite number, perpendicular or oblique with
respect to the current axis.

Physical and crystallographic installations of crystals. To investigate the rela-
tionship between crystal properties and crystal symmetry, it is necessary to consider
the orientation of a plate sample cut from a single crystal (as well as the orientation of
crystalline rods or disks) as to the crystal elements of symmetry. This operation is
performed using crystal installation that is determined by the choice of the coordi-
nate system with respect to the symmetry elements of the crystal [8].

As arule, two settings of crystals are used: the crystallographic installation (used
during electronic spectra study in semiconductors and metals) and the physical
installation (used in crystal physics including material sciences).

In the crystallographic installation, the coordinate axes should be chosen parallel
to the directions of space lattice translations. In this case, the crystallographic axes of
a coordinate system may not be mutually perpendicular to each other (in crystals
belonging to the triclinic, monoclinic, rhombohedral, or hexagonal systems).
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FIG. 1.15

Ten polar crystallographic symmetry groups [6].
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Together with the crystallographic coordinate system that is not orthogonal for all
classes of crystals, the orthogonal coordinate system, with axes denoted by either X,
Y,and Z, or 1, 2, and 3, is selected to describe the physical properties of crystals. In
this case, the symmetry axes or normals to planes of symmetry are chosen as
coordinate axes.

For example, in monoclinic syngony, the Y-axis is oriented along a single axis of
the second order, or along a direction perpendicular to the single plane of symmetry.
The remaining two axes X and Z can be chosen arbitrarily, usually by a “binding” to
the most advanced face or edge of a crystal. In the orthorhombic system, the crys-
tallographic axis must be directed along the axes of second order, or perpendicular to
the plane of symmetry m. In the class mm2, the symmetry axis is defined as axis Z; for
a tetragonal crystal, the Z-axis is the axis of the fourth order.

In all classes of point symmetry, the X- and Y-axes (except for 4, 4, and 4/m, where
they are chosen randomly) are oriented along twofold axes or perpendicular to the
plane of symmetry m. In the hexagonal system, the Z-axis is oriented along the axis
of symmetry of the highest order. In classes 3m and 6m2, the X-axis must be directed
perpendicular to the plane of symmetry. In cubic crystals, the axis 2 is selected as
Z-axis (for classes 23 and m3), or 4-axis and 4-axis (for other classes). The X- and
Y-axes are oriented along the axes of symmetry. Importantly, in all cases the X-axis
and the Y-axis are selected in such a way as to form the right-hand coordinate system.

In case of any spatial lattice symmetry, the size of the unit cell (a;, a,, and a3) is
selected as a scale (individual segments). Coordinates of any point of crystal are
uniquely determined by the direction of the symbol.

The crystallographic direction is a direction of line that runs at least two lattice
points. One of these points can be taken as the origin: [000]. The crystallographic
direction r is completely determined by aligning on it the lattice point closest to
the origin, and it is denoted as [mnp], where m, n, and p are the Miller indices.
The vector R that coincides with the given direction can be written as:

R =ma; +na, +pas.

Irrespective of the angle between the coordinate axes, the crystallographic axes must
follow Miller indices: the X-axis is [100], the axis Y is [010], while the Z-axis is
[001]. The indices of axes are written in square brackets. The position (orientation)
of each face of a crystal can be described by using the ratio of unit segments a, b, and
¢ to segments A, B, and C that cut off axes by a given face (Fig. 1.16). The set of
relations a/A, b/B, and ¢/C can always be expressed as the ratio of integers a/A:b/
B:c/C=h:k:l. These three numbers A, k, and / determine the position of each edge
of the crystal, and they are commonly called Miller indices of edge, written in paren-
theses as (hkl).

In this description, the crystal face is displayed by the position of unit normal n to
it, while a set of Miller indices is the component of the normal vector N to a given
face relative to the basis of the reciprocal lattice of the crystal: by, b,, and b3, which is
also called the reciprocal basis; that is,

N=/’lb1 +kb2 +Zb3,
because n; :ny :n3=A:B:C=1/a:1/b: 1/c.
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FIG. 1.16

Explanation of symbols: the position of the plane is uniquely determined by integer intercepts
on the crystallographic axes of the coordinates.

Fig. 1.17 shows the main crystallographic directions with an example of a cubic
lattice.

The reciprocal lattice. This notion is introduced by Gibbs and represents the
Fourier transformation of the Bravais lattice that is also known as the direct lattice
(that exists in real space). The reciprocal lattice exists in the reciprocal space, also
known as the impulse (momentum) space.

If one makes a Fourier transformation with the reciprocal lattice, the original
direct lattice will be found again, because the two lattices are Fourier transformations
of each other [3]. The concept of a reciprocal lattice is used to solve many problems
related to wave processes in crystals, for example, in X-ray experimental study or
when using electronographic and neutronographic methods of crystal investigation.
Moreover, the reciprocal lattice is widely used in the physics of semiconductors and

z v
(110) (111)

FIG. 1.17

Marking of main crystallographic directions and planes.
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metals to describe the motion of electrons in the periodic structure. In that case, the
concept of the Brillouin zone is introduced.

If a normal direct lattice is based on the translation vectors {a,, a,, a3}, the axes of
the reciprocal lattice {b{, b,, b3} are defined as the vector products:

by =[ax x a3],br=la; x a;],b; = [a; X ay].

Furthermore, it is possible to set a reciprocal lattice by the scalar products:
(b1-ar)=(br-ar) = (b3-a3) =1,
and
(b -ay)=(b1-a3)=(by-a3) = (b2-a1) = (b3 -a2) = (b3-a;) =0,

inasmuch as

bilay,bylas,b, las,by la; by la, by la.
Thus the absolute value of each of the vectors by, b,, and b5 is inversely proportional
to direct lattice distances:
a5 X 33]
|2 x @]
Direct and reciprocal lattices are mutually connected, that is, a lattice, built on vec-
tors ay, a,, and as, is the reciprocal lattice relatively by, b,, and b3, when

|b1| = (azaz — sin a) [V, |by| = (aza; — sin B)/V,|bs| = (a1a, — siny)/V,

— —
asz X aj

— —
clasz X ag

— —
ayp Xap

— — ]
clap Xas

- = =
’b1’: ; bz‘: ; bs‘:
= = =
a a as

in which connection:

cos a* = (cos ffcos y— cos a)/sin f sin y;
cos #* = (cos a cos y — cos f#)/sin a sin y;

cos y* = (cos a cos # — cos a)/sin a sin f,

where V is the volume of a unit cell of the direct lattice, whereas a*, #*, and y* are
angles between the axes of the reciprocal lattice.

In physics of crystals, the accurate establishment of rules is very important, that
is, rules of orientation of symmetry elements along coordinate axes, because this
affects the unambiguous determination of main directions and faces in crystals.
The choice of positive directions of axes in crystals is imposed by certain conditions.
For example, to study the electrical properties of pyroelectric crystals, the positive
direction of the axis (that coincides with polar axis) should be selected as the direc-
tion that shows positive electrical charges while heating [7].

The conception of the “reciprocal lattice” is introduced in crystallography mainly
to describe the periodic distribution of reflectivity of a crystal relative to X-rays. The
reflection of X-rays from planes of crystal is described by the Wulff-Bragg formula

2d sin 0 = nA4,
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where d is the interplanar distance for the family of parallel planes of reflection; 8 is
an angle, supplementary to the angle of incidence (or angle of reflection, calculated
from the atomic plane); n is an integer factor that characterizes the order of the dif-
fraction spectrum; and 4 is the wavelength. From the Wulff-Bragg conditions, it fol-
lows that, at constant A, the big d corresponds to a small 6, that is, the greater the
interplanar distance, the closer the direction of reflected rays to the direction of
the incident beam. The reflection of X-rays from an infinitely extended crystal
should be dotty, ideally.

BASIC STRUCTURES OF CRYSTALS USED
IN ELECTRONICS

In any crystal structure, a definite group of bound atoms exists that corresponds to the
major structural unit—the basis. This is a set of particles, coordinated within an ele-
mentary cell; therefore, the whole crystal structure can be obtained by repetition of
this basis using translations. An important parameter of a structure is the CN. For a
given atom (or ion), this is the number of the nearest (neighboring) atoms or ions in
the crystal structure. This number is determined somewhat differently for molecules
and crystals. The number of interior atoms is the bulk CN, whereas the number of
atoms located on the surface of a crystal is the surface CN.

If the centers of the nearest atoms or ions connect with each other by straight
lines, it generally gives rise to the coordination polyhedron [8]. The atom, for which
the coordination polyhedron is built, is located in the center of the polyhedron
(Fig. 1.18). The coordination polyhedron is not related to the outward form of a
crystal.

The size of the structural unit (atom, molecule, or ion) depends on its location in a
particular structure. However, when considering different structures, it is important
to compare the sizes of structural elements. In part, the term “atomic radius” is used,
but it should be noted that an isolated atom has no certain radius, because its elec-
tronic cloud, theoretically, extends to an infinite distance from the nucleus, although
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(A) (B) (®)
FIG. 1.18

Coordination polyhedra: (A) dumbbell, CN=2; (B) triangle, CN =3; (C) tetrahedron CN =4;
and (D) cuboctahedron, CN=12.
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really it becomes very diffuse at a distance of a few angstroms. The only atomic
radius that has certain sense is the Bohr radius of the outer orbit.

In case of metals, the radii of the metal ion could be defined by dividing in half the
interatomic distance of pure metal. In fact, whenever the atom of any metal is
described, three main types of radii are known: ionic (r;), metallic (r,,), and covalent
(r.). For example, in sodium r;=0.95, r,,= 1.57, and r.= 1.59. It is seen that covalent
and metallic radii are very close in size; this is expected because metallic and cova-
lent bonds are related. However, the ionic radius of a cation is smaller, because the
outer electrons are removed from the atom, while remaining electrons are located on
the levels of internal electron clouds (i.e., located much closer to nucleus).

In all nonmetals as well, three radii can be chosen: ionic (r;), covalent (r.), and
van der Waals (r,). It should be noted that the typically covalent radius is much smal-
ler than the ionic and van der Waals radii. For example, in oxygen, r.=0.66,
r;=1.40, and r,=1.40 A. This can be explained as follows: suppose that the radius
of the atom is determined by the position of the maximum in the radial distribution of
the electronic density curve. When the atom attaches electrons and creates an anion,
this maximum shifts to a longer distance due to the enlargement of the number of
external electrons and the increased screening from the nucleus. Therefore the curve
of radial distribution of electronic density shifts toward a larger radius.

In ionic crystals, the shells of cations and anions are completely filled with paired
electrons; therefore the overlap of such shells is small. However, in covalent crystals,
their shells are occupied by paired electrons and therefore the overlap is as large as
possible; this interpenetration of electronic orbitals should cause a reduction in the
size of the atom. The van der Waals radii, as expected, are very close to ionic radii. In
case of a van der Waals connection, as well as for ionic bonding, completely filled
electronic shells are situated adjoining each other. As a result of a slight overlap, the
interatomic distances get larger values.

During consideration of complex structures, the following circumstances must be
considered:

1. Inionic structures, the amount of anions surrounding any cation can be determined
by the ratio of their radii. When the covalence part of the bond increases, the
coordination of the particle will be determined by hybrid orbitals, and the CN
should be less than would be expected from an exclusively ionic model.

2. When there is a choice between “ionic” and “layered” structures, in case of
covalent compounds the latter is preferred, especially at low temperatures. If
hydroxyl groups are present, their hydrogen bonds also tend to stabilize the
layered structure.

3. In complex structures, the charges—attributed to atoms in assumption of an ionic
model—aspire for compensation (saturation) within inner surroundings.

4. If stoichiometry allows, multivalent cations are located far away from each other;
thus each anion is directly associated with only one cation.

5. The cations, after maximal mutual distancing, seek to form linear bridges through
anions. This effect is most typical for multivalent cations with a small radius.
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Next, some typical structures of chemical elements and binary compounds in solids
are discussed as examples.

Typical structures of metals. Early ideas of the structure of metals lie in the
model of “free electronic gas.” According to this model, it is assumed that atoms
of a metal are entirely ionized and they are densely packed in the environment of
free electrons. With this model (with free electrons and nondirectional bonds), high
electrical conductivity and ductility of metals are easily explained. With regard to the
structure, electronic gas occupies a small volume (free electron radius is estimated as
10~ "*cm); therefore, ions of metal form a most densely packing.

For example, the structural type of copper corresponds to a dense three-layer
packing of identical balls according to a face-centered cubic elementary unit
(Fig. 1.19A). This cubic unit cell contains four atoms; its CN = 12, whereas its coor-
dination polyhedron is cuboctahedron. This type of structure is intrinsic for simple
metals (gold, silver, nickel, aluminum, etc.) as well as for noble gases in the solid
state (e.g., Ne, Ar, Cr, Xe).

The balls shown in Fig. 1.19A are not hard: in crystallography, the outer elec-
tronic shells of ions, atoms, or molecules are modeled. These electronic shells can
be imagined as a “cloud” of electrons that are resilient, but can partly penetrate into
each other. This manner of atoms modeled as “hard balls” is a convenient method to
describe structures of crystals.

The structural type of magnesium is another example of the simple structures of
metals (Fig. 1.19B). The arrangement of atoms in this case corresponds to a hexag-
onal (two-layered) shape with the most dense packing. All atoms in this case are the
same, with CN=12. Ideally, in a densely packed hexagonal metal, the ratio of the
unit cell height to the distance between neighboring atoms is ¢/a=1.633, although ¢
and q are different in various metals. The structural type of magnesium is typical of
many metals: Be, Cd, Mg, Ni, Zn, etc.

In addition, there are other structures of metals (not shown in the figure), namely,
the a-tungsten structure. This is a space-centered cubic structure, in which the unit
cell contains two atoms. The CN of such a structure is CN =8, while coordination
polyhedron is a cube. A structure of this type is typical for some metals: Ba, Cr,
a-Fe, K, Li, Mo, Na, and others.

(A) (B)

FIG. 1.19
Location ions in the structures: (A) copper and (B) magnesium.
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(A) (B)
FIG. 1.20
Structural typing of diamond (A) and graphite (B).

Basic structures of semiconductors. The structure of the diamond that was pre-
viously shown schematically in Fig. 1.5B is shown in greater detail in Fig. 1.20A.
This structure is characterized by the manner in which atoms occupy face cells of
two units that are inserted into each other, offset by 1/4 along the diagonal of the
cubic unit cell.

The structure of the diamond is peculiar to materials with sp*-hybridization of
atomic orbitals. Each atom forms four bonds with its neighbors. The basic structural
unit cell of the diamond contains eight atoms, with CN =4, while coordination poly-
hedron is regular tetrahedron. The density of structural packing in diamond is much
lower than in others. Germanium, silicon, and gray tin also have structures similar to
that of the diamond. Similar to this structure is the structure of zinc blende, that is, if
two diamond sublattices are occupied by different types of atoms, such as in crystals
ZnS or GaAs.

The structure of graphite is characterized by a cleavage. In the hexagonal mod-
ification (Fig. 1.20B), graphite layers are placed such that atoms of third layer are
located just above the atoms of the first layer at a distance far greater than the dis-
tance between the atoms inside the layer. The unit cell contains four atoms, with
CN =3, and a coordination polyhedron that is an equilateral triangle with a central
atom that is located slightly above or below the plane of the triangle.

Like other layered structures, graphite has some polytypic modifications.

The sphalerite and wurtzite structures. Crystals of ZnS are crystallized in a cubic
sphalerite structure (also called the zinc blende structure), or they are crystallized in a
hexagonal wurtzite structure. In both structures, each zinc ion is tetrahedrally sur-
rounded by sulfur ions; in turn, each ion of sulfur is surrounded by ions of zinc. This
structure should be seen as densely packed with sulfur ions and in which the zinc ions
occupy half of the tetrahedral voids. Accordingly, the structure of sphalerite has
cubic packing; therefore this structure resembles a diamond, in which the unit cell
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(A)
FIG. 1.21

Structure of sodium chloride: (A) centers of ion location, (B) tetrahedral surrounding of ions.

contains four sulfur anions and four zinc cations with CN =4. The wurtzite structure
has a hexagonal packaging of the unit cell that is schematically shown in Fig. 1.21C.
The CN is 4 in both structures.

The sphalerite and wurtzite structures are characteristic of many semiconductor
crystals: Agl, AIR, GaR, GaAs, CdS, CdTe, Sul, SuF, NgS, NgSe, ZnS, ZnSe, ZnTe,
7Zn0, etc.

There are certain differences between diamond-type semiconductors and metals.
In semiconductor compounds, each bond has a pair of electrons, and these electrons
are localized with these bonds. Metals are characterized by a higher number of bonds
than the number of electron pairs, whereas the electrons are not localized, but
“smeared” throughout a structure.

The basic structures of dielectrics. The structure of rock salt (otherwise halite,
sodium chloride, or NaCl) is shown in Fig. 1.21. Chlorine anions form a face-
centered cubic structure while sodium cations fill all octahedral voids. The unit cell
contains four sodium ions and four chloride ions; the CN=6; the coordination
polyhedron—an octahedron—is shown in Fig. 1.21B. The structure of halite is char-
acteristic of alkali halide crystals (except cesium haloids) and some oxides of tran-
sition metals (MnO, FeO, etc.), as well as for nitrides and carbides of transition
groups Ti and V, haloids of silver (AgCl, AgBr, AgF), tin sulfides, and selenides.

The structure of cesium chloride is characterized by anions of chlorine that
occupy the cubic cell, whereas cesium cations retain voids between them. In the com-
pound CsCl, the radius of the Cs* cation is 1.69 A while anion Cl~ has a radius of
1.81 A. Smaller Cs* ions should determine the CN; its ionic radii ratio is 0.93 and
CN =8, which is observed in reality. The coordination polyhedron is cubic; therefore
the structure of CsCl is cubic space-centered (Fig. 1.22).

It should be emphasized that these (and many other) images of crystal structures
represent only the spatial arrangement of the centers of atoms (middle position of
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FIG. 1.22

Cubic structure of cesium chloride (A) and fluorite (B).

their nuclei). However, the maximum electronic density is located around nuclei or
along areas between adjacent cores. The CsCl type of structure is peculiar for some
alkali halide crystals (CsBr, Csl, RbCl, RbBr, Rbl, TICIl) and for some metal alloys
(FeTi, NiTi, CdAg, AgLi).

The fluorite (CaF,) structure is characteristic in some compounds of the AB"
type (Fig. 1.21B). Preserving conditions of neutrality results in the fact that the
CNss of cations and anions are different. The calcium ion is surrounded by eight ions
of fluoride whereas each fluoride ion is surrounded by four calcium ions. This struc-
ture is most favorable for the emergence of Coulomb interaction forces between par-
ticles. Compounds that crystallize in the fluorite structural type are SrF,, ZrO,, Li,0O,
CuF,, K,0, CeO,, Cu,Se, Na,O, etc.

The rutile (TiO») structure. The radius of the Ti*" cation equals 0.68 A while
radius of the anion 0%~ is 1.40 A. The ratio of the radii is 0.49; therefore, around
the titanium ion, there are six anions of oxygen. Thus each titanium atom is sur-
rounded by the octahedral group of O*~, and each oxygen ion is surrounded by three
Ti** cations, thereby forming a triangle (Fig. 1.23A). Crystals that belong to the
structural group of rutile are MgF,, MnO,, CrO,, ;PbO,, ZnF,, etc.

The structure of corundum (Al,O3) is typical of some sesquialter oxides, such as
Fe,O5 (hematite), Ti»O3, and Cr,O;. In corundum, each aluminum atom is surrounded
by distorted octahedral groups of oxygen atoms. In accordance with the requirements
of preserving neutrality, every oxygen atom is surrounded by a tetrahedral group of
aluminum atoms. Details of the structure of corundum are shown in Fig. 1.23B: oxygen
atoms form a hexagonal densely packed structure that comprises the layers O and Al,
whereas one-third of the possible locations in aluminum remain unoccupied.

Moreover, there are other, less stable forms of A1,0;, demonstrating the
“flexibility” of some structures. One of A1,05; modifications crystallizes in the NaCl
structural type; however, this structure is faulty: of three cationic places, one remains
free. Another A1,03; modification crystallizes in the structural type of spinel.
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FIG. 1.23

Structures of rutile (A) and corundum (B).

The spinel structure is peculiar to many oxides with the formula Me;O,. In this
structure, oxygen atoms form a dense cubic packing. The structure is formed by con-
nected structural units (Fig. 1.24). Panel a in Fig. 1.24 corresponds to a case where
metallic ions are found in octahedral sites, whereas panel b shows metallic ions occu-
pying the tetrahedral sites. In addition, there are some vacant positions.

Typical representatives of the spinel structure are MgAl,O, as well as magnetite
(Fe30,), hercynite (FeAl,O,4), and chromite (FeCrQy). It is possible to assume that
they are all folded by one two-valence cation, two trivalent cations, and by four oxy-
gen anions. The correspondent unit cell contains 32 oxygen ions, which is 8 times
more than that specified in the formula. This oxygen skeleton is completed by 8
of 64 possible tetrahedral and 16 of 32 possible positions of octahedral cations. In
some spinels, the tetrahedral positions are occupied by two-valence ions.
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Spinel structure: (A) octahedral coordination in Al, (B) tetrahedral coordination in Mg.
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FIG. 1.25

Perovskite structure.

The structure of perovskite (CaTiO3) is peculiar to orthorhombic systems,
wherein Ca®* ions (with CN=12) are found inside cuboctahedral cavities, created
by octahedrons that are connected to each other by the vertices, whereas Ti** ions
are found inside the octahedron. Many compounds with octahedral location of cat-
ions form a perovskite structure.

Typical representatives of such compounds are ferroelectrics of BaTiO; type,
potassium iodate (KIOs), and potassium-nickel fluoride (KNiF3).

The structure of perovskite is shown in Fig. 1.25. At first glance, it is in some
respects similar to the structure of cesium chloride, but with one important distinc-
tion: each oxygen atom in the group (TiOg)® ™ is located between two titanium atoms;
therefore the linkage Ti-O-Ti is linear. Thus it is possible to assume that the structure
of perovskite is created from groups of TiOg, bound in the vertices, and Ca*"* is
located above the center of each face of the octahedral group.

A general charge compensation must occur in the structures within inner sur-
roundings. Therefore a structure in which charge compensation could take place only
at large distances cannot be steady. In other words, large structural units should not
have a residual charge, whereas paired electrons of covalent bonds must not move on
long distances.

The structures of molecular crystals. When the particles creating a crystal are
whole molecules, they are associated in the crystal by intermolecular forces. Because
these forces are many times weaker than forces that bind particles in the ionic,
atomic, or metal crystals, molecular crystals have a low hardness, low melting point,
and significant volatility.

Inert gas crystals have the simplest cubic structure. Although their lattice is
formed by atoms of inert gas, the nature of bonds relates to molecular structure,
as the valence force plays no role in the formation of these crystals. Due to the
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spherical shape and spherical symmetry of the interacting atoms, the crystals of inert
gases energetically form the most advantageous structure: a face-centered cubic lat-
tice that is characterized by very dense packing of atoms.

Substances made of diatomic molecules usually form crystals of a more complex
structure. Especially complicated structures are formed in materials containing poly-
atomic molecules. Only the most symmetric and relatively simple molecules such as
CH,, CBry, and so on crystallize in a cubic system. The tetrahedral angle between
them equals 109°28’, which corresponds to the lowest energy of electron repulsion.

The most common molecular crystal is ice (H,0). Its crystalline structure resem-
bles the structure of a diamond because each molecule is surrounded by the four clos-
est molecules, which are located at the same distance and are placed at the vertices of
a regular tetrahedron whose angles are 109°28’ (Fig. 1.26). Due to a small CN, the
structure of ice looks like netting that shows low density.

At present, there are 14 known crystalline modifications of ice, but the most com-
mon is the hexagonal structure. In ice, the hydrogen bonds that form between water
molecules play an important role. Each oxygen atom is surrounded by four other oxy-
gen atoms, linked via the hydrogen atom. Two of four hydrogen atoms are located
closer to the given oxygen atom, and they create a water molecule. Two others are
attached with this molecule by hydrogen bonds, and they are a part of other water
molecules. The distance between two nuclei of oxygen atoms of neighboring mol-
ecules is 2.76 A.

Such an arrangement is very far from the dense stacking of molecules: in such
cases (when packing balls of radius 1.38 A), the molar volume of ice would be
approximately two times smaller, because when molecules order in the more dense
structure, their mutual orientation cannot be stored, but it is necessary for the emer-
gence of hydrogen bonds. The distortion of a bond’s angles requires considerable

FIG. 1.26
Model of ice.
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energy expenditure. This explains the friable structure of ice and why the density of
ice is less than that of water.

With modifications too, ice is as crystalline and as amorphous a structure, differ-
ing by the relative positions of water molecules and different properties. After ice
melts, the ice water partially preserves the structure of ice.

Many types of molecular crystals including, particularly, macromolecular com-
pounds (polymers) are complex substances with molecules of high molecular weight.
They are constructed from a large number of elementary units that are repeated.
Polymers are formed by the interaction of identical simple molecules—monomers.
These compounds are rubber, artificial fiber, plastics, cellulose, protein, etc. In
their properties, the macromolecular compounds resemble colloids because the dimen-
sions of macromolecules are close to the size of colloidal particles. Most polymers have
no crystalline structure (polystyrene, polyvinylacetate, rubber, etc.). However, there are
some polymers with pronounced crystalline structure, such as polydiacetylene.

Organic substances mainly consist of molecules that have stable structure, such
that they can form crystals. Moreover, the concept of intermolecular radii and com-
pact packaging can be introduced for molecular crystals, taking into account the
characteristics and geometrical structure of molecules. Molecular crystalline struc-
tures tend to have lower symmetry than inorganic structures.

Some macromolecular compounds have such structures wherein crystalline
regions alternate with amorphous ones. For example, in natural cellulose, 70% of
molecules are well ordered, while in 30% are disordered. The properties of polymers
can change quite widely, depending on their molecular and supramolecular (crystal-
line or amorphous) structure, and they thus find different applications in practice.

The solid solutions. A crystal or polycrystal can consist of several components
(e.g., two components in metals that are alloys). Usually, these components cannot
chemically interact with each other (forming compound) but have the ability to be
mutually dissolved (as liquid, but in the crystal state), forming so-called solid solu-
tions (or mixed crystals). Here, atoms of one element are introduced into another lat-
tice, creating solid solutions of intrusion or solid solutions of substitution.

The solid solutions of intrusion arise when atoms of an element that dissolves are
placed in an empty space in the lattice of solvent. Obviously, the size of atoms of the
element that dissolves must be smaller. Usually, it should be less than 0.63 of solvent
atom size because, if it is larger, there might be a distortion of the lattice.

The solid solutions of the substitution are formed by partial substitution of atoms
of the solvent by atoms that dissolve. This process can occur without incurring sig-
nificant stresses in a lattice only in such cases where the size of atoms does not differ
greatly. Both types of atoms must be sufficiently close in their chemical properties,
and it would be the best if they belong to similar subgroups of the periodic table.

Polytypicism is a property of such structures that are built of identical structural
elements but have a different sequence of their location. In the plane layers, the struc-
ture of the polytypic lattice usually remains unchanged; however, in directions perpen-
dicular to the layers, the lattice parameters are different, even though they multiple
distance between adjacent layers. The phenomenon of polytypicism is usually seen
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with densely packed but layered structures. It is associated with a difference in the rel-
ative orientation of atoms and results in a change in their identity period.

An example of a compound in which a large number of polytypic structures is
found is the semiconductor silicon carbide (SiC). This crystal exists as in the sphal-
erite cubic modification—in hexagonal modification. The simplest structure for sil-
icon carbide is the six-layer packaging (n=6). However, there are other polytypic
structures of SiC wherein n=4; 15; 21; 33; 65; 192; 270; 400; 594; or 1200. Another
semiconductor crystal—ZnS—has approximately 10 modifications. Moreover,
polytypic structures are observed in graphite, molybdenite, and other crystals. Poly-
typicism significantly affects the physical properties of crystals, especially their opti-
cal properties.

Isomorphism is a property of chemically closed atoms, ions, or other structural ele-
ments to replace each other in a crystal lattice and form a continuously variable com-
position. Here, atoms with the same valences, bonding type, and polarization that are
similar in size (with deviation of not more than 5%—7%) are chemically closed. Isomor-
phic substances with close but not identical composition crystallize in a similar form.

Both germanium and silicon crystals are examples of isomorphism. The density,
lattice parameters, and hardness in an isomorphic row of mixed crystals Ge-Si vary
linearly. However, as the energy spectra of germanium and silicon are different, the
electron’s energy bandgap, specific conductivity, and thermoelectromotive power in
this series of Ge-Si semiconductors vary nonlinearly. By selecting different isomor-
phic compositions, it is possible to vary the range of operating temperatures and elec-
trical characteristics of semiconductor compounds. Crystalline touchstring can cause
crystallization and ordering of another isomorphic substance from a supersaturated
solution or melt. The ability of isomorphic substances for mutual growth is used in
crystal growth technology.

Polymorphism is the property of certain substances to exist in multiple crystalline
phases, differing in symmetry of structure and in physical properties. Polymorphic
modifications are called allotropic elements. At conformable physicochemical con-
ditions, polymorphic modifications can form stable phases. Each of these phases is
stable at a fixed range of temperatures and pressures, and is called the polymorphic
modification. The relative stability of different phases is determined by the value of
free energy and external conditions. Basically, polymorphic modifications differ in
their structure, sometimes by the type of chemical bonds.

The change in environmental conditions might influence polymorphous transfor-
mation. During these transformations (usually, phase transitions of type I), the
release or absorption of heat is seen, as well as the jumps of internal energy and
entropy. Thus an abrupt change of many physical properties is observed that depends
on the arrangement of atoms in a structure: density, specific heat, thermal conduc-
tivity, electrical conductivity, etc.

In addition, there are other types of polymorphic modifications that differ very
little in their physical properties. The polymorphic transitions between such phases
characterize the phase transitions of type II, and generally are described as the
“order-disorder” phase transitions.
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1.4 LATTICE DEFECTS IN CRYSTALS

In solid-state theory, in its first approximation, it is always assumed that the structure
of crystals is ideal, that is, the location of atoms in unit cells as well as around all
crystals is strictly periodic. However, in practice in real crystals, these ideally perfect
structures are impossible.

Defect formation. Defects in the crystals are formed, for instance, during their
growth under the influence of thermal, mechanical, and electrical fields (technolog-
ical defects), as well as under crystal irradiation by neutrons, electrons, X-rays, and
ultraviolet radiation (radiation defects). There are point defects (zero-dimensional),
linear defects (one-dimensional; 1D), planar defects (2D), and volume defects (3D).
In case of a 1D defect, its size in one direction is much larger than the distance
between neighboring atoms (lattice parameter) whereas in the other two directions,
the size of the defect has the order of a lattice parameter. In a 2D defect, its size in two
directions is much larger than the distance between the nearest atoms, and so on.

Mechanisms of defect appearance may be quite various. For example, Fig. 1.27
demonstrates a possible mechanism of crystal growth [9]. Atoms are relatively
weakly linked to a flat surface of ideal crystal (Fig. 1.27A) but would have better
connected near a step formed by two planes (Fig. 1.27B). It is obvious that the atom
will be strongly linked in the corner formed by two steps (Fig. 1.27C): this mecha-
nism of crystal growth seems more likely. However, crystal growth becomes even

FIG. 1.27
Possible mechanisms of crystal growth.
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easier if it happens through screw dislocation (Fig. 1.27D). In case of such a struc-
ture, the new atoms easily add and form an endless spiral around the disturbance.
Crystal growth in this way is much faster, because it does not require the formation
of a new embryo, as in the cases shown in Fig. 1.27A and B.

Defect formation in a crystal occurs because of different reasons.

First, atoms sometimes leave their ideal position in the crystal lattice, and there-
fore create defects of structure through thermal fluctuations. With this mechanism of
defect formation, a small part of the crystal’s own atoms lose their regular places in a
lattice (they become the vacancies), or squeeze among other regular atoms, creating
interstitial atoms; in both cases, the ideal structure of a crystal becomes locally
broken.

Second, defects can be formed due to other reasons. For example, some atoms
come out of the crystal surface; this is the simplest mechanism of point-defect
(vacancies) formation near the surface of a crystal. Thus these vacancies—
unoccupied sites in crystal lattice—are not accompanied by interstitial atoms.
Vacancies of this type are called Schottky defects. In most crystals, the energy of
vacancy formation is close to 1eV.

In case of defect formation by the Frenkel mechanism, interstitial atoms or ions
arise inside a lattice. Due to thermal fluctuations or power external influence (e.g.,
bombardment of crystal by ions), the foreign atom (or ion) can take root in the regular
crystal structure from outside and create “extra” interstitial atoms. It is this very
method of introducing foreign atoms into a crystal lattice that is used in modern elec-
tronics technology: the point is that a semiconductor should be obviously doped with
impurities, whose atoms not only have different sizes but also can have different
valences. After annealing, these foreign atoms replace the atoms in the crystal lattice,
forming a solid solution. Thus the nonideal defect structure can be planned specially
by technological means.

The need for defect management in structures (quite necessary for semiconduc-
tors) is due to fact that defects substantially affect such parameters of crystals as con-
ductivity, dielectric and magnetic energy losses, electrical strength, and other
properties of semiconductors, magnetics, and dielectrics, as well as strongly affect
the mechanical parameters (strength) of metals.

Therefore many properties of solids are structurally sensitive. However, some
other properties (e.g., density, specific heat, elastic characteristics) are only slightly
dependent on the presence of defects. These properties are structure-insensitive,
being determined, first of all, by the nature of fundamental atomic bonding as well
as by crystal chemical composition.

Defects are very diverse. Sometimes, they are associated with one another, and it
is difficult even to assign them to a definite class. However, it is possible to divide the
main types of structural defects according to their dimension.

The zero-dimensional (point) defects are characterized by structure violation in
the nodes or interstitials of the crystal lattice. These defects are caused, primarily, by
the disordered location of main atoms in the crystal. Point (zero-dimensional) defects
include all defects that are due to the displacement or replacement of individual atom
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(or small group of atoms). They arise in the process of crystal growth, but might also
be a result of radiation exposure. Moreover, point defects may be made by implan-
tation; these types of defects are most studied, including their motion, interaction,
annihilation, or evaporation.

These defects include:

» vacancies—free, unoccupied by atom lattice point;

* impurity atoms—replacing one type of atom by another type of atom by
substitution in a lattice;

 intrusion of impurity atom into the interstitial space of the crystal lattice;

» Frenkel pair—vacancy together with interstitial atoms; and

» Schottky defect—vacancy arising due to the release of an atom on the surface.

Usually, Schottky defects are seen in ionic crystals as a pair of cationic and anionic
vacancies. This defect is often found in the alkali halide crystals. The presence of
Schottky defects decreases crystal density, as atoms that create vacancies diffuse
to a surface (Fig. 1.28).

The defects generated by Frenkel’s mechanism are usually vacancies and inter-
stitial atoms. These defects are typical, for example, for ionic crystals of silver
halides where superionic conductivity exists. Vacancy and interstitial atoms can
move within a crystal lattice by the influence of thermal movement. Furthermore,
Frenkel’s defects are easily formed in structures of diamond-type crystals (silicon
and germanium). These defects do not change crystal density.

In general, crystal can have both Frenkel’s and Schottky’s defects; thus those that
dominate that formation require less energy. In ionic crystals formed by two kinds of
particles (positive and negative), point defects occur in pairs. Two vacancies of the
opposite sign usually form Schottky’s defect. The pair consisting of interstitial ions
and the vacancies left by them is usually the Frenkel’s defect. As already noted, the
simplest zero-dimensional defects in crystals are the vacancies and interstitial atoms
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(A)
FIG. 1.28

Scheme of Schottky defect formation: (A) atom going out from crystal surface; and (B) shifting
another atom onto empty position of first atom [9].
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(A)
FIG. 1.29

Schematic representation of interstitial atom (A), vacancy (B), and impurity atom (C).

(Fig. 1.29). The displacement of atoms or ions (point defects) causes deformation
and elastic fields around defects [9].

According to classification, except for proper point defects, other types of defects
are possible, namely, the impurity defects (Fig. 1.29C): if the size of a defect atom or
ion is different from the main atoms of crystal. Such defects, for example, are donor
or acceptor impurities in semiconductors; similar are the impurities introduced in
semiconductors to form the centers of recombination, the charge-carrier-scattering
centers, etc. Around such defects, there arise local tension and distortion of the crys-
tal lattice (Fig. 1.29A and B).

If the crystal is ionic, the vacancies in it lead not only to lattice distortion, but also
to the appearance of effective charges with a sign, opposite to the sign of the charged
ion that is missed. However, during defect formation in crystals, the principle of elec-
troneutrality is efficient. The electrical interaction is very large and therefore the sum
of all charges of defects generated in a crystal should be equal to zero:

an‘% =0,

where n; is the concentration and g; is the charge of the originated defects. Thus, for
example, the displacement of an ion from the lattice site into the interstitial position
is accompanied not only by charged ion appearance in the interstitial space, but also
by charged vacancy in the crystal lattice. As with Schottky’s defects, Frenkel’s
defects in ionic crystals provide local electroneutrality.

In the atomic crystals (doped semiconductors), the compensating charges appear
due to electrons. The introduction of impurity atoms in semiconductors results in the
appearance of donor and acceptor centers. The donor center is caused by such an
impurity that the valence is higher as compared to the basic atom of the crystal. These
centers provide additional electrons in the conduction band of a crystal. Donor cen-
ters in silicon or germanium crystals very often are formed by phosphorus atoms. The
host atom in a lattice has four valence electrons (Si+4). The replacement of some sil-
icon atoms in crystal by phosphorus atoms (P*>, donor impurity) results in “extra”
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electron (— e) as the compensating charge that provides common electroneutrality in
a crystal. Thus the positively charged (+¢) ion of a donor generates an electron with a
negative charge (—e).

The acceptor centers are created in silicon (or germanium) by impurities where
the valence is one less than the valence of basic crystal atoms. For example, such an
impurity is boron (B**). Thus when fixed in a lattice, the (immovable) impurity ion
has a negative charge (— e). The lack of one electron is seen as a hole (+e), that is, the
mobile positive charge. Therefore the acceptor type of impurity is a lower-valence
atom than the own atoms of the crystal, and it gives rise to holes in the valence band.

The polaron is a charge carrier, partially bound in a crystal lattice (most often,
this is a bound electron or hole). The polaron is not a “static” defect in the crystal,
being much more mobile than the vacancies or interstitial ions. However, a polaron is
much less mobile than an electron or a hole. As a rule, polarons are peculiar to ionic
crystals wherein, under the influence of thermal motion or irradiation, some elec-
trons (and holes) appear. In ionic crystals, the appearance of local deformation of
ionic lattice (i.e., local polarization of lattice) is energetically favorable for electron.
Thus the electrical field of the electron (or hole) is partially screened by the polar-
ization that reduces the electrostatic energy of an electron (hole). Being a mobile
charged formation, a polaron cannot be fully considered a “point defect,” but as a
special state of conductive electron in the ionic crystal.

The excitons can also be interpreted as mobile point defects in crystals. The pres-
ence of excitons is, as a rule, a characteristic feature of semiconductors and dielec-
trics. In case of exciton appearance, ions (or atoms) in a crystal do not change their
location, but become significantly different from their neighbors by infringement of
its electronic state. Such a “defect” is Frenkel’ s exciton. Because the excited state can
be found in any ion, and there is strong interaction between the outer electronic shells
of ions, the energy infringement can be transmitted from one ion to another. There-
fore moving Frenkel’s exciton in a crystal is not related to the change of ion posi-
tions; thus it has (as polaron) a much higher mobility than vacancies, interstitial
atoms, and impurities of replacement. In general, the exciton cannot be fully consid-
ered a localized defect.

The diffusion. In processes of semiconductor device technology, a heteroge-
neous distribution of donors or acceptors is usually necessary to create the p-n junc-
tions for diodes or transistors. In addition, during semiconductor device operation,
the heterogeneous (in space and in time) distribution of charge carriers often arises.
Whenever there is nonuniform concentration, the phenomenon of diffusion takes
place, and it often plays an important role in the given situation. Therefore diffusion
has received a great deal of attention in semiconductor research [9].

Diffusion is the directional movement of molecules, atoms, or charge carries
from a region of high concentration to a region of low concentration. Diffusion is
caused by the aspiration of any system to reach their equilibrium state, that is, in this
case, a leveling of concentration. In the first case (technological), it is the smoothing
of admixture additive concentration; in the second case (electronic device operation),
it is the decrease of excess concentration of charge carriers.
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FIG. 1.30

Time dependence of concentration clot in a one-dimensional model of diffusion:
(A) degradation with time without external influence; and (B) charge carrier diffusion and
simultaneous drift with time in the electrical field (fo< t; < t).

In Fig. 1.30A, in a local area with a coordinate x, at time #,, an excessive con-
centration of particles n,,,x is created. This is a nonequilibrium state; therefore, over
time (1, t,, ...) under the influence of thermal chaotic motion, the maximum concen-
tration decreases and the area of increased concentration becomes blurred, aiming for
full alignment.

In cases when donors or acceptors are locally imbedded in a semiconductor,
rather high temperature is needed to smooth down their concentration, and this is
an important stage in semiconductor device technology. (At room temperature, a
great amount of time is necessary to change the position of admixture additives in
the crystal lattice.)

In many semiconductor devices, the locally increased concentration of charge
carriers is created (usually by injecting of carriers into a specimen from an external
circuit). It is obvious that such a concentration of charge carriers is the nonequili-
brium state. Therefore electrical current flows from both edges of concentration
peak, as shown in a 1D model (Fig. 1.30A). This flow, in which the concentration
n(t,x) changes rapidly, is called the charge carrier diffusion. The effect of diffusion
is eventually to bring the concentration of charge carriers toward their equilibrium
situation wherein their concentration is uniform throughout. As time changes, the
peak spreads out in both directions and decreases, although the center of the peak
remains at the same place x.

A quantitative consideration of these processes reduces to the basic law of diffu-
sion: Fick’s law, which specifies that, in nonuniform concentration, the density of par-
ticle flow j' (i.e., the number of particles, crossing unit area per unit time) is given by

j=-D-on/ox,

where D is a constant called the diffusion coefficient. This law states that the flow of
diffusion is proportional to the gradient of concentration. Thus the more rapidly n
varies, the larger is the flow. The negative sign in a given formula is introduced
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for convenience in order to make parameter D a positive quantity. As seen from this
equation, j is opposite to dn/dx.

Fick’s law is valid whether particles are neutral or charged. In semiconductors,
where moving particles are charged carriers, the flow j’ is proportional to the elec-
trical current: j=e-j', because, to obtain the value of the electrical current, one needs
to multiply j by the charge of the carrier.

After the creation of a clot with increased concentration of charge carriers at time
to, if the gradient force field is switched in (usually, it is an electrical field), the clot of
particles will diffuse as before, and the center of the clot will also drift because the
applied electrical force influences these particles (Fig. 1.35B; this case can be
applied also to the movement of defects under a thermal gradient influence).

The 1D defects—dislocations—are crystallographic defects or any irregularity
within a crystal structure. The presence of dislocations strongly influences many
properties of solids.

Dislocation may, furthermore, be interpreted as the linear boundary of a structural
violation in a crystal. Mathematically, dislocations can be defined as a type of topo-
logical defect, sometimes called the soliton. In other words, dislocations are such
violations of crystal structure that have greater length (up to macroscopic size),
but their lateral dimensions do not exceed several interatomic distances. Therefore,
1D (linear) defects are defects that, in one direction, are much larger than the crystal
lattice parameter, whereas, in two other directions, they can be compared to it. There
are two primary types of dislocations: edge and screw. Mixed dislocations are the
intermediate cases between these two.

The edge dislocation is the border of “excess” atomic plane that splits the crystal.
It corresponds to a row of convergent atoms along the end of an additional plane of
atoms within the crystal. Fig. 1.31A shows the atom arrangement around edge dis-
location whereas the right panels of the figure (b, ¢, d) demonstrate the possible
movement of such dislocations in a crystal.

In other words, the edge dislocation is a defect when an extra half-plane of atoms
is introduced, distorting the nearby planes of atoms [9]. If an external force is applied

a a,

b b,

(B) (©) (D)

FIG. 1.31

Edge (linear) dislocation (A) and its displacement to left side from one part of the crystal in
relation to another (B, C, and D).
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to one side of the crystal, this extra plane will pass through the planes of atoms,
breaking and joining bonds with them, until it reaches the crystal (or grain) boundary.
Dislocation is described by two parameters: the line direction (i.e., the direction of
running along the bottom of the extra half plane) and the Burgers vector that
describes the magnitude of distortion. In case of edge dislocation, the Burgers vector
is perpendicular to the line direction.

The formation of dislocations in a semiconductor crystal occurs in a process of
crystal growth because crystal cooling is not uniform (the surface cools faster than
the volume). As a result of uneven thermal expansion, tensions appear in the crystal
lattice. When temperatures are higher than the temperature of ductility, the stressed
state of the lattice can be, to some extent, “removed” due to the formation of linear
dislocations. Below this temperature, dislocations in crystal become “frozen.”

The screw dislocation is a result of change in atom location in one part of a crystal
in comparison with another. It corresponds to the axis of the spiral structure of dis-
tortion that is associated with normally parallel planes (Fig. 1.27D). As shown, screw
dislocations are formed during crystal growth and then they remain in the structure. It
is possible to say that the problem of crystal growth can be solved by the possibility
of screw dislocations rising. If the surface plane crosses only part of the way through
the crystal and then stops, the boundary of this cut becomes the screw dislocation. It
comprises a structure wherein a helical path is traced around a linear defect (dislo-
cation line) in the crystal lattice. In purely screw dislocations, the Burgers vector is
parallel to the line direction.

As point defects, dislocations can move through the crystal lattice. However, the
movement of dislocations is associated with many limitations, because a 1D dislo-
cation should always be a continuous line. There are two main types of dislocation
movements: displacement and sliding.

The dislocation displacement is due to the addition (or removal) of atoms from
the superfluous half-plane that may occur as a result of thermal diffusion. During this
sliding, the extra half-plane of dislocation that takes a definite position in the crystal
lattice combines with the atomic plane that is located under the plane of sliding,
whereas the neighboring atomic plane becomes the extraneous half-plane. This
smooth sliding of the dislocation line can be caused by the shear stress applied to
the crystal surface.

It is well known that a rod of soft metal, after a series of bends and straightening,
stops its bending and eventually breaks. This is the example of strain hardening. At
each bending, many new dislocations occur in a metal; when their number becomes
so large that they cannot move, the crystal loses its ability for plastic deformation and
it breaks on any further impact on a crystal.

The 2D and 3D defects. Two-dimensional (planar) defects include intergranular
or intercrystallite borders, as well as crystal surfaces and modulated structures inside
a crystal. Therefore most common 2D defects are the boundaries between grains that
are peculiar for polycrystalline materials. They consist of a large number of single-
crystal grains that are randomly oriented and tightly interconnected. These structures
usually are polycrystalline metals as well as dielectric or magnetic ceramics.
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Schematic (A) and atomic (B) representation of grain boundaries.

Intergrain borders—interfaces of crystallites—are not necessarily flat surfaces.
Boundaries between grains (crystallites) in polycrystalline materials might have sig-
nificant curvature. Layers of atoms near these boundaries are the areas of the dis-
turbed crystal lattice; thus the thickness of defect layers usually equals several
atomic layers, providing smooth transition between disordered regions (Fig. 1.32B).

The polycrystalline (block) structure of ceramic materials and metals can signif-
icantly affect their electrical, magnetic, and mechanical properties.

The surface of a crystal, by its essence, is also a 2D structural defect. Therefore,
each real crystal differs from the ideal crystal due to variations in the structure and
properties of a surface. The surface is a special state of crystal, with different sized
elementary cells that have other symmetry and other energy. Atoms (ions) located on
the surface layer are joined by broken chemical bonds which are not saturated.
Located on the surface are unpaired electrons of atoms (ions) that tend to form
new connections.

Most often, the state of the surface is characterized by the bonding of neighboring
atoms—either in pairs, or in more complex associations. Surface atoms are combined
into larger unit cells, as compared with the volume of a crystal. For example, on the
surface, a silicon unit cell has 7 x 7 atoms (in germanium 2 X 8 atoms) whereas their
fundamental unit cell contains only two atoms. Thus the elasticity of atomic bonds on
the surface is changed and, as a result, the characteristic “melting point” is reduced
by 10%-30%. Note that crystal growth occurs just from the surface as well as the
melting of the crystal, its evaporation and condensation, and the diffusion of atoms
deeper into the crystal.

The electronic energy spectra of the crystal surface significantly differ from the
electronic spectra of the crystal volume. As discussed later, the unique properties of
nanocrystalline materials are due exactly to the fact that in nanoparticles (which
have a small number of atoms: 10-1000), the ratio of surface-located atoms to
volume-located atoms is 90%—20%.
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The physics of modulated structures can be regarded as a boundary area
between the physics of nanomaterials and physics of structural defects. In case
of nanophysics, the planar (by-layer) modulation of semiconductor structures
may result in a specific electronic spectrum—so-called quantum wells. In some
types of magnetics, the arrangement of electronic spins in crystals also exhibits
periodic complexity in their magnetic ordering, as compared to the usual crystal
structure. Modulated structures can be explained as the coexistence of different
periodicity in a crystal.

The 3D (volumetric) defects. They are, first of all, the clusters of vacancies that
form pores and channels; various imbedded defects, such as gas bubbles; accumula-
tion of impurities in a form of sectors and areas of growth. Three-dimensional defects
reduce crystal flexibility, affect its elasticity, and strength as well as change the elec-
trical, optical, and magnetic properties of a crystal. Fig. 1.2 in the Introduction sche-
matically shows 3D structural defects in polycrystalline materials. Inside of each
crystallite, many interplanar structural defects can be observed.

Thus 3D defects are solid interstices, liquid or gaseous phases in a crystal, clus-
ters, and other complications with a macroscopic structure. In materials used in elec-
tronic technology, 3D defects might also have a fundamental nature, but this case is
not considered here.

As a result, some conclusions follow:

» Part of atoms (or ions) of a crystal may be absent in their positions that correspond
to the ideal crystal lattice scheme. These defects are vacancies. Foreign
(impurity) atoms or ions, replacing basic particles that form a crystal, or inserted
between them, can also be seen in crystals. Point defects in a crystal can also be its
own atoms or ions that are shifted from their normal positions (internode atoms
and ions),

» In the process of crystal growth, as well as during its plastic deformation and in
many other cases, dislocations arise. Dislocations are places with ordered
accumulation of impurities. The distribution and behavior of dislocations under
external influences determine many important mechanical properties of a crystal,
including strength, ductility, and other aspects. In particular, the mobility of
dislocation determines the plasticity of crystals; dislocations also cause the
appearance of internal stress and fracture of crystals. The problem of plastic
(i-e., irreversible) flow of metals can be solved by the prevention of
dislocation movements. Dislocations impede the process of magnetization
and electrical polarization because of their interaction with domain
boundaries movement.

» Defects in crystals cause elastic deformation of the structure that leads, in turn, to
the appearance of internal mechanical stresses. For example, point defects,
interacting with dislocations, can increase or decrease the strength of
crystals. Defects in crystals affect absorption spectra and luminescence, light
scattering in crystal, etc.; such defects change electrical conductivity, thermal
conductivity, ferroelectric properties, magnetic properties, etc.
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STRUCTURE AND SYMMETRY OF QUASICRYSTALS
AND NANOMATERIALS

As described earlier, crystal structure is defined as a system with long-range ordering
of particles. If the structure of the crystal unit cell is known, 3D periodicity makes it
possible to predict the location of atoms of any other cell and the relative positions of
atoms of the entire structure as a whole. This means that crystal has translational
symmetry. The structure of the crystal can be described by the displacement of a sin-
gle unit cell on three basic vectors of translations.

Translational symmetry results in regular crystallographic planes in crystal, thus
making clearly identified narrow peaks of X-ray scattering. This feature of the X-ray
diffraction pattern is the distinguishing characteristic of crystals. Polycrystalline
bodies, in their structure, are similar to single crystals, because they are composed
of small randomly oriented crystals. During X-ray beam scattering in polycrystals, a
conical symmetry is formed that also gives distinct diffraction maxims, which can be
used to obtain lattice parameters as in a single crystal.

Significant difference occurs in the X-ray spectra of amorphous solids that are
characterized by the blurred picture of diffuse X-ray scattering without clearly iden-
tified narrow rings. Such solids in their amorphous state do not show strict 3D peri-
odicity. Thus while defining an amorphous structure, the terms ‘“disordered,”
“noncrystalline,” “amorphous,” and “glassy” are synonymous. The arrangement
of atoms in amorphous solids, however, is not completely random (as it is in gases).
The interactions between atoms in an amorphous body are similar to the forces in
crystals and, although there is no long-range ordering, the short-range ordering, gen-
erally speaking, is preserved [8].

Short-range ordering in the arrangement of atoms is characterized by such param-
eters as the length and the angles of bonds as well as by the number of their nearest
neighbors. It should be noted that in the amorphous state, because of violations of
their structure, these options have some statistical dispersion, and their average
values may differ slightly from those values in a perfect crystal.

The quasicrystals show a new type of symmetry, different from all aforemen-
tioned cases. They demonstrate such elements of symmetry that previously were
considered as impossible. The translation symmetry of a perfect crystal obeys rigid
restrictions as to the order of rotary symmetry axes, which describe the symmetry of a
crystal.

As shown earlier, the ideal crystal, except with a trivial axis of the first order, can
have symmetry axes only of second, third, fourth, and sixth orders. Solely, these axes
can provide the parallel transfer of unit cell when it is multiplied to create a crystal.
The symmetry of a perfect crystal does not allow the existence of axes of symmetry
of the fifth, seventh, or higher orders. Elementary cells that have such axes cannot
completely fill even the plane (and, moreover, the volume).

Nevertheless, in 1984, for the first time a metallic alloy was discovered with
unusual properties: with the axis of symmetry of the fifth order (Dan Shechtman,
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(A)
FIG. 1.33

Models of quasicrystals structures: (A) icosahedron and (B) dodecahedron.

Nobel Prize for 2011). This alloy was obtained by a rapid cooling of molten
aluminum-manganese (with the speed of cooling near 10° degrees Kelvin per sec-
ond). Grains of this alloy have the form of a dodecahedron with rotary symmetry
axes of fifth order.

As known, symmetry axes of the fifth order have two types of “regular convex
polyhedra” (Fig. 1.33): icosahedron and dodecahedron (the existence of these regular
convex polyhedra was first noted by Euler). The icosahedron is a regular polyhedron
consisting of 20 faces—equilateral triangles—and it has 12 vertices and 30 edges
(Fig. 1.33A). The dodecahedron is a polyhedron consisting of 12 faces (pentagons)
and it has 30 edges and 20 vertices (Fig. 1.33B). The dodecahedron and icosahedron
can be inscribed into one another, similar to a cube and an octahedron. It should be
noted that the icosahedron and dodecahedron can be described by identical elements
of symmetry, including symmetry axes of the fifth order. As in ideal crystals, the
symmetry of the axis of the fifth order is prohibited; therefore the icosahedron
and dodecahedron are never used in the translational symmetry of classic
crystallography.

As mentioned, the diffraction pattern of X-ray scattering for the aluminum-
manganese alloy shows regular peaks, corresponding to a structure with a rotary
symmetry of the fifth order. This diffraction pattern can be formed only when the
atomic structure has the axes of symmetry of the fifth order. This means that icosa-
hedral symmetry characterizes not only grains of metal, but the arrangement of atoms
in unit cells as well. The presence of different reflexes in the X-ray spectrum shows
the special arrangement of atoms in the structure called shechtmanite (a quasiperi-
odic crystal), whereas the presence of symmetry axes of the order 5 indicates that this
material, in the usual sense, cannot be considered a crystal. Some additional research
of shechtmanite by methods of electron microscopy confirmed the homogeneity of
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this material and the existence of rotational symmetry of the fifth order in the small
areas with sizes of a few tens of a nanometer.

At present, many alloys of similar structures are discovered and synthesized, and
they are called the quasicrystals. For example, the quasicrystals can be obtained by a
sudden cooling of molten aluminum, copper, and iron that, during solidification,
form grains of the dodecahedron type. In most synthesized quasicrystals, using
X-ray diffraction studies, the icosahedral symmetry has been identified with point
group of symmetry, inherent to the rotary axis of the fifth order. In addition, other
quasicrystals are synthesized with rotary axes of symmetry of 8th, 10th, and 12th
orders (all these symmetry axes are prohibited in the translational symmetry of ideal
crystals).

Quasicrystals usually consist of metal atoms and (sometimes) of silicon, for
example, the alloys Al-Li-Cu, Al-Pd-Mn, Zn-Mg-Y, Al-Cu-Co-Si, Al-Ni-Co, and
Au-Na-Si. The structure of quasicrystals is characterized by a combination of alter-
native local symmetry (icosahedral) that is far from ordering, providing sharp peaks
in diffraction pattern, observed in experiment. Following the discovery of quasicrys-
tals with fifth-order axis of symmetry, it seems natural to involve the model that can
describe structures by regular icosahedrons and dodecahedrons.

For example, the icosahedral clusters can be used as a model, consisting of iden-
tical solid spheres that represent atoms. The tetrahedral structure can be formed with
four closely linked spheres, limiting their planes passing through the centers of
spheres. A compound of 20 tetrahedrons creates a small, distorted icosahedron.
A similar structure can be obtained by solid sphere wrapping by 12 equidistant areas.
However, between 12 peripheral areas, representing atoms, there are gaps that inev-
itably occur; each atom would be approximately 5% further apart than the distance to
the central atom. Compact filling of space by such an icosahedron-type cluster
should be quickly broken, that is, the icosahedral packaging cannot spread to the
entire crystal [10].

Some structures, which have short-range icosahedral ordering, acquire the term
the metal glasses. They are formed by a very rapid cooling (~10°K/s) of the melt of
some metals. Such structures have only short-range ordering, and, being amorphous,
form an X-ray spectrum with broad diffuse maxima. In quasicrystals, however, X-ray
peaks are expressed clearly.

To explain the spectra of quasicrystals, the presence of icosahedral clusters with
regular distortions on borders is supposed, which could provide long-range ordering
in the structure and, therefore, create X-ray diffraction patterns with narrow peaks.
Therefore, to describe some complex quasicrystals, the structural units containing a
few dozen atoms are proposed. However, a problem arises as to the physical nature of
appearance and stability of such complex clusters. Furthermore, X-ray and neutron-
diffraction methods showed that, in real structures of quasicrystals, only a small frac-
tion of their atoms have an icosahedral environment.

Thus, for actually existing long-range ordering, all quasicrystal structures should
have some “nontranslating” arrangement. In other words, filling of infinite space by
atoms in these structures can be determined by such an algorithm when a long-range
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order is ensured without full translational symmetry. The lack of translational con-
straints allows the structure to have a quasicrystalline axis of the fifth order. Orderly
arrangement of structural units can provide a positive interference of X-ray waves
scattered by atoms in some areas, and the formation of narrow and strong diffraction
reflexes.

Some ideas as to quasicrystals modeling in 1D and 2D structures are discussed
further. Ensuring long-range order in a 1D structure in the absence of translational
symmetry is possible in various ways. For example, long-range order in atom distri-
bution can be modeled by the linear chain of atoms with constant interatomic dis-
tance “a” that shifts with the next atom on distance A =¢-a-sin(2zja), where j is
the serial number of atom while ¢ and ¢ are some numbers. If the number o is irra-
tional, displacements of atoms are different, even if one considers an endless chain of
countable atoms. This 1D structure might have translations.

However, the coordinates of all atoms are determined by a definite law, that is,
this sequence is totally ordered structure. The lack of translational symmetry in this
case is not due to chaotic displacement of atoms (that is typical for amorphous
structures), but by imposition of two nondisproportionate periodicity in their
arrangement, whereas the ratio of their periods is an irrational number. The lack
of random displacements of atoms that leads to the nontranslational arrangement
makes an X-ray diffraction pattern, characterized by distinct maxima. Built in such
a manner, the chain of atoms is the example of 1D-quasicrystals. This example
shows the feasibility of using irrational numbers in constructing models of
quasicrystals [10].

The “Penrose mosaic” shown in Fig. 1.34 can be used as a mathematical model of
2D quasicrystals. This structure is fundamentally different from the classic “frozen”
form of perfect crystals. R. Penrose developed the algorithm on how to fill an infinite
plane with no overlaps and voids by using figures of only two types. These figures
that are needed to build the Penrose mosaic are the rhombuses with the same side.
The internal angles of wide rhombus equal 72° and 108° and internal corners of
“narrow” thombus are 36° and 144°.

A mosaic made of rhombuses can fill all “endless” flat surfaces, but only at an
aforementioned selection of special corners of rhombuses. Notably, that ratio of
“narrow” rthombuses to “broad” rhombuses is exactly equal to the “golden section”
(Golden section is a number (\/ 5—1)/2=0.618... equals to the ratio of two parts of
a whole (@ and §) that is subject to the following rule: @/(@+S5)=S/®.)

Because the “golden section” is an irrational number, in the considered mosaic it
is impossible to identify any “unit cell” containing a whole number of each type of
rhombuses that could fill the plane. Therefore the Penrose mosaic is not a 2D-crystal
in the traditional sense, but it is a 2D-quasicrystal.

It is important to pay attention to the following facts:

First of all, it is essential that the construction of mosaics is realized by defined
algorithms, which is why this mosaic is not a random, but ordered, structure. Sec-
ondly, when calculating the scattering of X-rays for structure, formed by atoms
located in vertices of the Penrose mosaic, it is found that the diffraction pattern
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FIG. 1.34
Penrose mosaic as example of two-dimensional quasicrystalline structures.

has a rotary symmetry axis of 10th order. The Penrose filling contains 10 squares
with exactly the same orientation. Thirdly, rhombuses of mosaics (with parallel
sides) form five families parallel to each other’s lines, intersecting at angles that
are multiples of the angle 72°.

Thus, the Penrose mosaic has a long-range ordering, providing diffraction pattern
of fifth-order rotational symmetry.

After the invention of “shechtmanite,” a 3D generalization of the Penrose mosaic
is studied that has icosahedral symmetry. Experiments show that in most real qua-
sicrystals, their atoms have nearest neighbors lying in the vertices of a regular
dodecahedron. However, the construction of the structure from hard figures with
20 vertices of the dodecahedron by real atoms may engage in no more than eight
vertices. Therefore, the first coordination sphere of each atom has a strong volatility.
Such structures are characterized by both short-range ordering and long-range order-
ing (with not usual translating), which can be built only from two types of rhombo-
hedrons. This mosaic is not possible to obtain traditionally by the translations of one
elementary cell.

It should be noted that the algorithm of 2D-rhombuses or 3D-rhombohedrons in
Penrose mosaics consists of several steps, and therefore has alternatives. Although
real quasicrystals grow, some failures of its structure are possible because quasicrys-
tals can be formed in regions of their violations. The presence of such “amorphous”
inclusions should lead to widening of peaks in X-ray diffraction pattern, as observed
in experiments. In addition, an evidence of the presence of disordered local areas is
the low conductivity of metal alloys of synthesized quasicrystals.
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In the melt metals, depending on alloy components, microsymmetry is created
correspondingly to features of the electronic structure of ions that coexist in the melt.
Microstructure in melts might be quite diverse; they might have axes of symmetry of
the fifth order (as well as axes of symmetry of higher orders), that is, such transla-
tional symmetries are forbidden in an ideal crystal. The thermal effect on crystal has
the symmetry of a sphere; therefore, it contains any element of symmetry (including
axes of any order). Usually, quasicrystals are obtained by a sudden cooling of such
alloys, where nontranslational symmetry axes are dominating in the microstructure.

Therefore, in case of imbalance cooling (by the “heat shock”), primarily the
structures of short-range order become stabilized (e.g., with the axis of the fifth
order), which is typical of the local electronic structure of a given melt and not for-
bidden by sphere symmetry (according to the Curie principle). The remaining sym-
metry elements (in considering the case of the axis of the fifth order) become
“frozen” after structure heatstroke, providing a sort of “long-range ordering.” These
formed clusters may have enough inner energy to withstand thermal movement and
therefore store the elements of symmetry, unusual for perfect (translational) long-
range order. In crystals that experience sharp changes of temperature, these unusual
elements of symmetry are stored; therefore the properties of such alloys are not
traditional.

The symmetry of nanomaterials. Nanomaterials exhibit short-range ordering of
their atoms. Their relatives are, for instance, well-studied amorphous metal alloys
(metal glasses). In such substances, their structure is changed quite significantly,
allowing the creation, for example, of ferromagnetics with such magnetic properties
that, in principle, cannot be obtained in the materials with long-range ordering
of atoms.

Topological models of amorphous materials are well developed and are based on
the random dense packing of both hard and deformable spheres: this is close to that
seen in nanostructures. With regard to inorganic glasses with covalent bonds and ran-
dom packing of atoms, these structures correspond to the model of a random and
continuous grid of atoms. All of the said models are characterized by a set of
different-size spheres, randomly packed to the largest density [8]. They differ in
the rules of packaging, in the interaction potentials, in the relaxation modes, etc.
In many configurations of random dense packing, the crystallographic structural ele-
ments are allocated, as well as the noncrystalline packing of clusters that can be illus-
trated by the Bernal polyhedra (Fig. 1.35).

As known, the CN in crystals might be 4, 6, 8, and 12. In the amorphous metallic
alloys, the CN for alloys of transition metals with copper remains only close to
CN =12 regardless of the compound (in ideal model CN = 12). In reality, for exam-
ple, in Ni-Li and Cu-Ti alloys, the average CN is 12.8. In the alloys of rare earth
metals and transition metals, as usual, CN = 12; however, in the amorphous alloys,
CN generally decreases. For example, in DyFe, alloy CN=7.1 £ 1, while in the
alloy TbFe,, CN =8.4 £ 1.8; thus the environment of iron atoms is approximately
the same as in the crystal. Thus the short-range ordering in amorphous and in crys-
talline states of metallic alloys is different.
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FIG. 1.35

Models of amorphous structures clusters: I—tetrahedron; 2—octahedron; 3—trigonal prism
with three semioctahedrons; 4—Archimedes’ antiprism with two semioctahedrons; and 5—
tetragonal dodecahedron.

Nanomaterials are small particles of matter (clusters), consisting of 10—1000
atoms, and their properties depend on the number of atoms in a cluster as well as
on the relative position of atoms. The size of a nanocluster also has an influence
on its shape and symmetry [11].

Consider, for example, the cubic symmetry crystal of magnesium oxide (MgO;
Fig. 1.36). An important property of nanoparticles is seen: the difference in the out-
ward form of the same material—crystal, microcrystal, and nanoparticle [12]. In this
example one can see a resizing change in the shape of a body. When the size is larger
than 100 x 100nm?, long-range ordering prevails, and MgO crystal has this intrinsic
to its cubic form. However, the microcrystal of MgO tends to have a hexagonal
shape, whereas the MgO nanosized particle shows a nearly dodecahedron form.

Another important example that demonstrates how internal bonding and symme-
try influence the properties of materials is of the various forms of carbon. In the peri-
odic table of elements, carbon relates to subgroup 4; the electronic shell of carbon
atom has four valence electrons with configuration s°p?, allowing carbon to have
valences —4, +2, and +4.

The classification of carbon structures is shown in Fig. 1.37. The classic (3D) struc-
tures of carbon are diamond and graphite. The diamond is a 3D form of carbon; its

100 nm

~4nm 100 nm 100 nm
FIG. 1.36

Various forms of MgO structure: 4nm—nanoparticle; 5 x 100 nm?—microcrystal;
100 x 100nm?—usual crystal.
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Carbon’s structures

Volumetric Low-dimension Nanostructures
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FIG. 1.37
Classification of different forms of carbon.

structure is formed from the electronic state of sp°-hybridization. In the diamond crys-
tal, each carbon atom is surrounded by four others that are in the tetrahedral sites; neigh-
boring atoms are combined together by a strong covalent bond that determines the
hardness of the diamond. The distance between the atoms in the diamond is 0.154 nm.

In graphite, carbon atoms are connected with each other, thus forming the hex-
agonal netting, in which each atom has three neighbors. In such a quasi-2D (plane)
form of carbon, its structure originates from the state of sp>-hybridization
(Fig. 1.38B). The layers of plane nettings of graphite are accommodated one above
another. In covalent chemical bond formation, three electrons from each atom take
part in creating 6-bonding. The distance between atoms, arranged in hexagonal mesh
nodes of graphite, is 0.142 nm—Iless than in the diamond. Thus neighboring atoms
within each layer of graphite are linked by stronger covalent bonds.

FIG. 1.38

Carbon atom location in various structures: (A) diamond, (B) graphite, (C) carbine,
(D) fullerene Cgg, and (E) fullerene Co.
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However, these layers fit together by the weak van der Waals forces, in which
four electrons are involved. The hexagonal graphite netting is located at a distance
of 0.335 nm from each other, that is, the distance between atoms is more than twice
that in the layers. This bonding between layers is the n-bond. A large distance
between layers determines the weakness of forces that combine layers.
This structure—strong segments, poorly linked—constitutes specific properties of
graphite, particularly its flexibility that explains a slight sliding of layers relative
to each other, as well as the low hardness of graphite and large anisotropy of its
properties.

The carbine is a linear polymer of carbon that can be obtained in vitro in the form
of long chains of carbon atoms, parallel to each other (Fig. 1.38C). The string (linear)
structure of carbine is formed by the sp-hybridized carbon atoms. In the very long
molecule of carbine, carbon atoms are strongly linked in chains by the #riple bond,
as well as by the double bonds between them. Carbyne can be obtained in forms of
fiber, powder, and films of different structure: disordered long chains, amorphous
and quasiamorphous material with microcrystalline inclusions, and bilayer-oriented
chains. Crystalline-type samples of carbyne have the shape of plate-form crystals, as
well as samples in the form of fiber up to 10 mm in length.

The graphene (Nobel Prize for the year 2010) is the plane polymer of carbon: the
layer of carbon atoms with a thickness of only one atom is connected by the sp*-
bonds in the 2D hexagonal crystal lattice. Graphene can be represented as a single
plane of graphite, separated from bulk crystal (see Fig. I.3 in Introduction). Graphene
is characterized by big mechanical stiffness and large thermal conductivity. The high
mobility of charge carriers in the graphene at room temperature makes it a promising
material for use in various electronic devices. In particular, graphene can be regarded
as an important material for nanoelectronics that allows, in some cases, to replace the
silicon in integrated circuits.

The fullerenes are molecular compounds belonging to one of the relatively new
forms of carbon. They are closed polyhedra composed of carbon atoms that are
located on a surface of convex polyhedron (Fig. 1.39D and E). The discovery of ful-
lerenes was also awarded the Nobel Prize. The most stable form of fullerenes is the
molecule Cgp—a polyhedron made of hexagon and pentagon faces.

The fullerites are condensed systems consisting of fullerene molecules. In addi-
tion, the topical compounds are the fullerides—fullerite crystals doped with alkali
metal atoms. Some fullerides exhibit high-temperature superconductivity, for exam-
ple, in the fulleride-superconductor RbCs,Cg, the critical temperature is 33 K.

The carbon nanotubes (Fig. 1.39) are lingering cylindrical structures with diam-
eter from one to several tens of nanometers and lengths up to several micrometers.
They consist of one or more sheets rolled into a tube hexagonal graphite planes (gra-
phene) and usually terminate in a hemispherical head. There are both metallic and
semiconducting carbon nanotubes. Metallic nanotubes well conduct electricity even
in near-absolute zero temperatures, whereas in the semiconductor type of nanotubes
at temperature close to absolute zero electrical conductivity is nearly zero but
increases with a rise in the temperature.
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(A)
FIG. 1.39

Single-walled carbon nanotubes: (A) schematic representation and (B) fullerene-like closed
end of the nanotube.

1.6 STRUCTURES OF COMPOSITES AND METAMATERIALS

The term “composite” is implied for multicomponent system in which several mate-
rials are combined, being different in composition or form, in order to obtain the spe-
cific property of the final material. In this case, individual components of a system
retain their individuality and properties to such an extent that they exhibit interphase
boundary, and operate the achieving the improved properties that are inaccessible to
each component separately. Thus, the properties of composite materials are largely
related to the geometric arrangement of components.

As an important example, the piezoelectric composite materials are considered.
These composites are used in underwater sonars, for medical ultrasound diagnostic,
in some electronic instruments, etc. In the simplest case, an ultrasound composite
receiver can be constructed of piezoelectric and polymer components (Fig. 1.40).
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FIG. 1.40

Element of piezoreceiver consisting of piezoelectric rods in polymer.
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Cylindrical rods made of piezoelectric material occupy a relatively small volume of
composite, yet they provide practically the same signal in the receiver as would be
obtained from a solid piezoelement, because the rods are hard whereas the polymer is
very malleable; therefore the mechanical signal almost entirely acts on the rods. Thus
the electrical capacity of composite piezoreceiver is tens of times smaller, because
the permittivity of polymer is hundreds of times less than that of the piezoelectric
element.

Therefore piezoelectric composites are very promising materials because they
open the possibility of effective control over their electrical and mechanical param-
eters. The advantages of such composites are the high coefficient of cohesion, low
acoustic impedance (in good agreement with the impedance of water or human tis-
sue), mechanical flexibility combined with low mechanical quality factor. In addi-
tion to increased piezoelectric efficiency, some piezoelectric composites can show a
magnetoelectrical effect. These composites are composed of magnetostriction
ceramics and piezoelectric ceramic and are capable of producing an electrical
response (voltage or current) under the influence of an external magnetic field.

The classification of various composite structures is proposed by R. Newnham
[13]. Properties of composite can be divided into three major effects: the effect of
sum, the effect of combination, and the effect of product.

1. The effect of sum. Assume that one of many physical properties of composite and
its components are considered. Suppose that component 1 has a property
characterized by parameter Y; while component 2 has parameter Y,. Then, the
composite will have some intermediate value of this parameter—a value between
Y, and Y5. In case of a two-component system, the given property is described in
the composite with summary function Y*, shown in Fig. 1.41. In case of sum
effect, the obtained dependence of the summary parameter from volume fraction
of components may be characterized not only by linear dependence, but also
might have a concave or convex shape. Thus, and it is very important, that the
average value of Y* in composite will never be more than Y, or less than Y5.

This example is commonly used in the microwave range composite material
with predetermined permittivity, set within £*=35...40. This composite can be

Component 1 Component 2
FIG. 1.41
Effect of sum in two-component composite.
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prepared from ceramic powder of rutile (e; =100) and polymeric polyethylene
(e2=2.5). The dielectric permittivity of such composites depends on the volume
fraction of ceramics, but it cannot exceed value &;.

2. The effect of combination. 1t is assumed that components of the composite are
characterized by two different properties: Y and Z. In this case, sometimes, the
average value of obtained certain parameter in a composite may exceed the
parameters of both components of the composite. The effect of the increase in the
output parameter is determined by the ratio Y/Z that depends on both parameters.
For example, in some of piezoelectric composites basic properties of components
are combined: high piezoelectric modulus of piezoceramics and low permittivity
of polymeric matrix (as in Fig. 1.40). As a result, the piezoelectric sensitiveness
of composite (that is dependent on ratio of piezoelectric modulus to permittivity)
increases substantially. Therefore, this composite has a significant advantage
over the properties of components.

3. The effect of product. Besides, such a two-component composite is considered,
wherein one of components has a significant property Y, which is absent in the
second component. However, in the second component, a quite different property
Z is present, which does not have the first component. In this case, it is expected to
obtain, in the resulting composite, these brand-new features and this is the effect
of a product.

For example, based on this concept, the magnetoelectrical ceramic composite material
has been developed, consisting of magnetic components with significant magnetostric-
tion effect (CoFe,O, that is nonpiezoelectric), and the piezoelectric component
(BaTiO;, exhibiting no magnetic properties) [ 14]. Under the action of a magnetic field
on composite, cobalt ferrite shows magnetostriction, which is transmitted to the grains
of barium titanate as the stress and results in generation of electrical charges (of volt-
age) due to the piezoelectric effect of BaTiO3. Thus, due to the composite material, the
inexpensive ceramic sensors of magnetic field monitoring are elaborated.

Metamaterials are composites in which the heterogeneous medium contains
inclusions; however, in this case, unlike other types of composite materials, inclu-
sions are miniature, sometimes even nanoscale, radioelements. Due to these inclu-
sions, metamaterials have unique electrophysical and optical properties, caused by
the resonant interaction with electromagnetic field.

In metamaterials, a very interesting idea is realized: the possibility to obtain the
negative refractive index for microwaves or light. In these materials electromagnetic
wave, for example, light is not refracted as usual, that is, it deviates not to the right,
but to the left at the negative angle (Fig. 1.42A). Therefore these materials are often
referred to as materials with negative refraction (negative index materials—NIM) or
left-handed materials (LHM). V.G. Veselago, who theoretically predicted the exis-
tence of metamaterials, called them “left environments.”

In the usual medium, directions of vector of electric field intensity E, vector of inten-
sity of magnetic field H, and wave vector k form the right triplets, that is, they can be
described by right-hand fingers (RHM). In contrast, in a metamaterial these vectors form
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FIG. 1.42

Effect of light refraction in conventional material and metamaterial: (A) direction of rays in
medium; (B) orientation of electromagnetic field vectors in ordinary (RHM) material and
metamaterial (LHM).

RHM LHM

the left-hand triplet (Fig. 1.42B). However, in left-hand material, LHM, the Poynting
vector S that shows direction of energy propagation remains in the right triplet.

It is well known that electromagnetic waves can propagate similarly as in vacuum
(e=1, u=1) in a dielectric medium with positive permittivity and permeability.
Parameters ¢ and u are fully defined for each particular material due to one or other
atomic or molecular structure. In ordinary materials, these parameters are defined by
electrical polarization (displacement of electrical charges with electrical moment
formation) and by magnetization (orientation of elementary magnetic moments).
Properties of atoms or molecules follow fundamental laws of physics, and they
always lead to positive static values of permittivity e and permeability u (at that,
in most substances y is close to one).

However, there are exceptions—in ranges of frequencies where the own resonant
phenomena are observed: this is possible as for polarization so for magnetization. In
the first case, when the phase of dielectric “response” (elastic displacement of
charges) lags behind the phase of applied field, the response is described by the neg-
ative value of €. A similar process can occur in case of magnetization, causing neg-
ative value of u. Thus, when resonant response occurs, these narrow frequency
ranges are characterized by negative € or u (i.e., however, it is accompanied by a
very large absorption of electromagnetic waves).

In case of ionic polarization in dielectrics, their lattice resonance occurs in the
frequency range of infrared waves (~10'° Hz), while for electronic shells
polarization—in range of ultraviolet waves (frequencies >10'® Hz): both these
ranges are quite far from the frequency range of metamaterials expected applications.
Thus, at first glance, there is no basis for hoping to obtain resonant phenomena in
continuous homogeneous medium as in microwaves so in visible optical range.’

’Note. However, it can be noted that in piezoelectrics, the electromechanical resonance is possible that
also leads to negative value of e. Usually, this resonance occurs at frequencies of 10°...10” Hz (depend-
ing on size of piezoelement); to realize this resonance at microwaves, the size of piezoresonators should
be only a few micrometers. It is obvious that microelectronic technology is responsible for actualizing
this case.
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For this reason, the metamaterial can be obtained exclusively from the noncon-
tinuous and inhomogeneous medium: metamaterials always are the composites [15].
Usually, metamaterials are constructed from the discrete resonant micro- and nanoe-
lements: “meta-atoms” that mimic electromagnetic reaction of atoms and molecules
of natural substances. Meta-atoms are grouped in the form of single or multilayered
lattice, and their small size (much less than wavelength of radiation) makes it pos-
sible to treat the created lattice as a homogeneous medium for a given wavelength (by
analogy with natural crystals); using the concept of “effective medium” for charac-
teristics calculating.

New materials can be used in the development of new types of radioelectronic and
photonic functional electronics: devices with negative refraction for controlling radi-
ation in gigahertz and visible ranges that allow obtaining of a clear image of elements
with dimensions much shorter than the wavelength without diffraction distortion;
systems for electromagnetic invisibility, Stealth technology, and much more.

The negative refractive index n (Fig. 1.42A) is due to a strong spatial disper-
sion in metamaterial and to negative values of permittivity and permeability:
n=-— \/(Eﬂ) <0. Because e(w)<0 and p(w) <0, these materials are sometimes
called “doubly negative.” (Correspondingly, in conventional materials permeabil-
ity and permittivity have positive sign; therefore ordinary media sometimes are
called “doubly positive.”) The phase velocity of waves in the metamaterials is
directed in the opposite direction relatively to group velocity; therefore these
materials are also called “backward-wave media.” Metamaterials, interacting with
optical frequency radiation, usually are called photonic or optical metamaterials.

The main way to obtain metamaterials is based on their “assembly” of huge num-
ber of miniature discrete modules, cells, or nanoparticles. These modules (cells and
nanoparticles) are sometimes called meta-atoms. It is clear that they are not real
atoms, but consist of them, that is, they are made of ordinary matter—mainly metals
and dielectrics. Dimensions of meta-atoms greatly exceed atomic dimensions. They
form a spatial structure (matrix), for example, an artificial crystal lattice, so that the
number of meta-atoms even in a small piece of metamaterial reaches 10°-10°
(Fig. 1.43).

It should be noted here that meta-atoms do not have any chemical bond with each
other, unlike atoms of ordinary materials. Therefore the difference in technologies of
conventional materials and metamaterials production is understandable. The former
are obtained by chemical synthesis from atoms of chemical elements, the latter are
obtained as an assemblage of artificial elements by methods of micro- and nanotech-
nologies. Moreover, it is important that, for incident radiation, the metamaterial imi-
tates a homogeneous medium; for this, the dimensions of meta-atoms and distances
between them should be selected to be less than the working wavelength of radiation;
the smaller the dimensions, the better the homogeneity condition.

Externally, meta-atoms are tiny formations of wires, strips, plates, rods, disks,
rings, spirals, balls, films, coatings, and multilayer structures. The millimeter-sized
high-¢ dielectric resonators and micrometer-sized piezoelectric resonators can serve
as dielectric meta-atoms. Moreover, meta-atoms can be in the form of nanoclusters;
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FIG. 1.43

Practically implemented metastructure for research in microwave frequencies.

finally, they can be a system of holes in flat elements (e.g., they may resemble a fish
net). It is important that the configuration and properties of meta-atoms (capacitors,
inductances of oscillatory circuits, or miniature resonators) ensure that they perform
functions of simplest capacitors, inductances, oscillatory circuits, or miniature
(nano-) resonators.

Thin layers of metamaterials deposited on a substrate are called metafilms or
metacoverings. In the simplest case, the metafilm is a patterned single-layer film
made of metal, semiconductor, dielectric, or magnetic material that is deposited
on a dielectric or semiconductor substrate. The pattern is determined by the config-
uration of the abovementioned electroradio elements with unique properties due to
resonant interaction with an electromagnetic field.

Thus metamaterials are artificial periodic structures with lattice constants much
smaller than the wavelength of incident radiation. These are media consisting of res-
onance elements in which negative propagation of waves takes place. The dimen-
sions of meta-atoms are smaller than the wavelength of radiation interacting with
them. They have the ability to simulate homogeneous material, whose properties
are absent in natural materials.

It is important to note that metamaterials in the optical wavelength range have
already been created, and they opened the door to create a new photonic and
quantum-optical technology—optical nanoantennes, nanolasers, nonlinear elements,
and other devices for generating and controlling light-transmitted systems developed
to overcome the diffraction limit. Metamaterials are the basis for such areas of sci-
ence and technology as nanoplasmonics and nanophotonics. A new class of
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composite materials has become widespread, in which the scale level of individual
component sizes reaches the nanometer range.

A nanocomposite is defined as the multicomponent solid material in which one
of components in the 1, 2, or 3 dimensions has a size not exceeding 100 nanometers;
moreover, nanocomposites are understood as structures consisting of a set of repeat-
ing component layers (phases), the distance between which is measured in dozens of
nanometers [12].

For example, a method for creating anodes from silicon nanospheres and carbon
nanoparticles for lithium batteries has been invented. Anodes made from a silicon-
carbon nanocomposite are much more closely adhered to the lithium electrolyte,
thereby reducing the charging or discharging time of a device. From nanocompo-
sites, consisting of cellulose base and nanotubes, it is possible to produce conductive
paper. If such a paper is placed in the electrolyte, something like a flexible battery
will appear. Furthermore, in the electronics industry, nanocomposites are used to
produce thermoelectric materials that demonstrate a combination of high electrical
conductivity with low thermal conductivity.

Graphene occupies a special place in the development of nanocomposite materials.
Nanocomposites containing graphene and tin can significantly increase the capacity of
lithium-ion batteries and reduce their weight. Recently, it has been found that the addi-
tion of graphene to epoxy composites leads to an increase in rigidity and strength of
material compared to composites containing carbon nanotubes. Graphene is better com-
bined with epoxy polymer, more effectively penetrating the structure of composite.

Nanocomposites based on polymeric matrices and nanotubes are able to change
their electrical conductivity due to the displacement of nanotubes relative to each other
under the influence of external factors. This property can be used to create microscopic
sensors that determine the intensity of mechanical action over extremely short periods
of time. Moreover, nanotechnology can be used to produce photonic crystals.

Photonic crystals are nanostructured materials in which the periodic change in
the refractive index at wavelength scales of visible light creates so-called forbidden
bands for photons. These bands influence the propagation of photons of visible light
in a material (this effect is similar to how periodic potential in semiconductors affects
the determination of the electron flux allowed and the forbidden energy bands). The
structure of a photonic crystal can be characterized by a periodic change in the refrac-
tive index in 1, 2, or 3 spatial directions. Photonic crystals can be used in the light
sources on single crystal, because the pattern of their radiation as well as the direction
of beam propagation can be easily controlled.

SUMMARY

1. Solids are primarily crystals and polycrystals, as well as ceramics, glasses,
glass-ceramics, quasicrystals, amorphous substances, composites, and
nanocrystalline structures.



10.

11.

1.7 Summary

Crystals are characterized by a near-perfect well-ordered internal structure.
Therefore crystals can be described by 3D spatial periodic structure. A peculiar
property of crystals is their translational regulation—elementary cell that
consists of a few atoms can be translated supposedly “infinitely” in all
directions, creating a regular crystal lattice.

Polycrystals consist of a large number of small crystals (crystallites). Macroscopic
structure of polycrystals, outwardly, seems disordered, but microscopic
components of this structure (crystallites units) are small crystals with perfect
microscopic structure and similar properties as a large single crystal.

The glass-like and amorphous states of solids are characterized by the absence
of long-distant (translational) symmetry. However, these materials are
characterized by the order in the immediate surroundings adjacent to

each atom.

In 2D systems, the strictly ordered structure is possible only in a plane. In such
a system, if the planar regularity is repeated, the nanodimensional
superstructure (artificially created in semiconductor) can have peculiar
electronic properties, characterized by the so-called quantum wells (this case
relates to 2D nanostructures).

The 1D nanostructures might be linear (wire-like) systems, wherein translated
ordering is observed along a single direction.

There are, furthermore, systems wherein the dimensions along all three
directions are commensurate with the distance between atoms. Such zero-
dimensional (0D) systems can be “quantum dots,” wherein only 10-10° atoms
have an ordered structure.

The creation of ordered crystalline (and other) bodies of atoms is
accompanied by a decrease in energy. This corresponds to the certain
minimum of a system’s energy when atoms become ordered relative to each
other, with significant redistribution in electronic density.

According to the electronic theory of valence, the interatomic bond occurs
due to the redistribution of valence electronic orbitals, and that results in

the stable electronic configuration of noble gas (octet) through the formation
of ions as well as by the formation of electron pairs between atoms.

Any connections of atoms, molecules, or ions are carried out through
electrical interaction. At relatively large distances between particles, the
electrical forces of attraction dominate whereas, at small distances, the
repulsion between particles dramatically increases. The balance between long-
range attraction and short-range repulsion determines the basic properties of a
certain solid. The bond that occurs between atoms (as a result of spatial
restructuring of their valence electrons) and which is caused by these electron
interactions is the chemical bond.

At the heart of the classification of solids into metals, dielectrics, and
semiconductors is the spatial distribution of valence electrons. In molecular
crystals, for instance, electrons are completely locked within their
molecules. When crystals are formed from atoms of metal, the orbits of
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15.
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17.

valence electrons strongly overlap each other. As a result, valence electrons
become distributed within the spaces between atoms and can be described by a
general wave function. It is believed that, in metals, an electronic gas

is formed.

The ionic crystals are chemical compounds that are formed by metallic and
nonmetallic elements. The forces of ion attraction are mostly long range:
the energy of attraction rather slowly varies with distance. Like molecular
crystals, ionic crystals are characterized by such a distribution of electronic
charges wherein they are almost completely localized near the ions.

The covalent crystals have, in principle, a similar nature of connection as the
metals-valence electrons become shared between atoms. The forces of
attraction in case of covalent bonds are not so long range as in the case of
ionic bonding. The covalent bond (otherwise called a homeopolar bond) is
formed by the overlapping (socialization) of pairs of valence electrons.

This link is provided with electronic clouds that are called a mutual electron
pair. At covalent chemical bond formation, the reduction of total energy
occurs due to an exchange interaction that plays an important role in this
process.

The van der Waals bonds are always present in atomic connections, but they
dominate only in the absence of valence bonds; in such cases, these bonds
become a principal type of chemical bonding (usually, in molecular crystals).
The van der Waals forces of attraction are relatively short range and weak as
compared with conventional valence forces. In nonpolar molecules, the forces
of attraction arise by mutual deformation of electronic shells. Because this
mechanism is investigated through optical polarization dispersion, the forces
of attraction of this type are dispersive ones. In polar molecules, the orientation
interaction contributes to the energy of bonding. Moreover, there exists an
induction interaction between the permanent dipole of one molecule and the
induced dipole of another molecule.

The hydrogen bonds are realized when two hydrogen atoms in one molecule
interact or when a hydrogen atom in one molecule interacts with an
electronegative atom such as P, O, N, Cl, or S of another molecule. The cause
of the hydrogen bond is the redistribution of electronic density between atoms,
induced by the small size of the hydrogen ion (H"; proton).

The defects in crystals are formed during their growth (under the influence of
thermal, mechanical, and electrical fields), as well as during crystal irradiation
by neutrons, electrons, X-rays, and ultraviolet radiation (radiation defects).
There are point defects (zero-dimensional), linear (1D) defects, plane defects
(2D), and bulk (3D) defects.

Parts of atoms or ions of a crystal may be missing locally, thereby violating an
ideal crystal lattice scheme: these defective places are the vacancies.
Furthermore, foreign (impurity) atoms or ions can exist in crystals, replacing
basic particles that form a crystal or take root between them. Their own atoms
(or ions) can serve as point defects in crystals, if they shift from normal
positions (interstitial atoms or ions).
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In the process of crystal growth or during its plastic deformation and in
many other cases, dislocations can appear. Moreover, dislocations can arise
in a crystal during its doping. The distribution and behavior of dislocations
under external influences determine many important mechanical properties
of a crystal, including strength, ductility, and so on. The mobility of dislocation
determines the plasticity of crystals; at the location of the greatest internal
stress, clusters of dislocation can occur that can cause the destruction of the
crystal. The problem of plastic flow (i.e., irreversible deformation) in metallic
crystals is solved by the association and movement of dislocations. These
dislocations impede the process of magnetization and electrical polarization
due to their interaction with domain boundaries.

Elastic deformations of crystal structure arise in the vicinity of defects that
lead, in turn, to the appearance of internal mechanical stresses. For
example, point defects interact with dislocations that result in the increase
or decrease of crystal strength. Defects in crystals affect the absorption
spectra of luminescence, light scattering in a crystal and can change electrical
conductivity, thermal conductivity, ferroelectric and ferromagnetic
properties, etc.

The vacancies in crystal lattice usually are Schottky defects. The formation of
vacancies can be explained by some atoms moving outside from the crystal
surface and they being replaced by other atoms from a volume. For most
crystals, the energy of vacancy formation is approximately 1eV. Lattice
defects that usually are called the Frenkel defects arise by mechanisms that
generate interstitial atoms or ions in a crystal.

The polarons are charge carriers bound in the lattice of an ionic crystal
(most often, they are bound electrons). The polaron is not a “static” defect
because it is much more mobile than vacancies or interstitial ions. The excitons
can be interpreted as the mobile point defects in a crystal. In the case of
excitons, atoms or ions of crystal do not change their location, but they become
significantly different from their neighbors by excited electronic states.

The movement of an exciton in a crystal is not connected with the change
of atom or ion positions, and therefore excitons (as polarons) have much
greater mobility than replacements of vacancies, interstitial atoms, and
impurities.

The dislocations are crystallographic defects or irregularities within crystal
structure. The presence of dislocations strongly influences many properties of
materials. The edge dislocation is a land of “excessive” atomic planes that
splits the crystal. It corresponds to the row of ordinary atoms along the edge of
an additional part-plane of atoms within the crystal. In other words, edge
dislocation is such a defect wherein an extra half-plane of atoms can move
through the crystal, distorting the nearby planes of atoms. The screw
dislocation is a result of changes of one area of crystal with regard to another.
It corresponds to the spiral axis of structural distortion, connected to

normal parallel planes. It comprises the structure wherein a helical path is
traced around a linear defect (dislocation line).
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The solid solutions are widely used in electronic components technology.
The presence of two components is possible in crystals or polycrystals (in
metals, these are alloys). The solid-state solution is a mixture that remains
in a single homogeneous phase. The interstitial type of solid solutions is a
result of the fact that atoms of the element, which dissolves, are placed in
empty spaces of the solvent lattice. The substitutional solid solutions are
formed by a partial substitution of solvent atoms. This process can occur
without incurring significant stresses in structure only when the size of
atoms does not differ greatly among themselves.

A structure is polytypic when it is composed of similar structural elements
but with a different sequence of their location. Polytypic lattice parameters in
aplane layer are unchanged but, in the direction perpendicular to layers, lattice
parameters are different, although they are always multiples of the distance
between adjacent layers. Polytypism is a special case of polymorphism: 2D
translations within layers are essentially preserved.

Isomorphism and polymorphism. The property of chemically closed atoms,
ions, or other structural elements to replace each other in the crystal lattice
and form continuously variable composition is isomorphism. The ability of
certain substances to exist in multiple crystalline phases, differing in symmetry
of structure and in physical properties, is polymorphism. The change in
environmental conditions may cause polymorphous transformation. During
these transformations (that usually are phase transitions of first order), heat
absorption and internal energy jumps are observed as well as changes in other
physical properties of matter. Furthermore, there are such polymorphic
modifications that differ by very little changes in physical properties.
Polymorphic transitions between states are phase transitions of second order
and usually are described as “order-disorder” type of transitions.

The symmetry of crystal structures determines their physical properties.
Therefore many properties of solids may be described by the peculiarities of
crystal symmetry. The relationship between the geometry of external shape
and internal building of crystals, as well as their physical properties, are specified
by physical crystallography. The physics of crystals formulates some
principles that establish a connection between the symmetry of a crystal and
physical phenomena; central to these are Neumann principle and Curie
principle.

The mechanism of how the physical properties of crystals are conditioned with
their symmetry was formulated by Neumann: the symmetry of physical
properties of a crystal is not lower than the symmetry of its structure. This means
that the structure of a crystal contains all elements of the symmetry of its
properties (but also may have other symmetry elements). Therefore,
information about crystal symmetry enables prediction of the possible
physical effects in a crystal.

In accordance with the Curie principle the crystal, being under external
influence, has only those symmetry elements that are common to the crystal in
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1.7 Summary

the absence of influence and impact (in case of lack of crystal)—that is, in the
system “crystal-influence,” only common elements of symmetry remain.

As the element of symmetry, an imaginary object can be used that supports
the realization of the operation of symmetry. To such elements of symmetry
belong the planes, axis, and center of symmetry (center of the inversion).

The combination of a point (or part of figure) with another point (or part of
figure) is called an operation of symmetry. Both parts of figures that are
combined are symmetric. Operations of point symmetry are left in its place, at
least, on one point of the final figure. This is the point of intersection of all
elements of symmetry.

Rotation and mirror rotation as well as inverted rotations and reflections in the
plane of symmetry are selected as symmetric operations. There are elements of
symmetry of the first and second kinds. The former include the symmetry
plane, rotary axis, and center of inversion (symmetry); the second include
some complex elements of symmetry: inversions and mirror-rotary axes. To
analyze symmetry, screw rotations and/or glide reflections are also used.
These are rotations or reflections, together with partial translation. The
Bravais lattices may be considered the outcome of translational symmetry
operations. Combinations of operations with additional symmetry operations
produce 230 crystallographic space groups.

The plane of symmetry is a plane of mirror reflection; this is an operation of a
similar point combination. To refer to a specific class of symmetry elements,
the plane of symmetry can be denoted by P. In the international system, a
mirrored plane is denoted by the letter m, it bisects all segments that connect
symmetric points that are perpendicular to it (part of the figure).

Rotational symmetry is symmetry with respect to some or all rotations in the
Euclidean space. The rotary axis of symmetry of the nth order is denoted as L,,,
that rotates around a certain angle a = 360°/n. Moreover, the rotary axes are
marked by symbols 1,2,3,4,5,6,7, ..., co, where the numbers indicate the order
of axis. The n-fold rotational symmetry operation rotates the object by 360°/n.
Only n=1, 2, 3, 4, and 6 are permitted in the periodic lattice. The inversion axis
is a combination of rotation and the center of symmetry operations.

The center of symmetry (inversion center, denoted as C) is a special point
inside a figure or unit cell; it is characterized by the fact that any line drawn
through the center of symmetry falls into the same point of figures on both
sides of the center at equal distances.

The class of symmetry is a set of symmetry elements of the crystal (or any
object) that describes its possible symmetric transformations. A unit cell can
be selected in any crystal and, on its basis, all crystal lattices can be built
using translations. These translations are the displacement of a unit cell
within a crystal. The full set of symmetry elements of any material is known
as the group of symmetry.

Crystals and textures that have a center of symmetry cannot show piezoelectric
properties. In the absence of external influences, only noncentrosymmetric
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structures are capable of being piezoelectrics. Among them, only the crystal
with a polar axis might be pyroelectric.

The quasicrystals exhibit a special, new type of symmetry, different from the
usual crystals. They have symmetry elements that previously were considered
impossible in crystals: classic crystallography does not allow symmetry axes
of fifth, seventh, and higher orders. With these axes, the elementary cell cannot
ensure complete filling even on the plane (and, moreover, in volume).
However, quasicrystals exist, and they can have axes of symmetry of fifth,
eighth, or higher orders.

Nanomaterials, as a rule, are small particles (clusters) of materials consisting
of 10—1000 atoms. Their properties depend on the number of atoms in the
cluster and on the relative position of atoms, as well as on the shape and
symmetry of clusters.

The composites consist of different materials united in a single whole, and have
important applications in electronic devices. They are used in various active and
passive components (e.g., piezoelectric with polymer). The physical and
technical properties of composites that ensure their applications, with
advantages over crystals, ceramics, and polymeric materials, can be described by
three effects: the sum effect, the combinative effect, and the effect of the product.
Electromagnetic metamaterials are artificially structured in a special way to be
mediums that have electrical and magnetic properties, which are significantly
different from the original structural materials. For example, a metamaterial
can have a negative refractive index, which is never observed in natural
materials. The internal structure of metamaterials plays an important role in the
formation of their characteristics and parameters.

Nanocomposites are solid formations consisting of a basic matrix and
nanosized components that differ in their structural parameters and chemical
properties. Mechanical, electrical, thermal, optical, and other characteristics of
nanocomposites differ significantly from the properties of ordinary composite
materials made of the same basic substances or elements.
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Mechanical properties, which reflect the internal bonds between the molecules and
atoms of a material, are basically elasticity, durability, stiffness, and toughness.
Because electronic components are sometimes exposed to mechanical impacts dur-
ing operation, the mechanical strength of materials and, especially, their elasticity
(ability to reversibly deform under stress) have considerable practical interest. Infor-
mation about the mechanical properties of solids is needed for the development of
electronic solid-state devices, thus necessitating the study of many characteristics
of solids, including an understanding of the nature of chemical bonding.

Knowledge of mechanical properties is necessary when using solid components
as structural materials. For example, durability characterizes the counteraction to a
mechanical load that causes destruction of a solid. However, long before this destruc-
tion, the solid body exhibits elasticity—the ability to completely recover its shape
after the removal of the applied external impact. Besides, if the externally acting
force is large enough, plasticity is commonly observed before destruction, wherein
the change in the form of solid is not instantaneous; it is in the final stage of plastic
deformation at which failure occurs.

Taking into account the wide application of microelectromechanical systems
(MEMS) in modern electronics, many mechanical properties—such as mechanical
fatigue and resistance to radiation—should be considered important characteristics
of construction materials. It is necessary to note that, in various solids (glasses,
ceramics, plastics, etc.), resistance to compressive strength is much greater than that
to tension and bending strengths. Furthermore, many materials might have a rela-
tively high resistance to static loads; however, they can be quickly destroyed under
dynamic loads, that is, under the action of a suddenly applied force, they are fragile.

In this book, only those mechanical properties will be considered that are of high
importance for electromechanical and magnetomechanical effects. These are, specif-
ically, elasticity and elastic wave propagation in different structures, and they define
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the practical use of crystals in piezoelectronics, acoustoelectronics, magnetoelectro-
nics, acousto-optics, etc.

When describing the elastic properties of solids, the discrete structure of a mate-
rial may be ignored; therefore a crystal can be considered a continuous homogeneous
medium—continuum approximation [ 1]. This approach is justified up to frequencies
of 10'?Hz, which is much greater than the operational frequencies of conventional
electronic devices (up to 10" Hz).

The forced deformation of a solid alters the mutual arrangement of its atoms,
with the resultant emergence of an effort within the material to try to restore the body
to its initial condition. The forces deforming the body are called internal, and the
value of such force per unit area is the stress. If stress (and its corresponding relative
deformation—strain), occurring under the action of external forces, quickly reaches
zero after the removal of the action, then this is a case of the so-called perfectly elas-
tic body [2]. In such cases, Hooke’s law holds valid: the relative deformation is
proportional to mechanical stress, and the behavior of the body during deformation
does not depend on the rate of strain. To apply Hooke’s law in anisotropic solids, it is
necessary to introduce the concepts of stress and strain fensors.

MECHANICAL STRESS TENSOR

The next model considers the elastic behavior of solids on the assumption that stress
is homogeneous and all parts of a body are in a state of static equilibrium. The theory
of elasticity studies phenomena occurring in a deformable body when a mechanical
stress is applied, where interatomic forces are considered as short-range phenomena.
In this case, forces acting on one part of a body are directly transferred to the other
parts of the body.

Further, a very simplified model is considered: the applied force is proportional to
the flattening of a solid, and the force per unit surface area is stress. It is uniform if the
force is independent of the location of any selected cell in a body. If this specified
condition is not satisfied, stress might be inhomogeneous. Moreover, because a crys-
tal may be anisotropic, mechanical stress may also depend on the chosen direction of
force application.

The concept of stress tensor for structures of various dimensions is illustrated in
Fig. 2.1. Initially, the one-dimensional (1D) structure is considered, followed
sequentially by the two-dimensional (2D) and three-dimensional (3D) structures
[1]. Fig. 2.1A shows a uniformly elongated elastic rod (1D crystal) that is loaded
by forces. Mechanical stress is not a vector, and, therefore, it cannot be indicated
by a single arrow but instead by a pair of arrows—similar in magnitude and opposite
in directions. An external power may stimulate the stretching of a rod (X >0) and
therefore its compression (X < 0). Therefore, mechanical stress, unlike a force vector,
does not lead to any movement of the body, making the stressed rod remain in its
fixed position. Thus, the unit of measurement of 1D stress is associated with unit
of force: [X]= [N/mz].
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FIG. 2.1

Homogeneous mechanical stresses in solids: (A) one-dimensional model, (B) two-
dimensional model, and (C) three-dimensional model.

The 1D model is not only an idealization adopted for ease of understanding. In
some microelectronic devices, the metal, dielectric, or semiconductor materials are
applied as “quasi-1D” (extensive) small crystals or polycrystals. For example, in the
technology of piezoelectric composites, a set of oriented rigid piezoelectric rods
placed in a pliable polymer is used (see Fig. 1.40 in Chapter 1). Another example
is a set of nanorods (usually, ZnO) located on the substrate (a very promising material
in nanoelectronics. Thus, a “quasi-1D” representation of stresses, as shown in
Fig. 2.1A, has both theoretical and practical importance.

In the 2D case, the manner of stress application to a flat surface might be different
(Fig. 2.1B). A compressive or stretching stress can be presented as independently—
along two perpendicular axes, / and 2. In the case of an arbitrary direction of the
compressive/stretching stress, it should be decomposed into components along
two mutually perpendicular axes. In addition to the said stresses, a special type of
shear stress is possible: twin stresses X, and X5;. In this case of a condition of equi-
librium, that is, assuming no movement or rotation of a “quasi-2D” crystal, we have
X=X,

The unit of stress in the planar model discussed herein remains the same: [X]=
[N/mz]. Consideration of 2D crystal structure (similarly as in the 1D structure) is
important not only for theory but also in practice, as consistent with real
elements—the films (semiconductor, ferroelectric, piezoelectric, pyroelectric,
etc.). As an example, a very important 2D crystal semiconductor (graphene) is shown
in Introduction, Fig. 1.3. Dielectric (piezoelectric) films are used, for example, to
excite high-frequency hypersonic waves in a crystal surface, and they are also
applied in many technical devices, based on surface acoustic waves (SAW).

For example, by thermal deposition of piezoelectric structures on a substrate
(e.g., BaTiOj; on silicon) at high temperatures, a piezoelectric film can be obtained.
During cooling from the temperature of synthesis (~1000K) to working temperature
(~300K), the film becomes mechanically stressed; therefore the thermal expansion
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coefficients of the substrate and piezoelectric film differ. These conditions must be
taken into account during the application of piezoelectric films (in acoustoelectro-
nics or in MEMS).

In most practical tasks, there is application of 3D crystals and textures. Mechan-
ical stress, in this case, is determined by the force acting on the surface and has the
dimension [X]= [N/mz] =[Pa]. Theoretical analysis suggests that stress is uniform
(and remains the same throughout in the crystal). Components of this stress (forces
acting on the opposite face of a cube) compensate each other. The normal compo-
nents of stress are indicated by the same indices: X1, X»,, and X33; they act perpen-
dicular to the corresponding surface. Obviously, on opposite faces, there would be
the same “arrows”—representing stress components (data not shown in Fig. 2.1C).
For example, if stress component X33 tends to stretch the cube along axis 3, then, on
the opposite face of the cube, the same magnitude stress component —| X33 | acts by
being directed opposite to X33 and, thus, balances it.

Besides stresses directed normally to faces, there might also be shear stresses
directed tangentially to the faces of the considered cube. These include components
X153 and X»3 on the upper face of the cube (Fig. 2.1C), components X3, and X5, on the
front face, as well as X, and X3, on the right side of the cube. These stresses are
counterbalanced and do not induce any rotation of the sample.

Enumerated components form the stress tensor of second-rank X;;, which initially
appears similar to tensors of permittivity, conductivity, and permeability. However,
the mechanical stress tensor, by its physical nature, is quite different from the
second-rank tensors &, 6;;, Or p;;, which have a structure consistent with the internal
symmetry of a crystal. Tensors of permittivity, conductivity, and permeability are the
material tensors, whereas the stress tensor is the field tensor, characterizing the struc-
ture of forces applied to the crystal from outside.

Because shear stress components (X;=X;;) do not create rotary mechanical
movements, the full stress tensor can be represented by symmetric matrix:

X1 X2 Xi3
Xij= (X1 X Xp3
X31 X3 X33

Similar to material tensors, the stress tensor can be characterized by the surface of
second order:

Xll ~X2 +X22 'y2+X33 ~Zz= 1,

where X1, X»,, and X35 are the main components of the matrix, reduced into diagonal
form. However, depending on the sign of X;;, such a characterizing surface may not
only be an ellipsoid but could also be assumed as an imaginary hyperboloid, whereas
the characteristic surfaces of the material tensors ¢;; or o;; are always ellipsoids [3].

When all components of tensor X;; are given with regard to the principal axes,
some important cases can be analyzed (Fig. 2.2):

(a) The line-stressed state (uniaxial stress): a proper matrix is shown in Fig. 2.2A;
the example is of a uniform tensile rod.
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FIG. 2.2

Matrix example for stress tensor with geometric explanation of components.

(b) The flat-stressed state (biaxial stress): an example and corresponding matrix are
shown in Fig. 2.2B.

(c) The volume-stressed state (three-axial stress): an appropriate matrix X;; and
example are shown in Fig. 2.2C.

(d) The hydrostatic pressure, at which X; =X, =X33=—p (pressure). The
corresponding matrix is similar to that in Fig. 2.2C, but the Xj; directions in case
of a hydrostatic effect are opposite to that shown in the figure, and all
components have the same value.

(e) The pure shear stresses (Fig. 2.2D): the shear axis is perpendicular to the plane
of a figure.

MECHANICAL STRAIN TENSOR

Under the influence of mechanical stress, a solid body becomes mechanically
deformed. Moreover, the consideration of different strains starts with the /D model
(Fig.2.3A) [1]. On an elastic rod OB, the origin O is selected with a big segment OA,
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FIG. 2.3

Homogeneous mechanical deformation in a solid: one-dimensional, two-dimensional, and
three-dimensional models.

with length a, as well as a small segment AB, with length Aa. When this rod is
exposed to positive mechanical stress, it becomes uniformly stretched (Fig. 2.3A).
Segment OA acquires length (a + u) whereas the small segment Aa gets an increment
Au. Then, the relative deformation x (i.e., strain) at any point of the rod is defined as

i Au 7du
= a0\ Aa) Tda

Thus, the physical value of strain is dimensionless. In the 1D model, linear strain can
be indicated as stretching (x > 0) or compression (x < 0). Under the influence of a
large force on a solid, prior to its mechanical destruction, elastic (reversible) strain
in the solid can reach x=10"2...10~%. For example, in some dielectrics, when a large
external electrical field is applied (increasing up to its breakdown), the relative defor-
mation can reach values of x~ 107> ... 107%.

In Fig. 2.3B, the 2D model is considered. For example, this model can be applied
when various films are studied (as films are important components in microelectron-
ics). As in the linear model, it is assumed that the deformation of the film is uniform
over its entire area. This means that, after deformation, the straight lines remain
straight (not bent), and the parallel lines remain parallel (not sparked): the lines might
be only lengthened (or shortened) to the same extent.

From a planar model consideration, it can be seen that, in addition to linear strain
(e.g., x; and x,), angular deformation is possible with shear strains x,, and x,;_ It can
be shown that all components of strain constitute the second-rank tensor x;; where i,
j=1, 2. In the 2D case, the corresponding matrix
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is symmetric with respect to the main diagonal: x;, =x,;. The symmetric components
of the matrix define shear strain, whereas the diagonal components x1; and x,, rep-
resent the deformation of the compressive/stretching type.

In general, 3D deformation is the most important for many volumetric effects in
solids [1]. This case is shown in the lower panel of Fig. 2.3. Tensor x;; as well as the
previously discussed mechanical stress tensor is symmetric, similar to the main diag-
onal. Diagonal components of this tensor x;; (i =) describe the compressive/stretch-
ing type of linear strains, whereas off-diagonal terms characterize different shear
strains.

Similar to the stress tensor, the symmetric tensor x;; can be described by the sur-
face of a second-order equation:

X11 -x2+x22~y2+X33 ~22: 1,

which, in case of positive factors of x;;, represents an ellipsoid.

After being reduced to the diagonal matrix (when edges of corresponding ele-
mentary cube are parallel to the three principal axes of the crystal), the components
of strain x;; are shown in Fig. 2.3, in the bottom panel. The main axes are three mutu-
ally perpendicular directions of the crystal.

Under a scalar (nondirectional) external influence, for example, when the tem-
perature changes the response (thermal deformation), the internal symmetry of a
given crystal (or texture) is reflected by the second-rank material tensor of thermal
expansion, a;;. The discriminatory surface (indicatrix) for tensor a;; is a second-rank
surface of the general type (not only ellipsoid), because components of the thermal
expansion tensor might be both positive and negative [3].

The thermal expansion tensor expresses a “connection’ between scalar influence
(temperature) and the second-rank tensor response (strain). For comparison, charac-
teristic surfaces of permittivity or conductivity (as well as second-rank material ten-
sors) are always described by ellipsoids, because diagonal components of these
tensors are always positive. The point is that such material tensors (g;; or 6,,,) define
the relationship between two vectors: one vector is the “influence” whereas the other
is the “response” (e.g., D;~¢&;-E)).

Thus, the elastic deformation of a crystal is its reaction to an external action, and
it varies on the basis of scalar action (temperature 67), vectorial influence (electrical
field E;), or tensor type of impact (X;;). In all of these cases, the response tensors
reflect the intrinsic property of a crystal.

As in the case of mechanical stresses (Fig. 2.2), some special cases can be picked
out for strains: linear, planar, and volumetric strains (similar to that in Fig. 2.2C). It is
necessary to note that “pure shear” strain (similar to that in Fig. 2.2D), in contrast to
these previously explained simple types of strains (linear and planar), does not
change the volume of a crystal.
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Earlier, only elastic deformation was considered, where a linear relationship
exists between relative deformation x and mechanical stress X. However, this line-
arity is maintained only up to a certain value of X,,,x, which is the limit of propor-
tionality. With further increase of stress, linearity is violated because of the
appearance of inelastic deformation that could mean the beginning of a new state
of matter.

Irreversible deformation is a phenomenon wherein deformation becomes plastic.
In this case, after the removal of the external force, the body does not fully recover to
its previous form: a residual deformation persists. In case of plastic deformation,
Hooke’s law cannot be applied. An explanation of plastic deformation is possible
by linking it with the sliding or displacement of parts of the crystal lattice in certain
planes. Here, the geometrical coordination of atoms usually remains unchanged,
because displacement takes place in the whole number of interatomic distances. It
was experimentally shown that, in single crystals, consisting of only one element
in the unit cell (ions in metal), the sliding easily occurs along the direction of greatest
linear density on planes with the largest interplanar distance.

The earlier discussion of the case of a perfectly elastic body is very simplified.
In real solids, mechanical stress may neither exist indefinitely for a long time nor
fall instantly (with the removal of the external force). When deformed, the struc-
ture of a body continuously varies in a complex way at a particular rate, deter-
mined by the nature of the substance. Therefore, all real solids with arbitrary
deformations can be characterized by flexible properties. In practice, a body is
considered elastic if the external stress does not exceed a certain limit, that is,
when the strain is small (usually, x < 1%). Only under this condition, and with
sufficient accuracy, is it possible for the linear relationship between strain and
stress to be valid.

ELASTIC STIFFNESS AND ELASTIC COMPLIANCE

An externally applied mechanical stress X can elastically and reversibly alter the
shape of a crystal—this is strain x. When the value of strain is small, the following
linear relationship holds true:

x=sX,

where s is the elastic compliance. This relationship is exemplified in Hooke’s law:
deformation x increases (or decreases) in a direct proportion to the applied mechan-
ical stress X. Hooke’s law can also be written as

X=cx,

where c is the elastic stiffness, also known as Young’s modulus.

Because strain is dimensionless and the unit of stress is [N/mz], the same unit is
retained for elastic stiffness: [¢]=[N/m?]=[Pa] (Pascal). Elastic compliance is
defined as [s]=[Pa"!]. To measure ¢ and X, sometimes, other (non-SI) units are
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used: 1kbar=10%Pa and 1 dyne/cm?=0.1Pa. As “Pascal” is a very small unit,
multiples of the unit gigapascals (GPa) are usually used, where GPa is equal to
10 Pa.

As x;; and Xj; are second-rank tensors, it can be expected that, in the anisotropic
crystals (or textures), each of the nine components of deformations x is induced by
the nine stress components of X:

Xij = SijaXp-

This record, given in the tensor representation, factors in nine equations wherein the
right side has nine components. The first of these equations is

xir=s1111 X1 +s1112X12 +51113X13 +51121X21 +51122X02
+51123X23 +51131X31 + 51132X32 +51133X33.

Obviously, as with elastic compliance, elastic stiffness is a tensor of the fourth rank,
which, in principle, has 3*=81 components. In reality, however, the number of inde-
pendent components of these tensors is much less, because both stress and strain are
symmetric tensors; therefore they contain, even in the most general case, not nine but
six components. Accordingly, tensors s;;; and ¢;;; are symmetric tensors toward the
first two and last two indices:

Sijkl = Sklij = Sijlk = Sjilk -
Consequently, these tensors contain no more than 36 components. In turn, such a
tensor with 6 x 6 =36 components is also symmetric toward the diagonal of the cor-
responding matrix. Therefore even the crystal that falls under the lowest category of
symmetry can be described by no more than 21 independent components of the elas-
tic compliance (or elastic stiffness) tensor.

To reduce the number of indices, it is acceptable to present elasticity equations
not by tensor s;; (where i, j, k, [=1, 2, 3) but, instead, by matrix s,,,, wherein m,

n=1,2,...,6. The method to go from one type of recording to another is shown
in Table 2.1A, whereas components of the elastic stiffness matrix are given in
Table 2.1B.

By knowing all components of a tensor, for example, elastic stiffness tensor, it is
possible to calculate all components of an inverse tensor (in this case, the elastic
compliance tensor):

(_1)m+nACn1n

Smn = |C
mn|

)

where |c,,,| is the determinant and Ac,y,, is the minor of the matrix without m-row
and n-column.

In case of practical calculations, for example, where the piezoelectric or magne-
tostriction effect influences investigations and applications, other elastic parameters
of the crystal or texture, except elastic compliance and stiffness, are important. These
parameters are listed in the following paragraphs and can be calculated using the
known c,,,, Or $,,,.
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Table 2.1A Matrix of Elastic Compliances

Tensor indices i,j or 23 and 31 and 12 and
k| 11 22 33 32 13 21
Matrix indices m or n 1 2 3 4 5 6

Notes: Sjig=Smn (M orn=1, 2, 3); 2Sjiy=Smn (M or n=4, 5, 6); 4Sjjy=Smn (M, N=4, 5, 6).

Table 2.1B Matrix Components of Elastic Stiffness

X4 X2 X3 X4 X5 Xe
Xi C11 Ci2 Ci3 Cia Cis Cie
Xo Coq Co2 Co3 Cos Cos Cos
X3 Ca1 Ca2 Cs3 Cas Cas Cae
X4 Caq Ca2 Caz Caa Cas Cas
Xs Cs1 Cs2 Cs3 Cs4 Css Cse
Xs Ce1 Ce2 Ce3 Ce4 Ces Ce6

The density of elastic energy of the strained (or stressed) crystal can be deter-
mined from the expression for elementary mechanical work carried out by force
X to create deformation dx: dW=Xdx. Depending on the given task and using

Hooke’s law in two forms, x=sX or X =cx, it is possible to obtain the following
expression for elastic energy:

1 1
Welast = ECXZ = ESXZ.

The compressibility (s) is an important parameter of solids, for example, when pie-
zoelectric or ferromagnetic structures are used as emitters and receivers of elastic
waves. Moreover, compressibility is an important characteristic of the substance that
allows us to judge the dependence of physical properties on interatomic (intermole-
cular) distances. The greatest compressibility is observed for crystals with long and
weak interatomic bonding [2].

Compressibility characterizes the dependence of relative change in volume AV of
the crystal under hydrostatic pressure p: AV = —ps. Parameter (s) is formed as an
invariant of the elastic compliance tensor:

<S> =511+ 522 +533 +2(S12+Sl3 +S31).

In cubic crystals and other isotropic solids, compressibility equals (s) =3(sy1+2s12).
It should be noted that compressibility is strongly dependent on the energy of
atomic bonds.

The bulk modulus of elasticity K is introduced as a parameter that is inverse to
compressibility, also called the bulk compression modulus. Bulk modulus can be
identified through the elastic stiffness tensor; in cubic crystals, K=(c1;+2c12)/3.
Modulus K is the ratio of stress value to the relative compression value. The bulk
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modulus of elasticity describes the ability of a material to resist any change in its
volume. Moreover, the bulk modulus K characterizes the capability of an object
to change its volume, for example, under hydrostatic pressure. It should be noted that
the bulk modulus of a nonviscous liquid is different from zero, whereas for an incom-
pressible fluid, it is infinite.

Poisson’s ratio v is often used to characterize the elastic properties of a material.
When a stretching force is applied lengthwise to a solid, the solid starts to stretch.
During this stretching, in the vast majority of cases, the cross-section of the material
decreases. Poisson’s ratio shows how the cross-section of a deformable body
changes under lengthwise stretching (or compression). Its value is the ratio of the
linear contraction of cross-section e’ to the elongation e, that is, v=|¢’|/e. In case
of an entirely brittle material, the Poisson ratio is zero, whereas for a completely elas-
tic material, v =0.7. For example, most steels have v ~0.3; for germanium, v=0.31;
for quartz glass, Poisson’s ratio is small (v=0.17), whereas for rubber, Poisson’s
ratio is large: v~ 0.6 (v is measured in relative units: mm/mm, cm/cm, etc.).

Note. There are materials (polymers) for which Poisson’s ratio is negative; these
materials are called auxectics. In these materials, upon application of a stretching
force, the transverse section of the body increases.

The elastic properties of crystals can be considered not only in macroscopic approx-
imation but also in a framework of microscopic theory that takes into account the
atomic structure of the crystal lattice and interatomic interactions. In this approxima-
tion, it is usually assumed that interactive forces between atoms are central, that is,
they operate along lines connecting the centers of atoms. Then it is possible to obtain
additional relationships between the elasticity coefficients c,,,:
€23 = €445 €13 = (555 C12 = C665 C14 = 565 €25 = C465 €36 = C47-

These ratios that reduce to six independent components of elastic stiffness are the
Cauchy relations.

The shear modulus, or modulus of rigidity (abbreviated as G or y), characterizes
the stressed state in case of net shear, that is, the ability of a material to resist any
change in its shape while maintaining its volume. Shear modulus is expressed by
the ratio of shear stress to shear strain that is defined as the alteration in the right
angle between planes, whereon shear stresses are applied to two mutually
orthogonal sites.

Young’s modulus (E) or modulus of longitudinal elasticity describes a material’s
resistance to stretching or compression during elastic deformation. The modulus of
elasticity is a set of physical quantities that characterize the ability of any solid body
to be elastically deformed under conditions where force is applied to it. In simple
cases, Young’s modulus is defined as the ratio of stress to elongation. In cubic crys-
tals, E modulus equates to three diagonal components of elastic stiffness that are
identical: E=c; =cy;=c33. Young’s modulus is measured in GPa—for example,
for aluminum, E =70 GPa; for iron, £ = 180GPa, but the largest Young’s modulus
is seen for graphene, where E = 1000 GPa.
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In case of a homogeneous isotropic body, such as a fine-grained polycrystalline
solid (ceramics) with random orientation of grains (i.e., in the absence of textures),
both elastic modulus and Poisson’s ratio are the same in all directions. Thus values of
v, E, G, and K are related by the following formula:

G-t P
T2(1+v) T 3(1=2v)

Thus only two of these parameters are independent; therefore elastic properties of an
isotropic body can be described by only two elastic constants. Those are the Lame
parameters: y and 4. They depend only on material properties and are very useful for
elasticity research, when stresses are expressed in terms of strains. Lame constants
can be expressed in terms of different elastic moduli by the formula:

Ev 2G
N P
Here, E is Young’s modulus, K is the bulk modulus, v is Poisson’s ratio, and G is the
shear modulus. The Lame constants can be calculated from the experimentally deter-
mined elastic modulus.

Therefore homogeneous and isotropic solid materials can be characterized by lin-
ear elastic properties, which are fully described by two major elastic components that
are any pair of moduli. If a pair of elastic moduli is known, all other moduli can be
derived by calculation.

It should be noted that only in the isotropic elastic body can the number of inde-
pendent elastic constants be reduced to two. However, many crystals, such as piezo-
electrics, pyroelectrics, ferromagnetics, and ferrimagnetics, are anisotropic. In
extreme cases, the number of elastic components of an anisotropic body can reach
21.In solids with some symmetric elements, the number of elasticity moduli reduces.
For example, elastic properties of a monoclinic system can be determined by 13 elas-
tic components; for crystals of a rhombic system, this number is nine, and so on.

ELASTIC WAVES IN CRYSTALS

In connection with the study of dynamic properties in solids, the concept of a wave as
the space-time periodic process in crystal is considered. An alteration in time is
described by an oscillator model, which has parameters of mass m and elastic force
F dependent on strain: F,=—cx:

Wave propagation along a linear chain of elastically coupled atoms (i.e., spatial char-
acteristics of wave) is due to the elastic coupling of atoms. Plane wave propagation
along a 1D crystal can be described by the equation

x=xpexp [i(wf —kx)],
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where @ =2z/T is the angular frequency (T is oscillation period) and wave number is
k=2z/)\ (A is wavelength). The natural frequency of the oscillator is wg = /c/m.

Similarly, it is possible to describe waves in the approximation of elastic contin-
uum [4]. Consider the vibrations in the elementary volume, taken within a crystal in
the form of a cube AxAyAz (Fig. 2.4). The mass of this cube is equal to the product of
its volume and density: m =pAV =pAxAyAz. According to the oscillator model, the
acceleration d*x/d#” is determined by a second derivative of strain components: dx7
df* (for simplicity, oscillations along only one direction are considered—along the
X-axis).

The elastic force F, (component of force along the x-axis) can be calculated from
a model that compares stress across two faces of a cube: X;(x) and X;(x + Ax). Their
difference can be taken in a series, whereas in linear approximation, it is sufficient to
take into account only the first term:

oX
X1 (x+Ax) — X, (x) —an.

FIG. 2.4

Explanation of elastic wave dynamics in cubic crystal.

X1 X2 X3 X4 X5 6
X, C11 ‘12 €12 0 0
X, C12 C11 ‘12 0 0
X3 €12 €12 €11 0 0
Xy 0 0 0 Ca4 0 0
X5 0 Caq 0
Xq 0 0 Caq

FIG. 2.5
Elastic stiffness matrix in cubic crystal.

.
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The resulting force is equivalent to the difference in stresses; substituting this result
into the equation of the oscillator, we get

d’x  0X;  0Xy  0X;

P o +
Similarly, other forces (0X,/dy and dX5/dz) can be also considered in the elementary
cube in the direction of displacement x; due to changes in the stresses X, and X3;
however, in Fig. 2.5, these components of force are not shown. Similar equations
can be derived for waves of deformations x, and x3. Solutions of these equations
depend on the specific symmetry of crystal or texture, because they are determined

by a set of the matrix component c,,,, (Table 2.1A).

[2).4
F,= {—Ax} AyAz.
ox

In a relatively simple case (centrosymmetric cubic crystal), the propagation of a
plane wave of deformations along the x-axis (i.e., along [100] direction) when
the direction of elastic displacement coincides with wave vector k

x=xpexp [i(wt — Kx)]
yields the following dispersion relation:
LL)Z[) =1 1K2.

In contrast to a similar case of a discrete atomic chain, when dispersion law w(k) is
®=2+/c/msin(ka/2), in the case of an elastic continuum, and when structure dis-
continuity is not taken into account, spatial dispersion is absent: the velocity of elas-
tic waves is independent of frequency [4].

The velocity of longitudinal waves along the [100] direction in a cubic crystal
depends on the density of the crystal and on one of the elastic stiffness components
(Fig. 2.5):

VLA[100] = w/K=+/cii/p.

In cubic crystals, equally simple expressions for velocity of transverse elastic waves
can be obtained, if the strain component x, (or x3) is perpendicular to the direction of
wave propagation:

UTA[100] =w/K=+/cu/p.

The velocity of transverse waves in cubic crystals is the same for any orientation of
elastic displacement. However, if the wave vector is directed along [110] or [111]
axes, the solution of wave equations becomes more complicated. For crystals of low
symmetry, including piezoelectrics, the velocity of elastic waves is determined by
various combinations of the tensor c,,, components.

Thus, in the homogeneous elastic medium, two types of volumetric waves may
exist: the longitudinal wave, in which particle displacement takes place in the direc-
tion of wave propagation, and the transverse wave, in which particles undergo
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©) ' (D)
FIG. 2.6

Different types of oscillations in bulk piezoelectric elements (shading shows electrodes;
arrows show direction of deformations): (A) transverse oscillation in a piezoelectric plate
polarized in thickness; (B) shear oscillations in a piezoelectric plate polarized in thickness;
(C) piezoelectric disk polarized in thickness with radial deformations; and (D) disk
piezoelement polarized in thickness and having a thickness deformation.

displacement in a plane, perpendicular to the direction of wave propagation. Longi-
tudinal and transverse waves are volumetric oscillations of the elastic medium.

Volumetric elastic waves are used in many electronic devices, in the mode of a
traveling wave as well as in the standing wave mode (in the resonance devices), in
which longitudinal and transverse waves are elastic medium oscillations [5]. For
example, in Fig. 2.6, elements with standing elastic waves are shown that are used
in resonant piezoelectronic devices; usually, piezoelectric elements are made of
polarized ferroelectric ceramics.

Another example of volumetric wave application is the piezoelectric transformer
with two pairs of electrodes: an exciter and a generator (Fig. 2.7). Using an inverse
piezoelectric effect, the exciter part of the plate creates a mechanical deformation
involving a resonant wave in the entire volume of the piezoelectric element. In
the generating section of the piezoelectric transformer, the output voltage appears

Input

\

FIG. 2.7
Simple layout of a piezoelectric transformer [6].
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due to a direct piezoelectric effect; if it is an alternating signal, it is galvanically sep-
arated from the input voltage.

Electronics uses volumetric elastic waves that are usually excited piezoelectri-
cally; however, sometimes, when they function by magnetostriction, they are called
piezoelectronics. In Figs. 2.6 and 2.7, the piezoresonators and piezotransformers are
the simplest examples of such devices [7]. However, the most striking example of
piezoelectronics application is piezomotors.

The first ultrasonic piezoelectric motors were invented in the Igor Sikorsky Kiev
Polytechnic Institute by V.V. Lavrinenko [7]. Thereafter, various piezoengines were

Stator PG

!

AC
current Piezoelement

SORkee Point of
touch

Rotor i
FIG. 2.8
Scheme of the first piezoceramic engine devised by V.V. Lavrinenko.

FIG. 2.9

Scheme of piezoelectric motor with oscillator stator: I—thin steel jacket-bandage; 2—ring
piezoelement, 3—rotor; and 4—pushers.
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developed: nonreversible and reversible, with a piezoelectric passive rotor and an
active stator, with a piezoelectric active rotor and passive stator, with electrical exci-
tation of oscillations of one and two types, etc.

The scheme of the first piezoelectric motor is shown in Fig. 2.8. The drive of a
piezoceramic motor is powered by alternating voltage at the resonant frequency of a
piezoelectric cell, which is located in the stator of the device. In the interface between
the stator and rotor (in case of direct contact), a strong tension arises. Piezoelectric
vibrations generate elliptical motion of the stator surface, and the rotor moves due to
the friction in the contact area.

Fig. 2.9 shows one of many options for a modern piezoelectric motor, which
includes a ring piezoelectric element, embedded in a steel jacket that has pushers
mounted inside the rotor. Such a piezoengine works as follows. When a piezoelectric
cell is connected to an external excitation source, acoustic radial resonance oscilla-
tions arise within it. Due to the coordination of parameters, these oscillations are
practically, without weakening, transmitted to the pusher, which then frictionally
interacts with the rotor to turn it.

Piezoelectric elements are composed of piezoceramic, but the jacket is made of
steel. Pushers are installed in the grooves of a jacket and secured with a compound
epoxy resin. Because such a compound is a sound conductor, the presence of grooves
can be neglected. The use of such components of oscillator stators only slightly
changes the quality of the piezoelement.

Another important example of the application of mechanics in electronics is
microelectromechanical systems (MEMS). Their technology combines both micro-
electronic and micromechanical components. MEMS devices are usually made of
silicon substrate, similar to that used in integrated one-chip manufacturing technol-
ogy. Typical dimensions of these micromechanical elements are in the range from 1
to 100 microns, whereas the MEMS chips have dimensions ranging from 20 microns
to I mm. Miniature integral devices and systems that combine electrical and mechan-
ical components are located on one crystal or substrate. Such a microsystem usually
starts from the sensor (sensing element) in the input of a circuit, and, then, informa-
tion enters the amplifier and analog-digital converter; next, the microprocessor fol-
lows (in the data-processing path), and the MEMS terminates in an output device. All
of these stages are realized on one chip—through integral microtechnology.

Therefore microscopic mechanical devices include accelerometers, gyroscopes,
and angular velocity sensors. Microactuators are used in medical applications to con-
trol instruments and biological objects at the microscopic level. The widespread use
of MEMS in medicine is attributable to their application in the microactivation of
surgical instruments.

In high-frequency electronics, various resonance elements of MEMS are used—
in oscillators, filters, sensors, and so on. In addition to those fixed on one side of
consoles (cantilevers), bridges (fixed on both sides) and diaphragms (fixed through-
out the periphery) are applied (Fig. 2.10).

The most common element is the cantilever; an example of piezoelectric console
implementation is shown in Fig. 2.11. The lower electrode is first applied at the
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(A) (B) (©)
FIG. 2.10

Schemes of elastic piezoelements fastening in silicon MEMS structures obtained by league
technology: (A) console (cantilever), (B) bridge, and (C) diaphragm; to simplify, electrodes on
piezoelectric elements and their metallic elements are not shown.

FIG. 2.11

Scheme of piezoconsole deposited on silicon: 1 and 3—electrodes, 2—piezoelectric layer.

silicon surface through a buffer layer of silicon oxide; this is followed by a piezo-
electric layer, and, finally, the top electrode. By the method of anisotropic etching
of silicon, material under the console is removed.

The first high-frequency MEMS devices were constructed mainly on the basis of
thin films of ZnO as well as by using thin films of AIN (with a wurtzite structure).
These piezosemiconductors provide low acoustic losses in microwave filters at fre-
quencies of 2—-10GHz. Such devices are based on volumetric acoustic waves that
propagate along the thickness of a film. The high acoustic quality and low dielectric
permeability of wurtzite films are very attractive properties for microwave devices.
At lower frequencies, it is advisable to use ceramic lead-zirconate titanate
(PZT) films.

Therefore microelectromechanics produces extremely small and sensitive
devices for detecting and measuring displacements, acceleration, pressure, weak
electrical signals, ions, and specific biological agents that have utility in medical
applications.

In addition to volumetric waves, SAW can be excited in an elastic medium. Elec-
tronics pertaining to these surface waves is called acoustoelectronics.
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FIG. 2.12

Schematic representation of surface waves: (A) Rayleigh waves on a free rigid body;
(B) Rayleigh waves on the interface of solids and liquids; (C) Stoneley wave at the interface
between two solids; and (D) Love waves at the interface of the “solid half-space—solid layer.”

Surface waves can easily propagate along the free surface of a solid or along the
border of a solid body with other media but have a rather fast damp away from the
boundary (Fig. 2.12). Two types of surface waves are used: with vertical polariza-
tion, when the vector of particle displacement is located in a plane that is perpendic-
ular to the side of a rigid body in contact with other media, and with horizontal
polarization, when the vector of particle displacement is parallel to the boundary
of a rigid body with other media, but remains perpendicular to the direction of wave
propagation.

Particular cases where surface waves are used are as follows:

1. The Rayleigh waves, extending along the boundary of the elastic half-space
(sound conductor) with vacuum or a sufficiently rarefied gas medium
(Fig. 2.12A). The phase velocity of Rayleigh waves equals vg ~ 0.9v7, where vy
is the phase velocity of the share mode. The velocity vector of these waves is
parallel to the surface, whereas oscillating particles can have both transverse
(perpendicular to surface) and longitudinal components of the displacement
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vector. The vibrations of particles are described by elliptical trajectory in a plane
perpendicular to the surface that passes through the direction of phase velocity.

The amplitudes of longitudinal and transverse vibrations are reduced
exponentially with increase in distance from a surface into the medium, thus
having different attenuation. This results in an effect where, during wave
propagation, the ellipse is deformed and, when far from surface polarization,
becomes linear. The penetration of a Rayleigh wave into the depth of sound
conductor approximately equals the length of the surface wave.

. The damped waves of the Rayleigh type, existing between solid and liquid, are

shown in Fig. 2.12B. In a relaxed fluid, the elastic surface waves cannot exist.
However, it should be noted that, at an ultrasonic frequency range in an actual
liquid, surface waves may still exist that are defined not by elastic forces but by
surface tension (so-called capillary waves). If a liquid is bordered with a solid and
sound velocity in the liquid is less than the vy,.,q in the solid (this is true for
almost all sound velocities in media), the damped wave of Rayleigh type may
spread on the interface of the solid and the liquid.

A damped wave, during its propagation, continuously emits energy in the
liquid, thereby forming nonuniform waves in it. The phase velocity of a damped
Rayleigh wave is almost equal to v4,.ng, Whereas its damping at one wavelength
is approximately 0.1 such that, on a progression of 10 wavelengths, the wave is
damped “e” times. In solids, the depth of stresses and displacements of such a
wave is similar to the distribution in a Rayleigh wave.

The nondamping waves (continuous) with vertical polarization extend along the
interface of a liquid and solid. The velocity of sound in a liquid is less than that in
a solid, and, therefore, a nondamping wave in a solid is extended together with
decaying. It spreads on the interface of the medium with a phase velocity that is
less than the velocity of longitudinal and transversal waves. A continuous wave,
being vertically polarized, has a completely different structure and velocity than a
Rayleigh wave. This wave, in liquids, consists of a slightly inhomogeneous wave
with an amplitude that slowly decreases with the distance from the boundary of
medium, and, in solids, of two strongly inhomogeneous waves (longitudinal and
transversal). Due to this aspect, the energy of the wave and particle motion is
localized mainly in a liquid, but not in a solid, body. In practice, this type of wave
is rarely used.

The Stoneley waves propagate along the plane boundary between two solid
media, for which the elastic moduli and density are not very different

(Fig. 2.12C). The Stoneley wave resembles two Rayleigh waves (one in each
environment). The phase velocity of a transverse Stoneley wave is less than the
velocity of a longitudinal wave in both the neighboring media. Vertical and
horizontal displacements of components in each media are reduced with distance
from border such that wave energy is concentrated in two near-boundary layers
with thickness similar to the wavelength.

The Love waves are surface waves with horizontal polarization that can extend in
the layered structure: “elastic layer on elastic solid half-space” (Fig. 2.12D).
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This is a purely transverse wave, whereas its phase velocity is found in the range
between the phase velocities of transverse waves in a layer and in a solid half-
space. Love waves propagate with dispersion; because of the small thickness of
the layer, the phase velocity approaches the sound velocity in the half-space. In
general, the movement of a wave may be such that wave energy is redistributed
between the layer and the solid half-space; therefore, phase velocity depends
upon the frequency and thickness of the layer.

In anisotropic crystals, the same type of surface acoustic waves may exist as in iso-
tropic solids: however, the motion of particles in elastic waves might be more com-
plicated. For example, on some planes of anisotropic crystals that have piezoelectric
properties, the Love wave as a Rayleigh wave may extend on the free surface; these
waves are called as “electrosonic.” Along with the usual Rayleigh waves in peculiar
orientations of crystals along the free boundary, a damped wave may extend such that
it radiates energy into the crystal (pseudo-Rayleigh wave).

Finally, in a piezoelectric-semiconductor crystal, the surface wave can interact
with conduction electrons, resulting in the amplification of this wave. In an aniso-
tropic elastic structure, the properties of a Rayleigh wave depend on anisotropy
and the direction of wave propagation. These waves can propagate not only in a plane
but in the curved free surface of a solid as well. Thus their velocity is changed with
depth, and the spectrum of permissible frequencies may become discrete, as in the
case of a Rayleigh wave propagating on the surface of a sphere.

The principle of action of acoustoelectronic converters is based on elastic defor-
mations that exist in the piezoelectric crystal due to the piezoelectric effect. Elastic
deformation created by the comb electrode generates a traveling surface wave,
accompanied by an alternating electric field. By varying converter options, it is pos-
sible to manage device parameters (Fig. 2.13).

Ultrasonic and hypersonic surface waves are widely used in technologies for
comprehensive nondestructive surface layer testing, as well as for study of surface
properties (defectoscopy). If the surface of a solid sample is free, then the usual Ray-
leigh waves can be applied. In cases where the tested sample is in contact with liquid
or other solid samples or a solid layer, Rayleigh waves should be replaced by other
suitable types of surface acoustic waves. Hypersonic Rayleigh waves with frequen-
cies between 10% and 10” Hz are used in acoustoelectronic transducers to create sig-
nals, in ultrasonic and hypersonic delay lines, in amplifiers of electromagnetic

Y/ 2

Schematic diagram of the SAW filter; I—comb activator; 2—output comb; and 3—schematic
representation of surface waves [6].
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oscillations, and for creating information processing systems. Furthermore, they are
applied as sensor displays based on surface acoustic waves.

SUMMARY

. Mechanical properties are conditioned by internal bonds among atoms, ions, and

molecules of a solid; basically, these properties are elasticity, strength, stiffness,
toughness, and so on. The most important mechanical properties of electronic
devices are elasticity (depends on the strength of atomic bonds in crystals) and
velocity of elastic waves in crystals (which, in addition to elasticity, have specific
density impacts).

An external mechanical impact on a solid is characterized by the mechanical
stress tensor X;;. This is a symmetric (X;;=X};) second-rank field tensor that, in its
physical nature, is quite different from symmetric second-rank material tensors
(e.g., the tensor of permittivity &,,,=¢€,,,, which agrees with the internal
symmetry of crystal). The field-type tensor of stress describes the structure of
forces applied to a studied sample from outside.

In different cases of technical application of solids in electronics, five important
cases of mechanical stress tensors should be distinguished: linear-stressed state
(uniaxial stress), flatness-stressed state (biaxial stress), volumetric-stressed state
(three-dimensional stress), and the net shear stress. A separate important case is
that of hydrostatic pressure, wherein all components of the stress tensor are same:
X11=X2,=X33=—p, where p is pressure.

. Depending on the symmetry of the mechanical load and of the crystal, there arises

elastic deformation (strain) that is also a symmetric second-rank tensor (x =x).
It can be classified into one-, two-, and three-dimensional tensors. Two-
dimensional stress and strain (stretching/compression) are considered in
contemporary planar microelectronic technology.

. From Hooke’s law, which asserts the linear proportionality of strain to stress, two

very important tensors for solids follow: elastic stiffness tensor c¢;;,; (also known
as Young’s modulus) and, inverse to it, the elastic compliance tensor s;j;. Both of
them are material symmetric tensors of the fourth rank. Special parameters
important for applications are compressibility (s) and the bulk elastic modulus K
that can be determined by components of the elastic stiffness (or

compliance) tensor.

. The propagation of one-dimensional, surface, and volumetric elastic waves in

solids, as well as the resonant properties of solid rods, beams, membranes, and so
on, are described by tensors of elastic stiffness. Through excitation in an
electrical or magnetic manner, elastic waves are widely used in modern
piezoelectronics, acoustoelectronics, acousto-optics, MEMS, and microwaves as
well as in many other microelectronic devices.
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Many phenomena and effects of electronic materials could be attributed to their ther-
mal properties—thermal motion determines important features in electrical, mag-
netic, and other properties. Beginning with the synthesis of crystals and
microelectronic as well as nanosized structures and, next, their alloying, annealing,
and quenching, there are many other technological operations that occur under spe-
cial thermal conditions. Thermal energy determines many properties of crystals. For
example, the generation and recombination of charge carriers as well as the setting of
their equilibrium concentration in semiconductors are due to thermal motion in the
lattice. In magnets and dielectrics, phase transitions of dielectric-metal as well as
transitions in ferromagnetic or ferroelectric states and observable phenomena such
as pyroelectricity, electrocaloric effect, magnetic cooling, thermostriction, and so
on are directly related to thermal properties. However, all listed phenomena will
be considered in subsequent sections of this book, whereas this chapter is devoted
only to three thermal phenomena in solids: specific heat, thermal expansion, and
thermal conductivity.

Thermal properties caused by the internal energy of movement of molecules,
atoms, or electrons are strongly dependent on the internal structure of material:
the more stable the bonds between atoms, the greater the energy that must be
expended for the displacement of atoms. In other words, more stable interatomic
bonds require greater energy for their formation. The stabilization of any physical
state in a given system occurs by its tendency to reach minimal energy.
A consequence of this law is that electrons occupy orbits with the lowest energies,
except in cases when they receive additional energy of excitation from external
sources. However, over time, these excited electrons tend to return to more stable
unoccupied orbits with lower energy; this happens because of thermal motion in
crystals and is described by thermodynamics.
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It is worth revisiting these basic concepts of thermodynamics, necessary for
describing the thermal properties of solids.

BASIC THERMAL AND ENERGY RELATIONSHIPS

Potential energy is a part of the energy of a system that depends on the positions of
particles and on external force fields [1]. In solids, the source of potential energy is
Coulomb forces that cause attraction of opposite charges and repulsion of same-sign
charges. Kinetic energy (energy of motion) similarly plays an important role for the
description of properties of substances. For example, gas pressure is due to the
kinetic energy of atoms or molecules. In solids, atoms are not absolutely fixed in
a lattice, but continually oscillate as a result of thermal excitation [2]. Such move-
ment significantly affects the basic properties of solids, as discussed in the following
sections.

The state of a system is characterized by a thermodynamic function called the
enthalpy A (i.e., the heat content in a system). As the temperature increases from
T, to T,, enthalpy changes:

T,
Az :Al + JCPaT,
T,

where A, is enthalpy at initial temperature T, while A, is enthalpy at the final tem-
perature T»; and Cp is the specific heat under constant pressure P [1].

As a thermodynamic function, enthalpy can be defined in two ways. The first
method is based on the determination of the internal energy, U, and the work,
PV, performed by the material:

A=U+PV,

where P is the pressure and V is the volume of material.

The second method is based on the Helmholtz conception about free energy F (or
Gibbs free energy G), and on the parameter TS, which is the energy conditioned by
internal disordering in matter:

A=F+TS+PV=G+TS,

where T is the absolute temperature and S is the entropy of the material. Thus entropy
is the measure of a system’s internal disorder (chaos). Typically, thermodynamic
quantities are given in well-known tables, together with values of entropy, enthalpy,
and free energy.

The function F=U —TS (i.e., Helmholtz free energy) is the minimal energy of
the equilibrium state of a system [ 1]. When considering processes in solids, it is more
convenient to control the volume of a system (not a pressure), and therefore it is nec-
essary to use another thermodynamic function: Gibbs free energy G =F + PV. Here,
the minimum value of G characterizes the equilibrium of the system at constant
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volume and constant temperature. In solids, at atmospheric pressure, the condition of
system equilibrium can be assessed using minimum F.

In Fig. 3.1, the enthalpy permanently increases with the temperature, but the con-
tribution of the entropy TS increases more rapidly; therefore Gibbs free energy
decreases with increase in temperature [1].Because a concept of free energy is
widely used in subsequent discussions in the context of properties and stability of
solids, it is necessary to draw a few conclusions from Fig. 3.1:

» At zero absolute temperature, free energy equals enthalpy: A=G;

» Free energy used to characterize processes of structural change in matter
decreases with increasing temperature; and

» The rate of the free energy decrease with temperature is related to entropy.

Furthermore, because the entropy is always positive and obligatorily increases with a
rise in temperature, the slope of the free energy curve continuously increases with
temperature. Thus the value of free energy provides important information about
changes in the given phase; therefore the lower the free energy, the more stable
the given phase.

In connection with the thermodynamic description and applications of solids in
electronics (e.g., in case of active dielectrics or ferromagnetics), some basic concepts
need to be elucidated [1]:

Heat is the energy of thermal motion of particles that form a body; in a Gaussian
system, it is measured in calories (cal) and, in SI, in joules (J).

The absolute temperature is a thermodynamic quantity that characterizes the
state of a body at its thermodynamic equilibrium; absolute temperature is denoted
by T and measured in degrees of Kelvin (K). The average energy of particles in a
body is proportional to the absolute temperature.

The heat capacity, denoted as C and measured in (J/deg) or in [cal/(degmol)], is
the heat absorbed from external sources when the temperature increases. In active

Energy

\

Temperature (K)
FIG. 3.1
Temperature dependence of enthalpy and free Gibbs energy G.




98

CHAPTER 3 Thermal properties of solids

dielectrics and ordered magnetics, the heat capacity is dependent on the mechanical
and electrical boundary conditions of a crystal.

The coefficient of thermal conductivity, denoted as A and measured in [W/
(degm)] or [cal/(degscm)], is a characteristic property of a heat-conducting material;
numerically, it is equal to the amount of heat passing through a unit area per unit time
at a unit temperature gradient.

The coefficient of thermal expansion, denoted a and measured in unit [deg '] =
(K1, represents the alterations in a solid body’s relative dimensions when the tem-
perature changes by 1K.

The next section presents some examples of the application of thermodynamics in
solid-state physics. The focus is on three thermal properties of solids: thermal expan-
sion, heat capacity, and thermal conductivity. These are properties that have the
greatest practical importance.

THERMAL EXPANSION OF SOLIDS

Changes in the dimensions and volume of a crystal with a temperature variation are a
result of the asymmetry in the interaction of its particles in a crystal lattice. Quanti-
tatively, the degree of a change in the volume is characterized by the volumetric coef-
ficient of thermal expansion, ay. According to general definition, this coefficient is
the relative change of volume V in a body on heating by 1° of temperature at constant
pressure P, and it can be written as:

ay = (1/V) (0V/oT),.

Very often, thermal expansion in crystals is anisotropic and, sometimes, it is negative
[2]. This means that when the temperature increases, a crystal can expand differently
in various crystallographic directions; moreover, in some directions, the crystal may
even be compressed with an increase in the temperature. Therefore, besides the vol-
umetric expansion, the linear expansion coefficient a; is widely used:

a = (1/1)(al/aT)p,

where / is the linear dimension of the tested sample. The coefficient of thermal
expansion is a second-rank tensor (i.e., matrix); thus the sum of three diagonal
elements is approximately equal to the volumetric expansion coefficient:
ayat+ar+as.

In electronics and microelectronics, knowledge of the thermal expansion coeffi-
cient of materials is very important. For the reliability of microelectronic structures
wherein semiconductor, dielectric, and metallic layers are integrated into a single
monolithic structure, coordination between these components during thermal expan-
sion is apparent. Usually, complex structures are synthesized at rather high temper-
atures, but they are used at normal conditions. If the thermal expansion coefficients
are not matched, the structures obtained would be mechanically stressed and that
would affect their properties and even possibly lead to localized destruction.
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Nevertheless, there are states (even applications) when the difference in extension
allows the properties of these structures to be managed; for example, the temperature
of the phase transition in ferroics (crystals with magnetically or/and electrically
spontaneously ordered structures) is changed purposefully.

The temperature dependence of the thermal expansion coefficient is shown in
Fig. 3.2A, for the most important semiconductors—germanium and silicon (similar
dependences are observed in the majority of solids). Parameter « increases signifi-
cantly in the temperature range of 50-400K, but thereafter varies very little (if struc-
tural phase transitions are absent).

In solids, the coefficient of thermal expansion actually characterizes the internal
bonds of atoms, ions, or molecules, in particular, the energy of these bonds. This
energy is largely determined by fundamental parameters of a crystal, such as its melt-
ing point. In Fig. 3.2B, the expansion coefficient is compared with the bond strength
between ions. The inverse proportionality of this relationship corresponds to the
nature of thermal expansion. Furthermore, it is noteworthy that the smaller the coef-
ficient «a is, the higher is the melting point of the crystal, T,,. There even exists an
empirical formula: aT,, = const [2]; the parameters a and T, included in this formula
are two important thermal properties of crystals, and both can be expressed in terms
of the Debye temperature (0p) of a crystal—this parameter is discussed further in
connection with the dynamic properties of the crystal lattice.

Simple model explaining thermal expansion. The change in the volume or shape
of a solid body with temperature alteration is attributable to the different nature of
forces acting between its atoms. The interaction consists of attractive and repulsive
forces. When the distance between the interacting particles changes, these forces
vary in different ways.
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FIG. 3.2

Thermal expansion in crystals: (A) typical temperature dependence; (B) correlation a with

strength of interionic bonding [2]. It is remarkable that, in silicon at cryogenic temperatures,
the a(T) dependence passes through a negative value of thermal expansion; this peculiarity
suggests that interatomic bonds in silicon have a rather complicated structure.
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Repulsive forces have a very short range, as their potential energy decreases
with the distance r between particles, designated as r—°. The electronic shells of
neighboring atoms or ions can only slightly penetrate each other. Conversely, the
forces of attraction are long range, as their energy changes with distance, designated
as r~'...r % depending on the nature of attraction (i.e., on the type of bonds; ionic,
covalent, or molecular). Therefore the total energy versus distance U(r) is character-
ized by an asymmetric minimum (Fig. 3.3A).

To describe the main reason for thermal expansion in a solid bodyi, it is sufficient
to consider the simplest diatomic model [3]. In some cases, this simple model is a
rather good approximation that is not only qualitative, but also quantitative. The
interaction of two atoms in equilibrium can be described by the balancing of the
forces of attraction and repulsion (when total energy is minimum; Fig. 3.3A).

Let us suppose that one atom is fixed, being located at the origin. The increase of
temperature induces movement that displaces a second atom from the ground equi-
librium position under condition of fluctuations. If the temperature is low, thermal
oscillations of the particle have a small amplitude x, and this motion can be modeled
by a simple linear relationship (quasielastic interaction): f= — cx, where fis a spring-
type force that returns the particle from excited state to its ground equilibrium posi-
tion (when x=0), while c is the coefficient of elasticity (this equation corresponds to
Hooke’s law).

Thus in U(r), the dependence potential well (which actually is asymmetric) may
be presented for simplicity by a symmetric curve. This means that thermal oscilla-
tions are harmonic (x =xq coswt), and the potential energy is described by a parabolic
potential well:
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FIG. 3.3

Thermal expansion in solids: (A) dependence of potential energy on distance between atoms;
dashed curve shows U(r) parabolic approximation; points 1-4 show a thermal expansion

curve with a nonparabolic character of real U(r) curve; (B) thermal expansion temperature
dependence for zinc oxide crystals: 1—lateral coefficient a ;| = a1,; 2—Ilongitudinal coefficient
a=asz; the negative low-temperature component is due to the internal polarity of zinc oxide.
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Ulx)= ch~dx:%cx2.

Here, the dependence of energy has a shape, depicted in Fig. 3.3A by a dashed line,
and the average position of the oscillating atom does not depend on the amplitude of
its oscillations, r=r( (in a crystal, ro=a, where a is the lattice constant). The lower
part of the curve of any potential well (close to its minimum) can be approximated
with good accuracy by a parabola.

It is obvious that, in case of a symmetric U(r), any chaotic thermal oscillations of
atoms cannot change the average distance between them; therefore the size of the
crystal will be independent of temperature. This explains why the coefficient of ther-
mal expansion in different solids at very low temperature fends toward zero.

In reality, however, the energy of the interaction between atoms is characterized
by a pronounced asymmetric well (solid line in Fig. 3.3A), which is a result of two
different summation curves (one is due to attraction and the other corresponds to the
repulsion of atoms). With increasing amplitudes of thermal oscillations, the repulsive
forces between atoms increase to become much stronger than the force of attraction,
that is, the displacement of oscillating atoms to the left becomes much less than their
displacement to the right (Fig. 3.3A). Thus the actual force f that acts on an atom
becomes a nonlinear function of displacement x (Hooke’s law is not met).

Consider the oscillation of one atom relative to another for the given energy in a
classic approximation. Different energy levels are depicted in Fig. 3.3A by the hor-
izontal lines 2, 3, and 4. In the position of equilibrium (r =r), the potential energy of
the atom is zero although its kinetic energy reaches the maximum. Moving away
from the equilibrium position, the atom acquires potential energy whose peak cor-
responds to the maximal shift of the atom from its equilibrium position and reaches
the level of potential energy, shown by corresponding horizontal line (Fig. 3.3).

With the increasing total energy of the atom (14 in Fig. 3.3A), the amplitude of
oscillations increases whereby the right shift of the atom will be greater than its left
shift. As a result, middle equilibrium position of the atom shifts to the right, and this
effect becomes stronger with a higher energy of oscillation of the atom. Therefore an
increase in energy with rise in temperature leads to a phenomenon where the intera-
tomic distance increases and the crystal enlarges.

In case of small oscillations of atoms around their equilibrium position, the poten-
tial energy can be expanded in a Taylor series in terms of atomic displacement with
respect to the equilibrium position. To analyze thermal expansion, it is sufficient to
limit this expansion by its first two terms:

1 1
Uzicx2 —gbe.

Coefficient c is ratio of quasielastic bonding, whereas coefficient b is referred to as
the coefficient of anharmonicity. Accordingly, the force that acts between an oscil-
lating atom and a fixed atom is given by:



102

CHAPTER 3 Thermal properties of solids

f= —ﬁ: —cx+bx%

ox
In this equation, a nonlinear term “+ bx>”is added to the linear term “— cx.” This new
term takes into account the asymmetry pertaining to interatomic interaction forces,
and it is the anharmonicity coefficient b. The role of anharmonicity becomes more
significant, the greater the value of displacement x. With this term, the time-
dependent displacement of oscillating atom is no longer sinusoidal (i.e., not har-
monic); therefore this approximation is called anharmonic. This simple model can
explain the thermal expansion of solids [4].

The average potential energy of thermal fluctuations (V2 cx?) at a given temper-
ature equals ¥2 kgT, where kp is Boltzmann constant. The average shift of the atom in
this model can be shown to be x,ye, = (b/c?) kzT. Thus, in the diatomic model con-
sidered here, the thermal expansion coefficient a is defined as the ratio of the average
shift x,e, to the equilibrium distance rg:

kb
a= %{,_2 .
It follows that, in the absence of anharmonicity (when b =0), the thermal expansion
coefficient @ =0. The asymmetry of the resultant interatomic interaction force in the
crystal lattice is considered further as the main cause of the interaction of phonons in
a lattice.

The anisotropy of thermal expansion. In cubic crystals, to which the majority of
metals and semiconductors belong (including germanium and silicon whose a(T)
dependence is shown in Fig. 3.2), thermal expansion is isotropic. Therefore the linear
coefficient of thermal expansion ¢, is independent of the direction in a crystal and
equals a;=1/3 ay: this is true for metals and most semiconductors. However, many
dielectric crystals, especially those that are important in electronic applications (i.e.,
pyroelectrics, piezoelectrics, etc.) as well as many ferromagnetics, are anisotropic
crystals [2].

For instance, hexagonal zinc oxide (ZnO) belongs to the class of anisotropic crys-
tals (Fig. 3.3B). At a very low temperature, the expansion coefficient of ZnO is
reduced to zero. However, after temperatures rise, the internal polar bond emerges,
and components of expansion coefficients in this pyroelectric (and piezoelectric)
structure at low temperature initially become negative. Only with a further temper-
ature increase does the thermal expansion coefficient increase in accordance with the
usual cubic power law (a** ~aj~ 7% until it reaches saturation, at higher
temperatures.

As shown in Fig. 3.3B, the lateral and longitudinal components of thermal expan-
sion are different. Thus the anisotropy of crystal structure leads to the anisotropy of
many physical properties, including thermal expansion. Therefore the thermal
expansion coefficient is defined not as a scalar value, but as the second-rank tensor.
Indeed, during uniform heating, a crystal is subjected to deformation, which can be
described by the strain tensor x;,. This change of temperature is described by the sca-
lar value 6T, and components of strain tensor are proportional to 67



3.2 Thermal expansion of solids 103

X =y 6T,

where o, denotes components of the thermal expansion coefficient. Therefore ay, is a
symmetrical tensor of the second rank because x;,; is a symmetrical tensor of the sec-
ond rank. This equation would be simplified if the strain tensor xy, is reduced to the
principal axes of a crystal: x, x,, and x3; moreover, these components can be easily
determined experimentally. The result is

xi=a1 6T, xo=ay 6T, x3=036T,

where ay, a,, and a; are the main thermal expansion coefficients that correspond to
the diagonal components of tensor xy; [5].

If all thermal expansion coefficients are positive, then a second-order surface can
portray thermal expansion by the quantities (1+a,67T), (1+a,8T), and (1 +az5T").
Moreover, the volumetric coefficient of the thermal expansion of crystal will be
equal to the sum of all three linear coefficients ay=a; +a,+a3. In some directions
of an anisotropic crystal, compression—not expansion—in linear dimensions can be
seen when heating and, correspondingly, negative coefficients of expansion for these
directions are observed. To obtain a full description of the thermal expansion tensor,
it is necessary to know the linear coefficients of thermal expansion along the three
principal directions of a crystal.

In crystals that belong to a cubic symmetry class, coefficient  is the same in any
direction, because the second-rank material tensor in this case degenerates into a sca-
lar: a; =, = ;. The temperature dependence of a in Fig. 3.2 for semiconductors Ge
and Si characterizes the typical case of cubic crystals.

In crystals of hexagonal and trigonal systems, the expansion coefficient tensor is
determined in rwo main directions: parallel and perpendicular to the axis of the sixth
(or third) order, whereby a1, =ax=a, and a33 =q||. In crystals of the orthorhombic
system, it is necessary to know the expansion coefficients in three mutually perpen-
dicular directions, parallel to the second-order axes: @;; =y, Ay =, and a3z =a3z.
The definition of ;; tensor in crystals of lower symmetries (monoclinic and triclinic)
becomes more complicated by the fact that the position of principal axes is not
uniquely determined in a crystallographic coordinate system.

Components of thermal expansion coefficient usually might have different tem-
perature dependences: they may be either positive or negative. Their sign depends on
the anisotropy of forces that act between atoms in the crystal. The negative coeffi-
cient of thermal expansion is a result of long-range bonds in a crystal. It will be
shown that such bonds arise during polarization of atoms, and they are the result
of decrease in the frequency of acoustic modes in the phonon spectrum near the
boundary of the Brillouin zone. Corresponding to these frequencies, the components
of an elastic tensor have small positive values for longitudinal oscillations and neg-
ative values for lateral oscillations.

Furthermore, this situation is possible for layered and chain structures that are
characterized by such interaction between atoms wherein the interaction inside
the layer (or chain) is stronger than the interaction of atoms located in different layers
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(or chains). In this regard, the thermal expansion coefficient along the chain (or
layer) is always less than the coefficient of expansion in the perpendicular direction.

In general—with possibly different signs of the components of thermal expansion
tensor—the characteristic surface in Cartesian coordinates is not ellipsoid, nor is it
even a surface of the second order. Nevertheless, the knowledge of characteristic sur-
faces is important for applications of anisotropic crystals. For example, in calcite
crystals, the expansion coefficient in the direction of the principal axis of the crystal
is positive, but it is negative in directions perpendicular to it. This means that, in
some oblique directions, the expansion coefficient should be zero, and therefore,
in certain directions, the radius vectors of the indicatory surface should be zero (this
case is impossible for an ellipsoid).

Shubnikov [6] considered all possible forms of the indicatory surfaces of thermal
expansion coefficients in crystals under conditions when linear expansion coeffi-
cients a, an, and a3 differ both in magnitude and in sign (Fig. 3.4). Positive values
of a are shown on these figures by white surfaces whereas negative values of a are
shown by black surfaces. As noted earlier, in crystals of cubic symmetry, all three
major expansion coefficients are equal, and all three are usually positive. The cor-
responding surface in this case is obviously the sphere with a positive radius: this is a
“white-colored sphere,” but this simplified case is not shown in Fig. 3.4.

When a3 # a; =a, with a3 >0, the surface describing expansion coefficients is
similar to oval; it can be either flattened (at a3 <a;, Fig. 3.4B) or elongated along
axis 3. These surfaces describe simple cases of thermal expansion of optically uni-
axial crystals that are often found in practice. In the calcite crystal, for example, com-
ponent a3 has a positive sign, while components @; =a, have negative signs. The
surface that corresponds to such a case is also shown in Fig. 3.4B. It is composed
of two egg-shaped positive (white) surfaces and a torus-like negative (black) surface.

Other characteristic surfaces of the thermal expansion tensor shown in Fig. 3.4
exhaust all possible combinations of main components of the oy, tensor.

CRYSTAL HEAT CAPACITY

The heat capacity of body is a physical quantity defined as a ratio of the amount of
heat dQ obtained by the body corresponding to an increase in its temperature d7*:

C=dQ/dT.

The unit of heat capacity in SI is [J/K]. The concept of heat capacity is applicable to
substances that are in various states of aggregation (solid, liquid, or gas) as well as to
ensembles of particles and even quasiparticles (e.g., the heat capacity of electronic
gas in metals or heat capacity of phonons in a crystal lattice). The value of heat capac-
ity depends on the nature of a substance.

Specific heat is the heat capacity per given unit of substance, which can be mea-
sured in kilograms, cubic meters, and moles. Depending on the quantification of unit
heat applied, the mass, volume, and molar value of specific heat are distinguished.
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FIG. 3.4

Characteristic surfaces that exhibit anisotropy of physical quantities described by a second-
rank material tensor; (A) ellipsoid of permittivity of biaxial crystal symmetry e; (B-D) figures
that describe the thermal expansion coefficient in crystals of different symmetry; black shows

the negative value of a.
According to A.V. Shubnikov, Selected Works on Crystallography, Nauka, Moscow, 1975, p. 551.

The mass specific heat is the amount of heat necessary to increase the temperature of
a unit mass of material by one temperature unit; in SI, it is [J k;{l Kil]. The volu-
metric specific heat, Cy, is the amount of heat that is necessary to be applied to a
unit volume of material to heat it by one temperature unit; in SI, it is measured in
[Jm— K™'], that is, joules per cubic meter and Kelvin. The molar specific heat,
C,, is the amount of heat that is necessary for 1 mol of the substance to be heated
by 1°; in SI, it is [J/(mol K)], while in the Gaussian system, this specific heat is deter-
mined in [cal/(g-molK)]. The vast majority of solids have specific heat close to
1kJ/(kg K); for example, water has a relatively high heat capacity: 4.2kJ/(kgK).
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In solids, both the crystal lattice and electrons contribute to the specific heat. For
reasons that are explained further on, the electronic specific heat in metals at normal
conditions is rather small; therefore the mechanisms of the lattice for specific heat are
mainly considered (Chapter 4 presents a discussion of the contribution of magnons to
specific heat).

The elastic vibrations of atoms in a crystal can arise both in the form of traveling
and standing waves. As a simple example of oscillations (phonons), one can consider
sound waves that can be excited, for example, via an applied piezoelectric element.
As with any waves, lattice vibrations are characterized by wavelength (1) and fre-
quency (o). It should be noted that arbitrary waves cannot exist in a crystal; only
those waves can exist that have a certain relationship between the frequency and
wavelength: @ = w(k), where k is the wave vector given by k= 2z/A. The dependence,
a(k), is the main characteristic of phonons, that is, atomic vibrations in a crystal. The
knowledge of this relationship allows the calculation of many thermal and electrical
properties of crystals (e.g., specific heat, thermal expansion coefficient, thermal con-
ductivity, dielectric constant, etc.). However, it should be noted that the concept of
phonons is only one of the possible models explaining the thermal properties of
solids.

For a detailed consideration of thermal conductivity (as well as the thermal
expansion study in crystals), it is necessary to take into account anharmonicity, that
is, the nonlinearity of lattice vibrations. However, a further simplified explanation of
crystal heat capacity that was proposed can be sufficiently limited by the /inear (har-
monic) model of phonons [7].

Historically, several theories of lattice specific heat were developed:

The law of heat capacity constancy (Dulong-Petit law) corresponds to conven-
tional notions and, with some accuracy, are valid at room temperature and higher
temperatures.

Einstein’s quantum theory of heat capacity is the first successful attempt to use
laws of quantum mechanics to describe the special properties of specific heat in
solids at low temperatures.

Debye’s quantum theory of heat capacity is based on a model of constrained
atomic vibrations, and it shows a better association of theory to experimental data
than Einstein’s theory in the vicinity of low temperatures.

Born’s theory of lattice dynamics is the most advanced method to describe crystal
lattice dynamics, including the theory of heat capacity.

The law of specific heat constancy states that the molar heat capacity of differ-
ent solids is the same (at room temperature and at increased temperatures):

Csolia = 3R

where R is the universal gas constant. An important factor is that the molar heat
capacity in solids at ambient temperature is more than twice as high in comparison
with the heat capacity of an ideal gas: C,,,=3/2 R (Fig. 3.5).

It should be noted that 1 mol of any substance contains the same number of atoms
as determined by Avogadro number: N,=6.02-10mol'. According to
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FIG. 3.5

Dependence of molar heat capacity on temperature: 1—ideal gas and 2—molar heat capacity
of solids.

conventional statistics (i.e., statistical physics based on conventional mechanics),
each degree of freedom of a gas particle makes the same contribution to its molar
heat capacity. This rule is the law of equipartition. Any particle of monatomic
gas has only three degrees of freedom; according to this, the molar heat capacity
of gas should be equal to 3/2 R, that is, approximately 13.5J/(kmol K); in other units,
this amounts to 3 cal/(mol K), which is in good agreement with experimental results.

This is because free atoms of gas exclusively have kinetic energy; each gas atom
has three degrees of freedom, and the contribution to energy of each degree is (kgT)/
2—that is, just (3/2)kgT in total. Because 1 mol contains N, atoms, the molar heat
capacity of gas equals 3/2 R (Fig. 3.5).

Boltzmann constant defines the relationship between temperature and energy:
kp=1.4-10">2J/K=8.6-10""eV/K).

During its vibration, the atom, being constrained in a crystal lattice, possesses not
only kinetic energy, but also potential energy equal to the kinetic energy, on average;
that is, each atom in a lattice has twice as much energy in comparison with the same
atom in a gas: 3kgT. Exactly because of this fact, the law of heat capacity constancy
follows. Dulong-Petit law, in the dynamic formulation of a problem, is derived by the
assumption that the crystal lattice consists of atoms, and each atom is a harmonic
oscillator in three dimensions (due to lattice structure) whereby fluctuations in three
orthogonal directions are independent. This means that each atom can be associated
with a superposition of three oscillators with energy E that satisfies the following
formula: E=kgT.

This formula follows from the theorem of energy equipartitioning among degrees
of freedom. Each oscillator has one degree of freedom, and therefore its average
kinetic energy is equal to kg/2 per temperature unit. Because oscillations are har-
monic, the average potential energy is equal to the average kinetic energy, and
the total energy is the sum of both. The number of oscillators in 1 mol of substance
is 3Ny4, and their total energy per Kelvin equals the specific heat of the solid; from this
reasoning itself, the law of constant heat conductivity follows directly. Thus the

107



108

CHAPTER 3 Thermal properties of solids

classic (and simplest) idea as to thermal motion in a crystal lattice can be reduced to a
model of independent oscillators.

The oscillator model and elastic waves. The dynamic behavior of elastic dis-
placements of atoms (or ions) is described by a model of the harmonious oscillator
(Fig. 3.6). In this model, a particle with mass m is elastically connected to a stationary
base. In case of forced initial displacement of the particle from its equilibrium posi-
tion on distance +x (or —x), the opposite force occurs because of the elastic connec-
tion that seeks to return the particle into an equilibrium position. This force is
proportional to displacement x and has the opposite direction: f= —cx.

Parameter c is the coefficient of elasticity; here, it describes atomic bonding in a

crystal lattice. Upon elastic displacement, force f balances the force of inertia of
mobile particles, m(dzx/dtz):
d’x
dr
Therefore the energy of the corresponding oscillator is U = [cxdx = %cxz. This
expression is described by the parabolic potential well. The solution of this equation
is harmonic oscillations: x=x, coswgt, or x =X, sinmyt or a linear combination of
these two solutions. It is convenient to represent the general solution in the form:
x=xo exp(imot +@p), where xy is the amplitude, ¢, is the initial phase, and
Wy = \/§ is the natural oscillation frequency. If the oscillating particle has an elec-
trical charge ¢, then, in addition to elastic waves (mechanical), an electromagnetic
wave arises too.

The elastic wave of particle vibration in the crystal lattice is the phonon (this term
resembles photon). In phonons, the oscillatory motion of particles of a solid occurs.
When it comes to electromagnetic oscillation (photon), the usual classical concepts
are not suitable because, according to them, there exists something, which has no
mass. The electromagnetic wave (in its simplest form, a plane wave of a certain fre-
quency) is a peculiar form of the existence of matter—the electromagnetic field. An
elementary wave is a wave that is infinitely extended in space and time [6].

Returning to the law of molar specific heat constancy in crystals that does not
depend on the type of atoms (or ions) of the solid body and does not depend on tem-
perature, it should be noted that even this relatively simple model of equal and inde-
pendent oscillators is capable of explaining this feature.

However, a low-temperature investigation of specific heat demonstrates the fast
decline of the Cyq);4(T) characteristic (dotted line in Fig. 3.6). Moreover, when the

m = —CX.
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FIG. 3.6

Model oscillator and its wave.
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lattice approaches absolute zero, the specific heat vanishes: Co,¢ — 0. All this tes-
tifies to the shortcomings of the simple model of the classic oscillator.

The temperature dependence of specific heat in solids at low temperatures is
explained in the quantum models of Einstein and Debye.

Einstein’s quantum theory of specific heat. The main assumption of this theory
is that the atom oscillator in a crystal lattice is the quantum object, not the conven-
tional one. However, as in the previous model, these oscillators are again considered
independent.

A quantum oscillator with frequency v can absorb (or emit) energy only in
portions—by quanta: iv = Aiw. This is shown schematically in Fig. 3.7 (see left panel).
At a relatively high temperature (75) when the thermal motion is rather intense, the
average thermal energy of the oscillator (kzT3) is much greater than the quantum of
oscillator energy (kzT5>> hw); thus the fact that the oscillator is the qguantum oscillator
is not significant and therefore the classic Dulong-Petit law is satisfactory.

In case of low temperatures, the average energy of thermal motion becomes
approximately the same as the energy of the quantum oscillator: kgT ~ fiw. Never-
theless, the energy distribution between lattice vibrations is chaotic, but when the
crystal is cooled, the number of quantum oscillators (which do not accept or radiate
energy) increases; therefore specific heat should be reduced with a decrease in the
temperature.

This result was obtained by Einstein. His theory is based on the assumption that
atoms in a crystal lattice behave as harmonic oscillators that do not interact with each
other. The number of oscillators in 1mol of substance is equal to 3N, and their
energy is quantized. According to the model proposed by Einstein, close to the abso-
lute zero of temperature, specific heat tends to zero; however, at high temperatures,
the law of Dulong-Petit holds true.

The temperature dependence of Cj,yice in Einstein’s model is described by the
exponential law (Fig. 3.7, curve 1). However, subsequent experiments have shown
that this dependence is described by a cubic parabola: C ~T 3. Thus it is necessary to
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FIG. 3.7

Comparison of specific heat of the quantum model of independent oscillators (curve 1) and
model of coupled oscillators (curve 2).
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consider the interaction between adjacent atoms. Such calculations were made
by Debye.

Debye’s model of specific heat takes into account the contribution from the /at-
tice of interacting atoms to heat capacity. This model correctly predicts the low-
temperature specific heat proportionality to 7 *, and considers that atom oscillators
in the crystal lattice are elastically connected to each other; therefore their vibrations
are interdependent.

To explain the influence of interaction of atoms on the frequencies of their oscil-
lations, two models are shown in Fig. 3.8A: the free and bound pendulum. In case of
the free pendulum, the eigen frequency of oscillations w is dependent only on the
length of the pendulum—this model corresponds to the case of independent oscilla-
tors discussed earlier.

The constrained pendulums (Fig. 3.8A) can serve as a model to explain the sim-
plest two-atom bond. In case of two resiliently connected pendulums, the oscillation
process becomes more complicated, as each pendulum has the same eigen frequency
w, but there is also an additional combinational frequency (2. If there are three pen-
dulums, then such a system would have three characteristic frequencies. Obviously,
for n pendulums (which mimic the crystal lattice of n atoms), the number of char-
acteristic vibration frequencies will be n+1.

To illustrate Debye’s model, it is possible to consider the oscillations of a string
with length / that is attached at the ends (Fig. 3.8B). The main tone has a frequency 0
that corresponds to a wavelength 1=2/ of the elastic string. The overtones are 2w,
3wy, ..., and they are located on the same line w(k) with wavelengths /, 2/3/, .... The
dependence of oscillation frequencies @ on the reverse wavelength (wave vector)
k=2r/A is shown in Fig. 3.8C.

In Debye’s model, the movement of the center of masses of an interconnected
lattice with N elements is considered. It is assumed that this complex movement

_2n
[0) A
(A)
FIG. 3.8

Explanations related to the Debye model: (A) single and two connected pendulums; (B) string
oscillations (primary tone and first overtone); (C) w(k) dependence of the oscillator frequency
of string on its length (dotted line); 1—Einstein’s mode wg of free oscillators; 2—Debye’s
mode of bounded oscillators with maximal frequency wp.
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(lattice vibrations) is equivalent to 3N harmonic oscillators. The coordinates of har-
monic oscillators are the normal coordinates, and their fluctuations are termed the
normal modes.

The internal energy and heat capacity of a solid consists of additive contributions
of energy from individual normal vibrations. To derive a formula that describes the
dependence of specific heat on temperature, it is necessary to know the frequency
spectrum of normal vibrations. This spectrum can be calculated theoretically
whereby, in case of the simplest lattice, this solution contains three acoustic modes,
with w(k) dependence that corresponds to three possible independent orientations of
polarization vectors of waves (two transverse modes and one longitudinal mode).

The relationship w(k) constitutes the dispersion law. In case of Einstein’s model,
the frequency g does not depend on the wave vector £ (see line 1 in Fig. 3.8C). In
contrast, according to Debye’s model, this relationship exists and is characterized by
a sloping line—Iline 3. In Debye’s model, the dependence w(k) is linear (similarly as
for string); however, there is one important restriction: this line ends at the abscissa
value z/a. This means the limiting of wavelength (4= 2a) because there is no phys-
ical carrier for shorter wavelengths.

At low temperatures, the energy of a crystal increases with the temperature due to
two factors: firstly, due to an increase in the average energy kgT of normal vibrations
(i.e., proportional to T) and, secondly, due to the number of excited oscillations that
increases similarly as T°. Therefore, the total energy of a crystal increases with tem-
perature proportionally to the fourth power of temperature:

4
Ejaice ~T

Accordingly, the heat capacity of the lattice that is determined as a derivative
(C ~dE aice/dT) is proportional to the temperature in a cubic power:

CcC~T?

which is in good agreement with experiments.

At high temperatures, all normal lattice vibrations are already excited and there-
fore a further temperature increase does not result in an increase in the number of
phonons. Consequently, at relatively high temperatures, the growth of the energy
in solids can only take place due to the increase in the degree of excitation of normal
vibrations, which proportionally causes an increase of their average energy to tem-
perature (kgT); thus the energy increase in a solid must be proportional to 7:

Erattice ~ T

whereas the heat capacity of the lattice (C~ dEice/dT) should not depend on
temperature:

C = const.

Thus at increased temperatures, the specific heat tends to a constant value 3R—
according to Dulong-Petit law—where the characteristic temperature €, exists,
the Debye temperature. Below 6p, the quantum nature of lattice vibrations becomes
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decisive. Thus the 8, approximately indicates a temperature limit below which the
quantum effects become non-negligible. On the basis of other fundamental constants
(Planck constant /4 and Boltzmann constant k), Debye temperature can be expressed
in terms of Debye frequency: wp =27zvp. Indeed, by analogy with equation kgT = hv,
it is possible to define a similar equation kg 8p =hvp, therefore

9]) = (h/kB)UD, or 9[_) = (h/kg) wp.

In different crystals, the value of Debye frequency is located in the range of
vp=10"-10"*Hz. These frequencies of elastic vibrations correspond to the far-
infrared range of the electromagnetic spectrum. It is assumed that, at Debye temper-
ature, almost all oscillatory modes (types of oscillations) in the crystal are excited.
During a further increase of temperature, new oscillatory modes do not persist, but,
instead, the existing modes increase their amplitude, that is, the average energy
increases linearly with the increasing temperature.

In different crystals, values of Debye temperature are diverse, but typically
0p ~200—-400K. For most of the important crystals in electronics, these temperatures
are in silicon, 8, =650K; in germanium, €, =380K; and in quartz, €, =250K. In
alkali halide crystals, the 65 varies from 0p=730K in the LiF crystal up to
0p=100K in the RbJ crystal; the highest Debye temperature 8, = 1860K is seen
in the diamond.

Debye’s theory is therefore in good agreement with experiments at low temper-
ature. Moreover, the Debye temperature characterizes not only specific heat, but also
some other thermal properties of a solid (e.g., thermal conductivity, thermal expan-
sion, melting points).

The dynamic theory of Born is considered in further detail in Chapter 4. This
theory gives a chance to calculate specific heat and other parameters of solids more
accurately than with Debye’s theory by using peculiarities of the atomic structure of
crystals. The solid body is treated as a lattice composed of elastically interconnected
point masses. Not only are the forces closest to a given atom taken into account but
also forces, acting between atoms located at larger distances [8]. Even in the case of
the simplest model, that is, a one-dimensional model (i.e., series of elastically joint
atoms), it may be shown that Debye’s result of linear dependence w(k) should be
corrected: in Born’s dynamic theory, the dispersion of elastic waves is predicted
(in good agreement with the experimental results). However, in case of low temper-
atures, only low-energy phonons can be excited; thus Born’s w(k) dispersion is neg-
ligible. Therefore the low-temperature dependence of the lattice’s specific heat in
Born’s theory is also cubic: C~T°.

THERMAL CONDUCTIVITY OF SOLIDS

Thermal conductivity is heat transfer by structural particles of a material (molecules,
atoms, and electrons) in course of their thermal movement. The transfer of heat is
caused by the tendency of the system to be closer to thermodynamic equilibrium,
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which is established by temperature equalization. The heat spreads from the hotter
part of a material to a cooler part. Heat exchange can occur in any substances in case
of nonuniform distribution of temperature; however, mechanisms of heat transfer
depend on the physical state of a matter.

The coefficient of thermal conductivity is a quantitative assessment of the ability
of a particular substance to conduct heat. In a steady state, the flow of thermal energy,
transferred by heat conduction, is proportional to the temperature gradient:

AQ=—AgradT.

This relation is known as Fourier’s heat conduction law, where AQ is the heat flux
vector whose magnitude is the amount of energy that passes in unit time through a
unit area, oriented perpendicular to the direction of heat transfer; T is temperature,
and 4 is the coefficient of thermal conductivity (sometimes, referred simply as
thermoconductivity).

In a simplified model, the steady flow of heat from one side of the parallelepiped
to the opposite side is considered, and the formula of heat transfer can be written as:

ASAT
Plherm S —

h

where P e 1S the power of heat flux, S is the cross-section of the parallelepiped, AT
is the temperature difference between its sides, and # is the length of the parallele-
piped, that is, the distance between its sides.

As in the case of electrical charge transfer phenomena when, together with elec-
trical conductivity o, the reciprocal value, resistivity p=1/o, is widely used, it is
sometimes possible to use a corresponding reciprocal parameter—the thermal resis-
tance, R = 1/A—for heat transfer.

It should, furthermore, be noted that in anisotropic crystals, thermal conductivity
A;; as well as thermal resistance R;; are symmetric material tensors of the second rank
and can be described by a second-order surface (usually in the form of an ellipsoid).
Thermal energy can be transferred both by electrons and by lattice elastic waves
(phonons). Various solids can have quite different thermal conductivities that can
vary 1000-fold.

In metals, thermal conductivity is usually large, and the electronic nature of heat
transfer dominates (>90%). At normal temperatures (300K), the largest thermal
conductivity among metals is observed in silver: A =430 W/(m K). Thermal conduc-
tivities are somewhat lower for copper A =390 W/(m K), gold 1=320W/(m K), and
aluminum A=230W/(m K). In other metals and alloys, thermal conductivity is
<100 W/(m K).

In semiconductors, heat transfer is predominantly obscured by phonon processes
(i.e., lattice thermal conductivity). Under normal conditions, the contribution of pho-
non mechanisms dominates electronic thermal conductivity (dominating in metals).
However, as a rule, the thermal conductivity of phonons in semiconductors is inferior
to the electronic thermal conductivity of metals. For example, at temperature 300K,
the thermal conductivity of silicon is 2= 150 W/(m K), germanium A=70W/(m K),
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and gallium arsenide 1 =40 W/(m K). Moreover, the phonon mechanism of thermal
conductivity in semiconductors and dielectrics greatly depends on the temperature:
correspondent data for the three most important crystals in microelectronics (silicon,
germanium, and quartz) are shown in Fig. 3.9.

In dielectrics, thermal conductivity has an exclusively phonon character; how-
ever, sometimes, thermal conductivity can be rather high: in beryllium oxide
(BeO) 1=80W/(m K), in magnesium oxide (MgO) 4=60W/(m K), in sapphire
(0-Al,O3) A=40W/(m K), and in polycorundum (Al,O3) A=30W/(m K). It is very
remarkable that a newly developed ceramic aluminum nitride (AIN) has the highest
thermal conductivity of all available technical dielectrics at 1=180W/(m K). All
named dielectrics are used in electronic devices when it is necessary to ensure high
thermal conductivity of the dielectric substrate [4].

In the majority of dielectrics, the phonon thermal conductivity at normal temper-
ature is tens of times smaller than the electronic thermal conductivity of metal. For
example, sodium chloride crystal (NaCl) shows 4 =6 W/(m K), crystalline quartz is
characterized by 4=14W/(m K), while the thermal conductivity of quartz glass
(fused silica) is only A=1W/(m K).

However, the highest values among solids (the largest coefficient of thermal con-
ductivity at normal temperature) is not a metal, but a dielectric—the diamond: at a
temperature of 300K, it has 1> 1000 W/(m K). This feature is explained by peculiar-
ities of vibrations of the diamond lattice (very large Debye temperature). A detailed
examination of lattice thermal conductivity needs more careful investigations of
phonon processes, although the basic experimental facts are as follows:

1. Similar to the diamond (C), compounds of light elements AIN, BeO, or MgO are
characterized by high thermal conductivity because they have a relatively low
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FIG. 3.9

Temperature dependence of thermal conductivity in crystals: 1—germanium, 2—silicon, and
3—quartz.
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atomic mass and increased elasticity modulus. These factors lead to high-velocity
elastic wave propagation that determines increased thermal conductivity by
phonon mechanism.

2. Glasses and quasiamorphous materials have low thermal conductivity as
compared with their crystalline modifications, because elastic waves propagate
more poorly in disordered structures than in structures of high regularity.

3. The increase in temperature results in the reduction of thermal conductivity in all
crystalline solids because it leads to an increase in the intensity of chaotic thermal
vibrations in the crystal lattice that scatters elastic waves.

Mechanisms of lattice thermal conductivity. The thermal energy of a solid body
mainly consists of elastic vibrations of its particles. For long waves (whose length
significantly exceeds the lattice constant), the propagation velocity equals the sound
velocity; therefore it has the order of magnitude of a few kilometers per second.'

For short elastic waves (heat waves), the velocity of propagation in crystal is sig-
nificantly reduced, although in absolute terms it would still be considerable if one
would assume the “ideal conditions” for propagation of thermal vibrations. How-
ever, the thermal resistance in most real dielectric crystals is large. Debye attributed
this discrepancy to the scattering of thermal waves. Much of the energy in the ther-
mal wave spectrum falls on waves whose length is comparable with the magnitude of
interatomic distances. The smaller the wavelength, the stronger the wave scattering
by static defects (inhomogeneous structure), which are caused by impurities, mosaic
structure, and mechanical deformations.

Ordinary (long) sound waves propagate in solids without noticeable scattering,
because their length is much greater than that of the atomic and microscopic struc-
tural defects (sound waves reflect only from the surface of a body). Thus, for ordinary
acoustic wavelengths, solids are a good transparent medium, whereas waves that cor-
respond to a high-frequency range (in particular, the range of thermal fluctuations)
are intensely scattered by irregularities of structure of microscopic and atomic scales,
whose number in actual crystals increases with a decrease in the scale of defects.
Therefore crystals that are well transparent for long elastic waves prove to be a turbid
medium in case of short elastic waves, which have a strong diffuse-type scattering.
This reduces the effective velocity of short-wave propagation, just as particle colli-
sions reduce the rate of diffusion in gases, although the absolute velocity of the trans-
lational motion of particles can remain significant.

However, only this scattering of thermal waves on the static structural defects
(and their reflections from the crystal surface) cannot explain the large thermal resis-
tance in dielectrics. At normal and elevated temperatures, the main dissipation of

!Note. Usually, the velocity of sound v, in solids is measured with the sample placed between two pie-
zoelectric elements—one is an ultrasonic emitter and the other is a receiver of the transmitted signal. As
arule, vgoung = 4-6 km/s and depends on crystal orientation. Sound velocity in quartz, for example, is
5 km/s; in silicon it is 9 km/s; and in germanium vy = 5 km/s. In diamond, longitudinal sound wave
velocity reaches 18 km/s.
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heat occurs on the dynamic inhomogeneities of the crystal and is caused by thermal
movement. In other words, there is mutual scattering of thermal waves by thermal
vibrations—phonons.

The excited state of the crystal lattice is traditionally described by the existence of
the “ideal” phonon gas. Therefore the results obtained in the kinetic theory of gases
can be used for heat conductivity as:

1 1
,1:5(:01:3@27.

where C is the specific heat, v is the average velocity of particles, / is the mean free
path (before collision with another particle), and 7 is the free path time.

Phonons are often compared with gas. However, in contrast to gas, wherein the
number of molecules is constant in time (because molecules cannot pass through ves-
sel walls), phonons may both appear and disappear on the sample surface. Thus pho-
nons can be either reflected from surfaces of a sample or absorbed (or emitted) on its
faces, transferring its energy to the environment.

In harmonic approximation, the thermal chaotic motion of elastic waves means
that phonons propagate without interaction; therefore the principle of linear super-
position of fields is applicable. Elastic waves are associated with elastic shifts of par-
ticles that have to move independent of each other. Therefore, in harmonic
approximation, the thermal expansion of crystals cannot exist (¢ =0) and thermal
resistance in an ideally infinite crystal should be absent (R,=0, i.e., A — o0). The
heat flux in a crystal in the absence of the interaction of phonons is similar (in
the context of a gas) to the convective-type heat transfer that passes through a cyl-
inder open at both ends.

To take into account the possibility of power redistribution between different waves,
and the possibility of establishing thermal equilibrium in the crystal, it is necessary to
assume the anharmonicity, that is, the nonlinearity in thermal vibrations of atoms. Thus
the assumption of direct proportionality between particle displacement and the force that
tends to return the particle to equilibrium is unfair (Hooke’s law is not valid).

Thus, in case of phonon collisions, anharmonicity should obviously be taken into
account. Two mechanisms of phonon collisions are considered: normal processes
(N-processes) and flip-over processes (U-processes). The normal process of phonon
scattering means there are such collisions of phonons when the initial and final qua-
simomenta of phonons are equal. During the collision of two phonons, a new phonon
can be formed with preservation of total energy and total quasimomentum. Thus the
direction of heat transfer is preserved and therefore thermal resistance does
not occur.

Thermal resistance (incurring significant limitation of heat transfer) is due to
another scattering mechanism—a flip-over process—when the initial and final qua-
simomenta after a collision of phonons differ by the nonzero vector of the reciprocal
lattice. During such collisions, the energy is preserved, but the assumption of qua-
simomentum conservation becomes specific—due to the change in the direction
of phonon movement. These so-called U-processes are the cause of the thermal resis-
tance of crystals.
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However, at low temperatures, the normal scattering process is particularly pro-
nounced; therefore the lower the temperature, the larger the lattice thermal conduc-
tivity. The effect of low temperatures with the assumption of quasimomentum
conservation is sometimes expressed by the assertion that, at sufficiently low tem-
peratures (when dominant scattering processes are normal processes), the lattice
thermal conductivity tends to infinity.

With a temperature decrease, the number of phonons that can participate in the flip-
over process decreases exponentially. Fig. 3.10 shows the typical experimental depen-
dence of thermal conductivity on temperature for pure dielectric crystals of different
sizes. Below temperatures of approximately 15K, thermal conductivity is limited by
elastic wave scattering on the surface of the crystal; therefore the larger the cross-
section of a sample, the higher is its thermal conductivity. However, at very low tem-
peratures A(T), dependence is attributable solely to specific heat, which is proportional
to T° and therefore thermal conductivity vanishes with decrease in temperature. As the
temperature increases to more than approximately 15K, the effect of U-processes
becomes noticeable, and thermal conductivity, after peaking, begins to decrease.

The maximum A(T") occurs when the average free path of phonon-phonon scat-
tering becomes comparable with the average free path of scattering on the surface.
On further temperature increase, thermal conductivity rapidly (exponentially)
decreases, because the probability of phonon-phonon scattering increases rapidly.
The higher the probability of scattering of individual phonons (which contribute
to the heat flux), the greater is the number of phonons, and therefore the relaxation
time decreases with increase in temperature.

Furthermore, because specific heat at increased temperatures is almost indepen-
dent of temperature (Dulong-Petit law), it is expected that thermal conductivity at a
higher temperature range will decrease with a temperature increase. This fact has been

A

200
100
50

20
10

Thermal conductivity (W/cm'K)
N

0.05
0.02

1 2 6 10 15 20
Temperature (K)

FIG. 3.10

Low-temperature lattice heat transfer of LiF pure crystals of different countermeasures, mm?:
1-8x6; 24 x4; 3-2x2; and 4-1 x 1.
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confirmed by many experiments: thermal conductivity above a temperature of approx-
imately 100K decreases with increasing temperature according to a power law:

A~ 1T,

where 1 <x < 8. The uncertainty of the degree of this empirical law depends on the
competition between different processes of phonon scattering.

Thus the temperature dependence of thermal conductivity in the wide tempera-
ture range can be briefly described as follows. In case of very low temperatures, the
thermal conductivity is limited by temperature-independent scattering processes,
caused by the geometry of the sample and the purity of the crystal. Therefore, when
temperature increases, thermal conductivity increases in proportion to 7°, in accor-
dance with specific heat dependence. This increase occurs until the temperature
reaches a limit at which flip-over processes (U-processes) become so intense that
the average free path of thermal waves becomes small. Here, thermal conductivity
reaches a maximum and then starts to fall off rapidly, exponentially, at first, due to
the increasing probability of flip-over processes with increasing temperature. Then,
this sharp (exponential) decrease of thermal conductivity is replaced by a slower
decrease due to the fact that, at increased temperatures, there are a very large number
of phonons that can participate by U-processes.

SUMMARY

1. The thermal properties of materials are attributable to the internal energy of
the lattice (formed by atoms, ions, and electrons), and these properties are
specific heat, thermal expansion, and thermal conductivity. Potential energy is
a part of the energy of the system or body that depends on the positions of
particles with respect to external force fields. In solids, the sources of
potential energy are Coulomb forces that cause attraction of opposite-sign
charges and repulsion of same-sign charges. Kinetic energy is the energy
of motion in solids that appears due to continuous oscillations of atoms
(or ions) caused by thermal excitations.

2. An important thermodynamic function is enthalpy (heat content), which
characterizes the energy state of a system or material. Enthalpy increases
with increasing temperature. Another thermodynamic function of great
importance is entropy, a measure of the internal disorder (chaos) in system.
Thermodynamic function, termed the Helmholtz free energy, is minimum in
the equilibrium state of a system that corresponds to a certain volume and
temperature.

3. The thermal expansion coefficient is a characteristic feature of the internal
connections of atoms, ions, or molecules and depends on the energy of
these bonds. This energy is largely determined by such fundamental
parameters of the crystal as its melting point. In cubic crystals (which include
most metals and many semiconductors), thermal expansion is an isotropic
parameter; however, in anisotropic crystals (e.g., pyroelectrics, piezoelectrics,
magnetics) thermal expansion has a pronounced anisotropic character.
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Heat capacity (and closely related to it specific heat) is the ability to store
thermal energy in a material when it is heated. Numerically, specific heat is the
energy that must be entered into a unit volume of material to heat it up by 1°.
Heat capacity depends on temperature; near zero Kelvin, it is extremely small
and then increases as T’ 3; however, in the range of normal and elevated
temperatures, specific heat varies only slightly with temperature change. Any
jump in specific heat is associated with crystal restructuring.

Several theories of specific heat in a lattice are considered. The first is the law
of heat capacity constancy (Dulong-Petit law), derived from classic ideas and,
with some accuracy, valid at normal and higher temperatures. Einstein’s
quantum theory of heat capacity was the first successful attempt to use
quantum laws to describe the low-temperature dependence of heat capacity.
Debye’s theory of heat capacity is based on the model of connected oscillators
and shows better agreement with low-temperature experiments than Einstein’s
theory. Born’s theory of lattice dynamics is the most perfect description of
crystal lattice dynamics that also includes the theory of heat capacity.

Heat capacity depends on the motion of atoms, but atoms in a crystal are
not isolated from each other. Therefore each atom cannot oscillate
independently, but moves together with adjacent atoms; therefore, when
excited, the elastic wave propagates in a crystal. In addition, each wave is
characterized by certain wave vector k and has a frequency w. Thus this
wave can be represented by the oscillator that oscillates with frequency w(k).
Such an oscillator model represents the elementary form of motion of atoms
in a crystal. Although the motion of each oscillator is elementary, it
involves many atoms of a solid. Ideally, each oscillator exists independently.
Therefore the energy of vibrational motions of atoms is a sum of energies
of individual oscillators.

If one relies on the positions of classic mechanics, the value of oscillator
energy could be anything: the greater the vibration amplitude, the higher the
energy U. However, in quantum mechanics, the energy of the oscillator can
assume only discrete values: U="rhw (n+Y%2), n=0, 1, 2, 3, .... The quantum
properties of oscillators should be considered only for microscopic objects
because, when studying the movement of a macroscopic body, it is not
necessary to consider the discontinuity of energy levels as permissible
energy levels are located so close that their discreteness can be neglected.

In the gas of classic particles, the average energy of each particle equals
3/2kgT, where T is the temperature and kp is the Boltzmann constant. A solid
can be represented as a “vessel filled with oscillators” while energy of any
oscillator equals the sum of kinetic and potential energies (that, on average,
equals). The energy of each oscillator, according to laws of conventional
physics, equals kgT. This makes it possible to determine whether one can use
the formulas of conventional mechanics or would it be necessary to involve
quantum physics. The difference between the energy levels of oscillator hw



120 CHAPTER 3 Thermal properties of solids

should be compared with thermal energy kgT. At normal temperatures,
kgT> haw; consequently, the applicability of conventional mechanics is
obvious, and it can be used in normal and high-temperature studies of solids.

9. The physical quantity /iwp is Debye’s energy. This equates to thermal
energy kpT at a certain temperature, called the Debye’s temperature, denoted
by 6p. Thus fiwp =kgbp; therefore 8y =hwp/kp. Important characteristics
for crystals include Debye’s frequency wp="2nvp and Debye temperature dp
that are interconnected by fundamental constants: Planck constant # and
Boltzmann constant kg.

10. In most solids, Debye temperature does not exceed “normal” temperature
(usually, 8p < 300K). Therefore almost all solids at normal conditions
(300K) do not exhibit quantum characteristics. However, there are some
exceptions, which are very interesting for applications (e.g., diamond,
aluminum nitride, beryllium oxide, magnesium oxide), when Debye’s
temperature is large (>1000K). Such crystals, being dielectrics, nevertheless
have considerable thermal conductivity under normal conditions and,
consequently, they are very important as substrates in electronics. At low
temperatures, the main contribution to the vibrational energy of a crystal is
produced by acoustic waves. The energy of the corresponding oscillators
is small; therefore mostly they are easily excited.

11. Thermal conductivity determines the ability to transfer thermal energy through
matter. Heat transfer is due to the thermal motion of structural particles of
matter (molecules, atoms, and electrons). Heat spreads from more heated parts
of the material to less heated parts. Heat transfer can occur in bodies with
nonuniform distribution of temperature, whereby mechanisms of heat transfer
are dependent on the physical state of a crystal. Thermal conductivity is
characterized by coefficient A, which is numerically equal to the heat flow that
passes through a unit area at a temperature difference of 1K.

REFERENCES

[1] K.A. Putilov, Thermodynamics, Nauka, Moscow, 1971.

[2] R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford Uni-
versity Press, Oxford, UK, 2004.

[3] C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, New York, 1976.

[4] Y.M. Poplavko, Physics of Active Dielectrics, Lambert Academic Publishing,
Saarbrucken, 2015.

[5] J.F. Nye, Physical Properties of Crystals, Oxford Press, Bristol, 1957.

[6] A.V. Shubnikov, Selected Works on Crystallography, Nauka, Moscow, 1975, p. 551.

[7] L.H. Van Vlack, Elements of Materials Science for Engineers, sixth ed., Addison-Wesley
Publishing Company, Massachusetts, 1989.

[8] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford,
1988.


http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0010
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0015
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0015
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0020
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0025
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0025
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0030
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0035
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0040
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0040
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0045
http://refhub.elsevier.com/B978-0-12-815780-0.00003-7/rf0045

CHAPTER

Quasiparticles in solids

CONTENTS

4.1 Different Elementary Movements in Solids .......ccccocccveemmiiriicciccerree e 121
4.2 Quasiparticle StatiStiCs ..........cccrrecrririscrrrnssrr e 125
L 1 10 1 - SR 128
R 1 ] T+ S 131
4.5 MAGNONS .....oeeeeerrrrisassssnmererresssssssmnreereesssssasnsneseesasssssnnnsssnsssssssnnnseessssssssnnnnnnnnes 141
4.6 Electrons in Atoms and in Crystals .........cccccccmmiiiiiccismmnn e 145
4.7 Electrons in Metals, Dielectrics, and Semiconductors ............ccccceeemeneiiiireenennanes 154
LR I 1111111 1 SR 160
20T T T 1 =TSN 164

DIFFERENT ELEMENTARY MOVEMENTS IN SOLIDS

A solid is characterized by strength, hardness, and rigidity that seemingly exclude the
possibility of any internal movement. However, there are many different types of
microscopic motions and displacements in solids.

Firstly, the movement of structural defects is possible—through the displacement
of interstitial atoms, dislocations, and vacancies (see Section 1.5). The energy of a
crystal is increased in the vicinity of defects so that defects can move (very slowly) in
order to find an energetically more favorable configuration.

Secondly, diffusion transfer is another type of motion of atoms or ions in solids.
This mechanism is the result of thermal fluctuations: the kinetic energy of some par-
ticles due to fluctuations can increase such that the particle can overcome a potential
barrier that separates one particle from another; this displacement disrupts the equi-
librium of the neighboring particle. In most crystals, the probability of such processes
at a temperature close to 300K is small, but it increases significantly when approach-
ing the melting point of the crystal. According to this, diffusion is a classic example
of the motion of atoms in solids [1].

Thirdly, electrons can move in solids, and their movement alone determines
many electrical and magnetic properties of a matter. It is obvious that cations and
anions show directional movement in a crystal in case of ionic conductivity. Com-
pared with the high velocity of electrons, the velocity of ions is very slow; thus in
investigations of electronic motion, ions or atoms can be considered as immobile
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particles (adiabatic approximation). The accuracy of this approximation is deter-
mined by the parameter (m,/M)">*—the ratio of electron mass m, to the mass of
ion M [2].

However, elementary movements in solids are not limited by the listed mecha-
nisms. To explain the very diverse characteristics of solids, it should be imagined that
there are some other (“hidden”) dynamic changes that resemble the properties of
other aggregate states of matter—quasiparticles—which can behave as a gas (vibra-
tions of atoms in the lattice), as a quantum fluid (electrons in metal), and even as
electron-hole plasma (in semiconductors at certain conditions).

Formally, quantum (wave) mechanics describe microscopic objects only mathe-
matically and, certainly, any conventional model of quasiparticles is inadequate [3].
However, quantum mechanics allows retention of the idea of quasiparticles as some
mobile “clusters” within the crystal; moreover, they might be described by the over-
all picture of waves that appear as “wave clots” or “wave packets” (Fig. 4.1).

For example, the free movement of electrons in a crystal can be imagined as the
spreading of a wave packet (Fig. 4.1B). The actual electron might be located at any
point within this packet and the probability of finding the electron in any definite
point is close to zero. In Fig. 4.1, the wave amplitude describes only a probability
of finding a particle at some point; more precisely, this probability is proportional
to the square of the amplitude of a wave. This simple model only promotes the under-
standing that moving quasiparticle is accompanied by a wave.

The quasiparticle might be interpreted both as collective motions of some particles
in solids and as local vibrations of the atomic group in a crystal lattice. Although this

(A)
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FIG. 4.1
Wave packet: one-dimensional (A) and two-dimensional (B) representation.




4.1 Different elementary movements in solids 123

oscillation involves many atoms, this movement nonetheless has an atomic scale,
because the average energy of each oscillation (phonons) is approximately kgT.
Another example of collective motion is the electronic excitation of atoms or
molecules that, for example, arises when the crystal lattice absorbs photons. This col-
lective excitation is not localized within a particular cell of the crystal, but moves
from cell to cell in the form of the exciton. The average energy of excitons has
the same order of magnitude as the energy of the excited state of individual atoms.
There are some phenomena in solids that involve several quasiparticles. For a
description of magnetic properties in ordered magnetics, magnons are used with
the assumption that the magnon is the quantum fluctuation of electronic spins [4].
The electrical charge transfer is described mostly by electrons (in dielectrics—by
the polarons), whereas heat transfer is attributed to phonons, electrons, and magnons.
In accordance with classic laws, the average energy of thermal motion of particles
equals kgT and, therefore, the internal heat in a solid is E ~ NkgT, where N is the num-
ber of particles. However, with decreasing temperature, this simple linear depen-
dence of energy on temperature E(T) is violated, because the internal energy of
solids tends to become zero much faster than would occur linearly (see
Section 2.7). This fact can be explained by the discrete (quantum) nature of the
energy spectrum of solids. Thus, with decreasing temperature, a part of the collective
excitations of atoms (or ions) freezes out. This process is initiated near Debye tem-
perature (usually, 200-300K); however, in some crystals, the nonlinearity in E(T)
dependence is observed at much higher temperatures. The greater the difference
between energy levels, the higher the temperature of freezing out of appropriate
motion. Therefore quantum motion in solids may occur at different temperatures.
With the exception of electrons, phonons, excitons, and magnons, the quanta of elec-
tromagnetic field—photons—can be excited and may spread in solid dielectrics and
semiconductors.
In summary, it can be concluded that:

» Materials consist of three kinds of elementary particles: electrons, protons, and
neutrons. Quasiparticles represent the convenient theoretical model of solids that
is used to explain the majority of crystals properties; it is obvious that
quasiparticles can exist only inside a solid.

* Movements in solids might be very complicated; thus some simple classic motion
in solids exists as transfer of structural defects, diffusion of atoms and ions, and
movement of electrons. However, only these cases are insufficient to describe the
electrical and thermal properties of solids, because more complicated collective
movements need to be considered. This is precisely the motivation for the concept
of quasiparticles and collective excitations. Thus the complicated motion of
actual particles in solid can be artificially described by the simple motion of
imagined quasiparticles, which behave more like noninteracting particles.

+ Strictly stated, elementary excitations might be regarded as “quasiparticles” if
they are fermions, and as “collective excitation” if they are bosons. However, in
further discussions, both are united under the term “quasiparticle” without any
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precise distinction. For example, the free electron is a particle with definite value
of weight (rest mass), but in a crystal it behaves as if it has another “effective
mass” because it is affected by the environment; in both cases, the electron
always is the fermion. Another example is the phonon that characterizes
oscillatory motions of neighboring atoms in a crystal; it is the collective
excitation in a lattice because it has no “rest mass,” being the boson.
Quasiparticles are a mathematical tool for simplifying the description of many
properties of solids. Instead of an inconceivable difficult account of “how a large
number of electrons and atoms moves in a specific coordinated way,” the
simplified concept of quasiparticles is used.

In most solids, elementary excitations (quasiparticles) are treated as free
(independent) but, in reality, they are only very close to being understood as
independent. In many cases, it is necessary to take into account their interaction,
for example, when explaining the electrical resistivity by electron scattering on
phonons or the thermal resistivity by phonon-phonon scattering.

Using the concept of “quasiparticles/collective excitations,” it is possible to deal
only with a handful of somewhat-independent elementary excitations, instead of
analyzing interactions of a very large amount of particles in solids (~10**cm ).
Therefore, this is a very effective approach to simplify many-body problems in
quantum mechanics.

The electron in solids is a quasiparticle because it is affected by forces and
interactions. The “quasiparticle-electron” has the same charge and same spin as
“elementary particle-electron,” and both are fermions. However, in a crystal, the
mass of the “quasiparticle-electron” can differ substantially from a normal
electron: it has an effective mass that might even be anisotropic.

The hole is a quasiparticle consisting of a lack of electron in a crystal cell; the hole
has the opposite sign of charge to the electron, has an effective mass, and belongs
to the classification of fermions. This concept is commonly used in the context of
empty states in the valence band of a semiconductor.

The exciton is a complex of an electron and a hole bound together.

The polaron is a quasiparticle that describes an electron interacting with
surrounding ions by local polarization of the dielectric; polarons have increased
effective mass and belong to the class fermions [5].

The phonon is a collective excitation associated with collective oscillation of
atoms (or ions) in a crystalline structure. It is a quantum of the elastic wave and
belongs to bosons, with a rest mass of zero.

The magnon is a collective excitation associated with electronic spin structure in
the ordered magnetic lattice. It is the quantum of a spin wave; its rest mass is zero;
and it belongs to the classification of bosons.

The photon inside a crystal is a quasiparticle because it is dependent on
interactions with material. In particular, a “photon-quasiparticle” has a modified
relation between energy and impulse (dispersion relation) that is described by the
index of refraction of the material.
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» The polariton is a special form of the photon in crystal, especially seen near its
resonance with the lattice vibrational mode. For example, an excited polariton is a
superposition of a photon on a photon.

» The plasmon is a collective excitation that is the quantum of plasma-type
oscillations (wherein electrons simultaneously oscillate with respect to the ionic
lattice).

QUASIPARTICLE STATISTICS

The fundamental law of statistical physics is the Gibbs distribution that determines
the probability of the microscopic state of a system that consists of a large number of
particles with specific values of position and momentum. If a large number of non-
interacting particles moves, the Maxwell-Boltzmann statistic is the determining
method of the physical system that describes its behavior according to laws of classic
mechanics.

In case of quantum system statistics, the energy distributions for fermions and
bosons have different peculiarities. In the event that particles, which are unlimited
in any state, constitute a special case of statistics, the Bose-Einstein distribution is
used and such particles are known as bosons. If particles are subjected to the Pauli
principle proclaiming that only one particle can exist in a certain state, this case cor-
responds to the Fermi-Dirac distribution and the particles are fermions. The macro-
scopic system that, at given temperature, is found in thermodynamic equilibrium has
such energy and other parameters that almost coincide with their mean values. At
high temperatures, when the probability of finding a particle in any state is much
smaller than one (because number of energy states is much bigger than the particles),
similar to the Fermi-Dirac distribution the Bose-Einstein distribution turns into the
classic Maxwell-Boltzmann distribution [6].

The Maxwell-Boltzmann distribution, which determines the probability n; of the
fact that the particle is found in a state with energy E; at temperature 7, is given by a
formula:

—Ex) [ksT
ny = W E/ksT

where  is the chemical potential, T is the temperature, and kg is the Boltzmann con-
stant, showing the relationship of temperature to energy. The Boltzmann constant is
the ratio of the universal gas constant R to the Avogadro number N,: kz=R/
N,=138x10"J/K.

Electrochemical potential is free energy that falls to one particle in a state of ther-
modynamic equilibrium with the environment. In turn, free energy is a part of the
total energy through which the system interacts with the environment. Statistical
thermodynamics determines electrochemical potential as p=(E—TS+PdV)/N,
where E is the total energy of the system, P is the pressure, V is the volume, § is
the entropy, and N is the number of particles in the system. The Boltzmann
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distribution is valid only in cases when 71, < 1. In solids, this condition can be real-
ized at normal and higher temperatures.

In classic statistics, the particles of an ideal gas have only kinetic energy. The
number of particles, whose impulses are found in the interval of (p, p+dp), is deter-
mined by the formula:

N >
dn,, = e 72T dp dp,dp., 4.1)

B V(ZTtrrzlch)3/2
where m is the particle’s mass, V is the volume, and N is the number of particles in a
system. When this formula is written in terms of velocities, it becomes the Maxwell
distribution:

N m \*? 2 /2mkyT
dny =— s dy dvydy., 4.2
Ty (271’/(3T) ¢ Px e “-2)
Fig. 4.2A shows the distribution of particles by velocities according to Maxwell-
Boltzmann statistics; the dotted curve corresponds to a higher temperature.
When charged particles are the ideal gas located in the gradient of an external
field with potential U(r), free energy changes. In this case, the Boltzmann distribu-
tion is dependent on coordinate r and density n, of the particles:

n(r) =nge V0T 4.3)

Formulas similar to Eq. (4.3) are valid in semiconductors and dielectrics to determine
the distribution of charge carrier density (electrons or holes) in the electrical field. If
free energy has components of both kinetic and potential energy, the electrochemical
potential should be introduced in the Maxwell-Boltzmann formula as: u — U(r).
Quantum statistics explores systems that consist of a large number of particles
that obey the laws of quantum mechanics. The main purpose of quantum statistics is
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FIG. 4.2

Comparison of classic (A) and quantum (B) distribution of particle by velocities, A—
distribution of gas molecules according to Maxwell-Boltzmann statistics; B—quantum Fermi-
Dirac distribution for electronic gas in metal; the dashed line corresponds to low, and the solid
line to elevated, temperature.
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to find the distribution function of particles in a system by various parameters—
coordinates, momentums, energy, and so on—as well as to provide calculations
of the average values of parameters, characterizing the macroscopic state of the
whole system of particles. This system is degenerate if its properties are quite dif-
ferent from that of the classic system. The behavior of both Bose and Fermi gas of
quasiparticles differs from that of the classic gas because they are degenerate gases.

The degeneration of gas of quasiparticles is significant when the temperature is
rather low (phonons in crystals) as well as in the event of very high densities (elec-
trons in metals). The temperature of degeneracy is 8p, below which quantum prop-
erties manifest themselves. In case of T > 6p, the behavior of particles is described
by classic laws [7].

Quantum statistics is based on the principle of identity (i.e., the principle of indis-
tinguishability) of microparticles: for example, all electrons in metal do not differ
from each other. Besides, the Pauli principle should be applied for fermions: in each
quantum state, only one particle can exists. The function of full distribution N(E)dE
is introduced, reflecting the number of particles, which have energies in the interval
from E to E + dE. This function is served as a product of the number of states g(E)dE
and the distribution function f(F) attributable to the energy interval dE:

N(E)dE=f(E)g(E)dE. (4.4)

The distribution function f(E) determines the probability of filling states by particles,
attributable to the energy interval dE, that is, the average number of particles that are
in this state. Therefore, to find a full distribution function, the functions g(E)dE and
Sf(E) should be calculated. Depending on wave function symmetry, all elementary
particles are divided into two classes:

+ particles with half-integral spin = fermions;
+ particles with an integral spin = bosons.

Fermions and bosons show differing behavior toward microstates: in any cell (i.e., in
each quantum state), no more than one fermion with a definite set of quantum num-
bers can exist, whereas the number of bosons with the same parameters may be
arbitrary.

Fermi-Dirac statistics for ideal gas of fermions (Fermi gas) is described by a
function of energy distribution as:

f(E)={exp[(E—u)/kgT]+1}"". 4.5)

The electrochemical potential y determines the change of internal energy in a system
when one particle is added, under the assumption that all other parameters (that affect
internal energy) are fixed. According to function (4.5), the probability that the par-
ticle is in state with energy E =y equals 2. As any probability must be positive, the
value of the electrochemical potential y is always less than the energy E of the ground
state of quasiparticles.

In their main state, fermions occupy the lowest possible energy levels. The impo-
sition of the Pauli principle results in all of the lowest levels of the fermions being



128

CHAPTER 4 Quasiparticles in solids

occupied at zero temperature (when ground state would be realized). Thus the high-
est occupied level is the Fermi level, and the distribution function has a stepped form
(Fig. 4.2B). When the temperature increases, the probability emerges that some fer-
mions of the system may have energy greater than the energy of the Fermi level.
Therefore the probability that the Fermi energy level is free is nonzero.

Bose-Einstein statistics describe the ideal gas of bosons (the Bose gas of quasi-
particles). The “quantum particle-boson” differs from particles of classic physics
because it cannot be distinguished (again, the principle of particle indistinguishabil-
ity is valid). In addition, the wave function of bosons is always symmetric as to par-
ticle permutations. The energy distribution of bosons follows from Gibbs canonical
distribution (but with a variable number of particles), presuming that the number of
identical bosons in a given quantum state can be arbitrary:

(N(E)) =f(E) = {exp(E ) /ksT] — 1} . (4.6)
This function is Bose-Einstein distribution, which determines the probability of the
quantum-mechanical many-boson system that exists in a single quantum state. The
application of Bose-Einstein statistics makes it possible to explain the specific heat
temperature dependence of solids at low temperatures (see Section 2.7, Debye’s tem-
perature). A consequence of quantum Bose-Einstein statistics at low temperatures is
the ability to exist in a system as a special phase of matter consisting of bosons—the
Bose condensate.
The value of the electrochemical potential u can be found in a condition when the
sum Y (N(E)) is the total number of particles in a system:

> (N(E)) =N.

If expression exp[(E — u)/kgT] > 1, both the Bose-Einstein and the Fermi-Dirac dis-
tributions turn into the classic Maxwell-Boltzmann distribution:

(N(E))=Aexp(—E/kgT), 4.7)

where A =exp(u/kgT). Thus, at high temperatures, the “quantum gas” of quasiparti-
cles behaves as a classic gas.

From bosons statistics, it follows that bosons tend to collectivization—to gather
(to condense) in one state. This property of bosons is the basis of quantum light gen-
erators (lasers), and it is the cause of such physical phenomena as superconductivity
and superfluidity (in quantum liquids). Moreover, Bose-Einstein statistics enable an
explanation of electromagnetic radiation when it is found at thermal equilibrium with
a body. Precisely, the application of this statistic explains the radiation of a black-
body. Besides this, the quanta of light—photons—are examples of Bose particles.

PHOTONS

When developing the theory of external photoelectric effect, Einstein showed that
light is not only emitted and absorbed by the quanta, but also is a stream of peculiar
particles (photons) that extend with a discrete portion of energy hv, where v is the
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light frequency. Based on the idea of the quantum nature of light, Einstein explained
not only photoelectric effect but also many other phenomena that cannot be
explained in terms of the previous electromagnetic theory of light.

The duality in the nature of light was established much before the wave proper-
ties of electrons were discovered. The first idea of a relatively corpuscular (discrete)
structure of light was proposed because it was consistent with experimental facts.
However, discussion among scientists continued for a long time between supporters
of the corpuscular theory of light and proponents of the wave theory of light. Finally,
using wave theory, a rectilinear propagation of light and laws of refraction and reflec-
tion were explained. After the development of electromagnetism theory, doubts
about the wave nature of light disappeared [3].

However, the only possible explanation of the law of “black-body” radiation
(and explanation of the photoelectric effect) can be explained on the basis of corpus-
cular properties of light: it can be considered as photons—unusual particles with no
rest mass. It can be shown that Coulomb’s law (a relatively slow decrease of elec-
trical interaction with distance) owes to the zero rest mass of a photon.

It is known that the electrostatic (Coulomb) interaction of charged particles
causes a very large force (as compared, e.g., to gravitational interaction). Consider
the interaction between charged particles ¢; and ¢,. If the second particle would be
removed to “infinity,” the first particle will create an electrical field, which
has potential @ that is proportional to g,/r. If one would bring the removed particle
g» to distance r, then a force will act proportionally to ¢,¢./r* and be directed
from ¢, (if electrical charges have the same sign), or to ¢, (if charges have the oppo-
site sign). In the theory of electricity, the concept of potential is introduced.
The existence of an electrical field (gradient of potential) indicates that the point
where the electrical charge is located has a peculiarity. It was precisely to explain
the fundamental interactions of electrical charges that the concept of the electrical
field was introduced, in order to avoid the idea of “long-range interaction”
(i.e., immediate power effect on a distance), which is contrary to the relativistic
theory.

In classic physics, charged particles interact by a scheme:

particle — electromagnetic field — particle.
The corresponding quantum scheme is as follows:
particle — photon — particle.

Therefore a charged particle, during its movement, creates a photon, which can be
absorbed by another particle, and this determines strength of particle interaction
[4]. Thus it should be taken into account that a photon, having an electromagnetic
nature, is electrically and magnetically a neutral particle.

Furthermore, it is interesting to note that Coulomb’s law (when the force of inter-
action of charges is inversely proportional to the square of the distance between
charged particles) is a consequence of the fact that the mass of a photon is zero
(m,=0). Precisely because the rest mass of the photon is zero, it has light velocity
in vacuum.
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The photon, being an electromagnetic wave, also demonstrates duality, similarly
as an electron demonstrates the particle-wave dualism. The corpuscular character-
istic of any object is its impulse, whereas the characteristic property of the wave is the
wave vector. They are related by the de Broglie ratio,

p=hk, (4.8)

which can be written inversely as: ik =p. The corpuscular properties of electromag-
netic waves become apparent, for example, when a wave with frequency @ cannot
have energy less than Aiw (in contrast, according to classic concepts, wave energy is
proportional to the square of its amplitude and can be arbitrarily small).

The spin of a photon is an integer value that equates to unity because photons
(unlike electron) belong to the class of Bose particles (bosons). It should be noted
that the photon can be found only in one of two spin states: +1 and —1. These
two states of the photon means the right and the left circular polarization of a wave,
respectively; this is important for understanding many electro-optical, acousto-
optical, and magneto-optical effects.

Thus the peculiarities of the photon are zero mass, and speed c equals the speed of
light. The greater the energy of a photon, the greater its momentum p, that is, the
smaller the length of the electromagnetic wave A, inasmuch as the impulse is
p=hk=2zh/A. The dispersion law of photon, that is, the relationship between its
energy and impulse, is expressed by the simple formula

E=cp.

In Section 2 and Fig. 2.17, this dispersion law is shown in another form—as the /in-
ear dependence of angular frequency w= E/h on the wave number k =p/h. This lin-
ear dependence of E( p) is quite different from the E(p) dependence for particles that
have a determined rest mass (m # 0) and quadratic dispersion law: E=p?/2m. How-
ever, from the relativistic formula for energy Ezzczp2+m2c4, one can see that, in
case of a very large value of impulse (i.e., when p > mc) any quasiparticle can show
linear dependence “energy—impulse”: E = cp.

Furthermore, it should be noted that technologies using ultrahigh frequencies and
waveguides can convert electromagnetic waves (in this case, microwaves) into
“slower waves.” Thus the “microwave photon” really obeys the general law of dis-
persion: Aw? =E + ¢*p?, where E is the energy of the “rest photon” that is inversely
proportional to the square of the waveguide with radius R (in circular waveguide).
This allows the introduction of the concept of the “heavyweight photon” m* = gh?/
R?c? that provides additional proof of the corpuscular properties of photons.

When photons penetrate into transparent media (dielectric), their velocity v is
reduced in proportion to the refractive index n: v =c/n (this is equivalent to a
corresponding reduction of the light wavelength in a crystal). At optical frequen-
cies (~1015Hz), movement in dielectric photons excites valence electrons in the
lattice. Below the optical range (the far-infrared frequency range, v < 10'°Hz),
photons excite optical phonons and can move in a mixed photon-phonon state
(polariton).
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Therefore the photon is an elementary particle, usually designated by the symbol
7, its rest mass is 0, its spin is even (+1); it has no charge, and it obeys the Bose-
Einstein statistic. The photon is a quantum of light (as well as all other forms of
electromagnetic radiation). Because the photon has zero rest mass, it allows long-
distance interactions. The photon exhibits wave-particle duality, demonstrating
properties as a wave and as a particle.

PHONONS

The local microscopic vibrations in the crystal lattice—phonons—are likened by
analogy with photons. Unlike electrons and atomic nuclei, phonons are not real par-
ticles but only quasiparticles (“like particles”)—convenient objects used to describe
many electrical, magnetic, thermal, optical, and mechanical properties of a crystal.
The crystal itself, in this case, can be considered a medium for the dissemination,
interaction, and transformation of the “gas of quasiparticles.”

Phonons have already been mentioned earlier in connection with Debye’s theory
of heat capacity. Further on, the highly simplified lattice-dynamics Born’s theory is
considered, which constitutes the foundation of crystal physics [8]. This theory, as set
out in Section 3.3 when describing Debye’s and Einstein’s theories, also explains the
temperature dependence of specific heat at low temperatures by cubic law (C~T°).
However, in addition, this theory makes it possible to link lattice vibrations (pho-
nons) not only with the thermal properties of crystals, but also with electrical and
magnetic properties—electrical conductivity, electrical polarization, energy losses,
and electrical breakdown—which are important for electronics as well as to explain
the magnetic properties of ferromagnetic crystals, phase transitions in crystals, and
so on. Therefore, some aspects of Born’s dynamics theory are discussed across dif-
ferent chapters of this book.

Further, in simplified form, only the basic ideas of Born’s theory, which
describe lattice vibrations (phonons), are presented. In Fig. 4.3, not a single oscil-
lator is considered, as was done in Chapter 3 with Fig. 3.6; however, the model of
the one-dimensional monoatomic crystal is depicted in the form of a linear chain of
elastically coupled atoms that are in equilibrium under forces of attraction and
repulsion. It is believed that potential relief, describing the position of each atom,
is a parabolic well; therefore oscillations of atoms can be described by a harmonic
oscillator model.

Firstly, it is assumed that the mass of atoms in a one-dimensional chain is the
same and they are not charged (this corresponds to a homeopolar or molecular crys-
tal). For simplicity, it is assumed that elastic displacements (oscillations) are possible
only along the longitudinal axis of a chain, and the interaction is taken into account
only between the nearest neighboring atoms.

In contrast to the previously discussed oscillator with “fixed bearing” (Fig. 3.6),
in the model shown in Fig. 4.3A, the displacement of each atom influences displace-
ments of two neighboring atoms; therefore the wave of displacements should spread
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FIG. 4.3

Elastic waves in a one-dimensional atomic crystal: (A) chain of elastically coupled atoms;
(B) longitudinal elastic wave; (C) wave's dispersion in first Brillouin zone; (D) transversal
acoustic wave; (E) longitudinal acoustic waves; and (F) dispersion law (“branches” of
acoustic waves).

through the entire one-dimensional chain as an elastic wave (Fig. 4.3B). This peri-
odic process (in space and in time) can be described by the equation

x=xp exp [i(wf — kx)], 4.9)

where @ =2z/T is the circular frequency that characterizes wave periodicity in time,
whereas k=2z/] is the wave vector modulus, characterizing the spatial periodicity
of a wave.

The phase velocity of such a wave process x =x( cos(wt — kx) is determined by
the ratio vy, = A/T = w/k, whereas the group velocity that describes the propagating
of energy is determined by the ratio v,, =dw/dk. The feature of elastic wave prop-
agation in a discrete chain of atoms is the impossibility of propagation of such a
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wave, which has a length less than 2a: no physical barrier exists between atoms. The
correspondent dispersion relation that describes the connection between frequency @
and wave number k (in other words, the relationship of elastic oscillation energy
E=ho to quasi-impulse p="rk) is given by the expression:

w:i2\/zsink—a. (4.10)
m 2

This dependence is shown in Fig. 4.3C in the range of the wave vector in interval
—rja < k <+r/a. The positive value of k corresponds to waves propagating in
the positive x-direction, whereas negative k corresponds to waves moving in the neg-
ative x-direction. The restriction of a wave vector space by an interval (— z/a...+7x/a)
is due to the discreteness of the oscillating system (in which no waves with length less
than 2a are possible). The indicated range of the wave vector values is the first
Brillouin zone.

If the displacements of atoms are perpendicular to the direction of wave propa-
gation, that is, x L k (Fig. 4.3D), the transverse wave will spread. These waves have
the same dispersion law as longitudinal waves, but their frequency is lower. The
maximal frequencies of longitudinal and transverse waves are located on the bound-
ary of the Brillouin zone: @y =2 %, wr = 2\/%, where ¢; and cr are the stretching
and bending elasticity, respectively. In most crystals, these frequencies are located in
the range of 10'°~10'*Hz. The cutoff frequency of elastic oscillations of atoms in a
crystal is the Debye frequency.

In case of small-wave vectors, that is, in the long-wave approximation, when
k — 0 and 1 — oo (near the center of the Brillouin zone) sin(ka/2) — ka/2, the phase
velocity of waves is almost equal to their group velocity; consequently, spatial dis-
persion is practically absent:

vph =w/k =av/c/m=dw/dk = Vgr.
In the event of large values of wave vectors k (short-wave approximation, near the
boundary of the Brillouin zone), these velocities vary considerably. This means that
spatial dispersion takes place on the boundary of zone v, — 0.

It is important in crystal physics and some applications that the elastic displace-
ments of atoms determine the propagation of sound waves; therefore vy, corresponds
to sound (or ultrasound) wave velocity. Those crystal oscillation modes that are char-
acterized by the dispersion law (4.10) are acoustic modes. Acoustic waves in Fig. 4.3
are denoted as: LA—Tlongitudinal acoustic wave and TA—transverse acoustic wave.
The quantization of elastic waves is associated with concept of quasiparticles—
longitudinal and transverse phonons. Thus wave packets of elastic oscillations in
the crystal lattice are phonons by analogy with photons—the quanta of
electromagnetic waves.

Curves LA and TA (in Fig. 4.3F) correspond to branches of phonon modes in the
first Brillouin zone, and they show the relationship between the frequency @ and
wavelength A = 2z/k in a crystal. Monochromatic acoustic waves can be excited
in crystals experimentally, for instance, by a piezoelectric vibrator. However, in a
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crystal at any nonzero temperature, many chaotic acoustic waves exist (with wide
distribution of their frequencies and wave vectors); these phonons represent the ther-
mal reservoir of the crystal lattice [9].

As mentioned earlier, the maximal frequency of acoustic phonons is located on
the boundary of the Brillouin zone; according to Born’s model, this frequency wg is
less than wp—the maximal frequency in Debye’s model (Fig. 4.4A). In addition, for
both models as a phase, the group velocities are characterized by dispersion
(Fig. 4.4B). Thus group velocity is zero at the boundary of the Brillouin zone,
whereas phase velocity is minimal.

Acoustic vibrations of atomic lattices are “electrically inactive” (but only in cen-
trosymmetric crystals), because elastic displacements in this case occur with an elec-
trically neutral (uncharged) center of mass of the unit cell. Accordingly, at acoustic
oscillations, any electrical polarization does not arise (if the crystal is nonpolar).

The electrically active components are not acoustic but are optical phonons. In
the simplest model of monoatomic crystal (considered in connection with Figs. 4.3
and 4.4), the elementary cell consists of only one atom; therefore optical phonons are
absent: the simplest one-atomic (or one-molecule) crystal holds only acoustic (lon-
gitudinal and transverse) phonons.

However, in more complicated structures of crystals (when the unit cell contains
two or more atoms), the displacement of particles within a unit cell occurs. Due to the
very high elastic forces when there are such “counter” displacements, the frequency
of these movements lies in the optical range (more precisely—in the far infrared part
of the optical range) [9]. Coordinated in many neighboring elementary cells, these
“internal” oscillations are optical phonons.
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FIG. 4.4

Phonon characteristics in a one-dimensional chain of atoms in Born’s model:

(A) branches w(k) for waves propagating in positive (k>0) and negative (k<0)
directions, in comparison with the dotted line that shows w(k) for Debye’s model; and
(B) dependence of phase and group velocities on wave number.
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Fig. 4.5 shows a one-dimensional model of the simplest ionic crystal—a linear
chain of cations and anions with the unit cell lattice parameter a. In this model, as in a
model shown before (see Fig. 4.3), the acoustic vibrations LA and TA exist.

However, together with these another type of phonons appears, namely, the opti-
cal phonons. In case of longitudinal optical waves (LO), the displacement of ions is
parallel to the direction of wave propagation, that is, x || k (Fig. 4.5B). If displace-
ments of ions are perpendicular to the direction of wave propagation, that is, x L &,
the waves are transverse (TO; Fig. 4.5C). These waves have a similar dispersion law
as for longitudinal waves, but their frequencies are lower (Fig. 4.5D; because the
bending elasticity is less than the stretching-compression elasticity). In this model,
the acoustic oscillations LA and TA also exist, but are not shown in Fig. 4.5.

Unlike acoustic frequencies, in case of optical oscillation modes (LO and TO) the
spatial dispersion is the obvious characteristic in the whole Brillouin zone
(Fig. 4.5D). In this case, ionic oscillations are determined by the elastic force acting
between neighboring ions, and therefore their frequency is not strongly dependent on
the wavelength. The frequency of optical oscillations always corresponds to the far-
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FIG. 4.5

Elastic waves in the one-dimensional ionic crystal: (A) chain of elastically bound ions;
(B) longitudinal optical wave; (C) transverse optical wave; (D) dispersion law (“branches”) of
optical and acoustic waves; and (E) frequency dispersion of dielectric permittivity.
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infrared optical range (10'>~10'*Hz). When the wave vector is reduced (k — 0 that
means 4 — o), frequencies of the optical branches LO and TO do not decrease (as in
the case of acoustic phonons); moreover, these frequencies even increase up to the
limits of w; o and w7o.

In the range of the far-infrared spectrum, the dispersion of the crystal dielectric
permittivity should be seen: at first, e(@) increases and then, at frequency wyo, per-
mittivity falls sharply to negative values (Fig. 4.5E) that correspond to the model of
the oscillator:

Eir
1—(w/wr0)*
The resonant frequency of this oscillator is w7¢ (the frequency of transverse optical
phonons), whereas the longitudinal optical frequency w; o corresponds to e(w; ) =0
(Fig. 4.5E).

To describe optical-range vibrations by oscillator, besides the ion inertia force
m(d*x/d¢*) and the elastic returning force cx, it is necessary to consider the electrical
force of ionic interaction gF, where ¢ is the charge and F is the microscopic Lorentz
field:

e(w) =¢eop + 4.11)

m(d*x/df*) = —cx+qF.

In the polarized environment, the molecular Lorentz field differs from the average
macroscopic field E: F=E + P/(3¢y). In case of transverse optical oscillations, the
vector of elastic displacement is perpendicular to the direction of wave propagation
(x L k); therefore, on average, the macroscopic field E=0, because adjacent
“combs” of polarization waves are different in their polarity (Fig. 4.6A). Conse-
quently, in Eq. (4.11), written for the transverse mode, it is necessary to make a sub-
stitution: F —3' P. Polarization, as usual, can be expressed in terms of induced
dipoles that have a density N and dipole moment p =gx, so P=Ngx. As a result,
the oscillator’s equation takes the form

d? N¢?
m—x + (c——q)xzo,

where the intrinsic frequency of the oscillator that corresponds to the frequency of
transverse optical phonons is
1 N
W7o =— (C 1 > (4.12)

m 3 =)

Thus the Lorentz field F reduces the elastic constraint and accordingly decreases the
oscillator frequency wo=(c/m)"? to the frequency of transverse optical phonons,
that is, promotes “softening” of vibrations (reducing frequency w, of oscillator fre-
quency: wro < [5]. This event is associated with the polarization of the “short-
circuited” crystal, when D =P (because D=¢oE + P and E=0).

In case of longitudinal oscillations, the local Lorentz field is significantly differ-
ent (Fig. 4.6B) because the electrical field E is directed opposite to polarization P:
g0l =—P. In the macroscopic theory of polarization, this case corresponds to the
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Lattice elastic waves and dispersion in a one-dimensional model of ionic crystal.

“open-circuited” crystal with induction D =¢¢E + P =0. Taking into account the
Lorentz field in Eq. (4.11), it is possible to obtain for longitudinal waves:

Fop P _ P P _ 2P
o 360_ & 380_ 380.

The corresponding equation of the oscillator, taking into consideration P =Ngx,
acquires the following form:
d’x OV
m—+|(c+-—|x=0.
dr? 3eg

The intrinsic frequency of the oscillator, which corresponds to the longitudinal vibra-

tions, is
1 2Ng?
2
=—|c+ . 4.13
YLo = (C 3ep ) (4.13)

Therefore the frequency of the oscillator that characterizes longitudinal optical
vibrations in the polarized medium is higher than the frequency of the isolated oscil-
lator (wy= (c/m)l/z). These results, obtained in Egs. (4.12), (4.13), explain the loca-
tion of phonon branches: LO lies over TO, as well as the location of two characteristic
frequencies w; o and wro (Fig. 4.6C).

The dielectric permittivity of ionic crystals depends on a difference in the fre-
quencies of longitudinal and transverse optical oscillations w; o and @y in the center
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of the Brillouin zone. The equation that describes far-infrared polarization of ionic
crystals maintains the frequency of transverse optical phonons in its long-wave limit:

€(0) — &(o0)

o\
=)
aro

with the corresponding dielectric contribution of ionic polarization being

e(w)=¢(c0) +

Nq2 qu
£(0) —e(o0) = coma? = NG (4.14)
o ._

380

This equation implies that the stronger the ionic polarization influences the dielectric
properties of crystals, the higher ionic charge ¢ and the less elastic the coupling coef-
ficient of ions, ¢ [5].

Eq. (4.14) allows quantitative calculation of the infrared contribution to permit-
tivity. Indeed, the concentration of ions N can be found according to the density of a
crystal: m is the reduced mass of oscillating ions, ¢ is the ionic charge, and @y, is the
frequency of “residual” rays (determined experimentally by infrared wave reflec-
tions from the surface of the studied crystal). The coefficient c that describes the elas-
tic coupling of ions can be calculated from macroscopic elastic properties.

For example, experimental data on phonon dispersion in a simple two-ion crystal
Nal are shown in Fig. 4.7A. These data are compared with dispersion in the diatomic
crystal diamond (Fig. 4.7B). It is noteworthy that, in the ionic crystal of sodium
iodide in the center of the Brillouin zone (¢=0), frequencies of longitudinal and
transverse optical modes are different, w; o > wro, whereas, in case of a diatomic
crystal, they are the same: w; o= wro.

Comparison of heat capacity in the theories of Einstein and Debye shows that the
Debye approximation better describes temperature dependence of specific heat C(T),
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FIG. 4.7

Dependence of phonon frequency on wave vector in direction [100] for the two-ionic crystal
Nal (A) and diatomic crystal diamond (B); g= ka/x, the normalized wave vector.
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especially at low temperatures (see Chapter 3). This can be explained by taking into
account that the atomic spectrum of atomic oscillations in crystals consists of optical
and acoustic branches. It is obvious that Einstein’s theory describes exactly the opti-
cal branches of crystal oscillations, wherein frequency dependence on the tempera-
ture is observed only in a narrow interval of wave vectors (in contrast to acoustic
oscillations) [7]. In addition, in case of low temperatures, mainly acoustic phonons
are excited as in the spectrum satisfactorily described in Debye’s theory.

It should be noted that, even at low temperatures, there are enough phonons in
crystals: for example, at a temperature close to one-tenth of Debye’s temperatures
(20-50K), 1cm® of the crystal contains approximately 10°° phonons (recall that
1 cm® accommodates ~10% atoms). As the temperature increases, the concentration
of phonons increases hundreds of times with a simultaneous increase of their average
energy.

Elastic waves in crystals are more diverse and complex, as compared to those in
other environments. In gas (e.g., in air) or in liquid, only fluctuations of density (or
pressure) are possible, that is, only longitudinal sound waves can spread. However,
in solids, in addition to waves of density fluctuations, shear (transverse) waves can
move. In case of density waves, atoms oscillate along the wave vector k (longitudinal
waves), whereas in case of shear waves, atoms can also oscillate in a plane, perpen-
dicular to the wave vector k (transverse waves). Note that, in low-symmetry crystals,
two transverse waves are different.

In general, in a crystal, 3¢ types of oscillation modes can propagate, where ¢ is the
number of atoms (or ions) in the unit cell of the crystal [9]. For example, in the NaCl
crystal, a unit cell contains two ions (£ =2); therefore the 3 x 2=6 modes of elastic
waves can propagate, whereas in metallic sodium, where unit cell has only one atom
Na ({ =1), only three modes exist. Of the 3£ types of waves, three are acoustic waves.
A distinctive feature of these waves is that, in case of small-wave vectors (i.e., large
wavelengths), acoustic waves have a small frequency. At very small values of wave
vector k (when it goes to zero), the frequency of acoustic oscillation tends to zero.
The other (3£ — 3) types of waves are optical waves (they were first detected by opti-
cal methods of investigation). As mentioned earlier, the optical wave frequencies
w0 and w7 are maximal when the wave vector k is zero.

Each of the 3¢ dependences of the w;(k) type (j enumerates indexes: j=1,2, ...,
3¢) is a periodic function of the arguments. This periodicity is a manifestation of the
general properties of a crystal and reflects periodicity in the arrangement of atoms in
real space; this, furthermore, leads to a periodic arrangement of cells in the “inverse”
k-space (the dimension of k is [m™']). In summary, all considerations of crystal lat-
tice vibrations can be limited by only one unit cell in the first Brillouin’s zone.

Quantization of elastic waves corresponds to the concept of quasiparticles, which
are longitudinal and transverse collective displacements of lattice atoms. Knowledge
of the phonon spectra is necessary to analyze and calculate many physical properties of
solids—optical, thermal, electrical, and so on. In experiments, the dispersion curves of
longitudinal and transverse waves usually are determined in directions of highest sym-
metry. This information can be used to calculate the numerical density of states. A very
important step to interpret the spectra of oscillations is the analysis of critical points.
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An example of the density of states calculations of a spectrum is shown in Fig. 4.8
for aluminum [10]. The sharp maximum in the total dependence of states density
D(w) corresponds to the maximal frequency of certain types of phonons. In crystals
with complex many-atom lattices, the peculiarities in spectrum may also be associ-
ated with optical branches of vibrations.

When phonons are compared with real particles, it should be noted that the num-
ber of particles at their collisions remains unchanged, but the number of phonons at
collisions is not saved. However, the main difference between phonon collisions and
real particle collisions is that, during collision of phonons, the impulse is not
preserved.

Because the behavior of phonons determines the thermal properties of solids, in
investigations of heat capacity and heat conductivity it is possible to obtain informa-
tion about the main properties of phonons. The study of acoustic phonons at a low
value of pulse is a relatively simple procedure, as they are ordinary sound waves.
Experimental data concerning velocity and attenuation of sound in crystals make
it possible to obtain the characteristics of long-wave acoustic phonons. To study
long-wave optical phonons, investigation of resonant absorption of light by crystals
is used (where, upon falling on the crystal, a photon is converted into a phonon). As
the light velocity is very large, optical phonons are born with very small impulses.
Therefore, by optical research, experimental data can be obtained only for phonons
near the center of the Brillouin zone.

Nevertheless, a method of inelastic scattering of neutrons in crystals exists that
gives the most detailed spectrum of phonon branches. Flying through a crystal, a neu-
tron excites oscillations of atoms. Thus it might be said that the neutron generates
phonons. The larger the path of the neutron in a crystal, the greater the probability
of phonon generation. By an inelastic neutron scattering study, it is possible to
directly derive the law of phonon dispersion in the entire Brillouin zone.
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Oscillatory spectrum of aluminum: (A) phonons branches in Brillouin zone; (B) function D(w)
for longitudinal and transverse branches; and (C) total view of D(w) function.
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MAGNONS

Besides charge and mass, some elementary particles (electrons, protons, or neutrons)
are characterized by a spin that determines their magnetic properties (word spin
means “spindle” or “rotation”). Thus the particles cannot be imagined as “fixed
balls.” If classic concepts are applied, some particles may be represented as
“rotating balls.” However, the rate of this rotation cannot be changed, because what
is interpreted simplistically as a “rotation” is really an intrinsic property of the par-
ticle itself. An electron or proton cannot change the value of its spins nor the value of
their mass or their charge.

The classic idea of “spin” is an extreme simplification, and this concept contra-
dicts the theory of relativity. In fact, spin is not a consequence of spatial rotation, but
rather is a specific property of an elementary particle that determines, in particular,
its behavior in the “collective” of surrounding particles. In one kind of particles, spin
can only be integer-valued, whereas in others it can exactly be the half-integer value.
Zero spin refers to integer spin.

The magnitude of the spin is denoted by the letter s; a particle with spin s has an
angular impulse: [s(s+ 1)]"h. The electron has a spin equal to ¥2. Because the elec-
tron has an electrical charge e, it is the source of the electrical field. In connection
with its “rotation” (which, in classic physics, may conventionally be considered the
circular current), the electron is also the source of a magnetic field. Thus the particle
with spin Y2 and electrical charge e has a magnetic moment:

ug =eh/2me.

This value, which is called Bohr’s magneton for electron, is equal to approximately
10~ erg/Gs.

When discussing the magnetic properties of solids, it should be noted that the
magnetic moment of the electron is an unusual vector, because it can be oriented
in space only in two ways: lengthwise along the external magnetic field or against
it. Accordingly, the angular momentum of a particle can always be orientated by
a g=2s+ 1 manner; inasmuch as the electron’s spin is s =2, only two of these man-
ners are possible. Spins characterize not only elementary particles, but quasiparticles
as well. Photons and phonons are characterized by the integer spin (they are bosons);
bosons also include the magnons.

The magnon (spin wave) is a quasiparticle, introduced theoretically to describe
the system of collective excitations of interacting spins in the ordered magnetic crys-
tals (ferromagnetics, antiferromagnetics, and ferrimagnetics). As with thermal
motion, the magnetic field can influence the magnetic moments of electrons. How-
ever, in ferromagnetics, the localized single inverted spin cannot exist—this is pre-
vented by exchange interaction. Thus elementary excitations in ferromagnetics (as in
other magnetically ordered substances) are the inverted spins distributed in a certain
area of a crystal [4].
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These magnetic violations have the nature of waves that are characterized by a
certain wave vector k and frequency . Such violations are called spin waves (mag-
nons). They exist in ferromagnetics at any temperature that is lower than the Curie
temperature (and, in antiferromagnetics, below Neel temperature); thus the closer the
temperature is to phase transition, the greater the intensity of magnons.

A single magnon corresponds to the wave of precessing of neighboring spins. An
idealized picture of spins excitation in a one-dimensional crystal is shown in Fig. 4.9.
The model of an upturned spin among other oriented spins (Fig. 4.9B) is less likely
because such a situation requires significant energy cost. There would be much smal-
ler energy needs if all spins are predominantly directed in parallel (Fig. 4.11C).
Therefore, this is a more realistic model according to which the ends of the spin vec-
tor precesses on the surface of the cone, whereas each subsequent spin is shifted in
phase as with the previous spin (the angle between them remains constant).

This wave is formed due to a strong exchange interaction between atoms; as a
result, the deviation in the magnetic moment of atoms from their equilibrium position
is not localized, but is distributed along a chain. A spin wave may occur, mainly, in
magnetically ordered solids—ferromagnetics, antiferromagnetics, and ferrimag-
netics. Thus, in crystals with multiple submagnetic lattices (i.e., in antiferromag-
netics), there can exist several types of magnons with different energy spectra [9].

Fig. 4.10 shows a more detailed model of a magnon—a spin wave whose struc-
ture resembles the wave of an acoustic phonon (shown in Fig. 4.3). A series of atoms
is shown, and the distance between them is the crystal lattice parameter. In magnetic
field H, all spins precess with frequency @, (homogeneous precession). In real sys-
tems, small oscillations of the magnetic moments of atoms are seen in the form of
waves with inhomogeneous precession.

It should be noted that magnons, being waves of electronic spin precession, differ
significantly from phonons, which are the elastic displacements of atoms. The dif-
ference is seen in the comparison of dispersion law for magnons and phonons: in the
dependence of energy E = fiw on impulse p = ik (or, equivalently, in the dependence
of frequency w =27/T on wave vector k =2x/1). For example, the dispersion law for
spin waves in a one-dimensional model of magnons is expressed as follows: @ = 8JS/
h sinz(ka/Z), where J is an exchange integral; S is the spin moment; and a is the
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FIG. 4.9

Different ideas about spin waves in a one-dimensional lattice with parameter a: (A) classical
scheme of the ground state of a simple ferromagnetic—all spins are parallel and directed in
one direction; (B) the simplest idea of an excited magnetic state, an inverted spin; and

(C) spin wave in ferromagnetics.
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A spin wave in a linear series of spins: (A) series of spins shown from side; (B) series of spins
shown from above (a wave is shown as a line that runs through the end of spin vectors).
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The law of dispersion for spin waves in a one-dimensional ferromagnetic: (A) theoretical
calculation; and (B) magnon spectrum measured in alloy Cog goFeq os.

crystal lattices parameter. Graphically, this dispersion of magnons is shown in
Fig. 4.11A. As shown earlier, for long-wave acoustic phonons (k — 0), their fre-
quency is proportional to the wave number: @ ~ k. However, for long-wave magnons
(k — 0), the law of dispersion is parabolic: @~ k> This frequency dependence of
magnons is observed in experiments by using neutron scattering in magnetic envi-
ronments (Fig. 4.11B).

Thus, magnons characterize the movement of elementary magnetic moments in
the magnetic. Similarly as phonons, magnons are excited by the thermal motion of
atoms or ions. In addition, long-wave magnons can be excited by electromagnetic
fields of ultrahigh frequency. Magnons behave like weakly interacting quasiparti-
cles; they are characterized by integer spin (equal unity) and therefore obey Bose-
Einstein statistics. Calculations show that, at high temperatures, the concentration
of magnons in a ferromagnetic crystal can be significant. Their density in
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ferromagnetics g, proportionally increases with the temperature and depends on
their remoteness from the Curie point: ng, ~ (T/TC)3/2. In antiferromagnetics, this
dependence is different: 7, ~ (T/TN)3, where Ty is Neel point.

At very low temperatures (near absolute zero), a ferromagnetic reaches its lowest
energy state wherein all atomic spins are oriented in one direction. Therefore when
the temperature is lowered, magnons become frozen; thus near absolute zero mag-
nons should be practically absent (this effect of Bose-Einstein condensation is con-
firmed experimentally). The growth of the quantity of magnons is caused by a
temperature increase and thus magnons reduce the magnetic ordering in a crystal.

In antiferromagnetic the number of magnons is proportional to T° that reminds
Debye law for temperature dependence of phonon concentration (T*). However, in
the ferromagnetic concentration of magnons increases proportional to 7%, The point
is that increase of magnons quantity decreases spontaneous magnetization of ferro-
magnetic, in which connection change of magnetization is proportional to T°/*
(Bloch law). Correspondingly, dispersion law for magnons in the antiferromagnetics
differs from magnon dispersion law in the ferromagnetics, Fig. 4.12. In antiferro-
magnetics, the variance of magnons (k) is similar to the dispersion of phonons
(see Fig. 4.3C).

Therefore it is possible to describe the properties of ferromagnetics below Curie
point (as well as of antiferromagnetics, below the Neel point), assuming that spin
waves exist that can be represented by the nearly degenerate gas of magnons. The
electrochemical potential of this “gas” is zero, and therefore the number of magnons
is not saved. The Bose distribution function for magnon energy permits the calcula-
tion of the temperature dependence of magnetic thermodynamic properties (i.e.,
magnetization, heat capacity, magnetic susceptibility). The more accurate the result-
ing expressions, the closer the gas of magnons is to the ideal Bose gas. Deviations
from theory are the result of interactions of magnons with each other as well as their
interactions with other quasiparticles (phonons or electrons). As the temperature
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Spectrum of spin waves in antiferromagnetic RobMnF3, obtained by inelastic neutron
scattering.
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Temperature dependence of different contributions to the heat capacity of nickel: 1I—total

heat capacity; 2—lattice (phonons) heat capacity; and 3—electronic heat capacity.

increases, the number of quasiparticles grows, and therefore their interaction
becomes more significant than that of the “ideal gas of magnons.”

Representation of magnons allows the description of many properties of
magnetics—not only their thermodynamic (equilibrium) properties, but also their
kinetic and resonance properties. For example, magnons play a significant part in
the heat capacity of magnetics, together with phonons and electrons (Fig. 4.13).

It is appropriate to note that the concept of “spin waves” is broader than that of
“magnons.” Spin waves can exist in nonmagnetic metals as well; they represent spin-
density oscillations of conductive electrons due to energy exchange and interactions
between them. The existence of spin waves in nonmagnetic metals is found in elec-
tronic paramagnetic resonance.

ELECTRONS IN ATOMS AND IN CRYSTALS

The consideration of electronic states in crystals originated from the electronic spec-
tra of atoms. Atoms can be characterized by two complementary models: a spatial
model and an energy model. The spatial model of an atom reflects its volumetric
three-dimensional structure, and, within this structure, the location of electrons in
the atom is described by the probability density. Electrons that are distributed near
the nucleus form an electronic cloud. In the simplest case, this cloud is spherical (in a
hydrogen atom in the nonexcited state); however, in most cases, the electronic cloud
has a complex configuration.
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A conventional image of the external shape of an electronic cloud is known for its
different quantum states. Schrodinger’s equation provides an opportunity to under-
take a rigorous mathematical description of electronic clouds: their geometric fea-
tures in atoms and ions. However, sometimes, their visual representation is
impossible because it might be quite difficult to find the probability of electron dis-
tribution in a cloud. Therefore the model of Bohr—a simplified model—is often used
to describe the configuration of an atom. This model allows the atom to be repre-
sented as a central positively charged nucleus with electrons moving in their orbits
around it.

The number of electrons determines the position of the atom in Mendeleev’s peri-
odic table, and it is exactly equal to the number of protons in the nucleus of atom.
From experiments and theory, it is known that the radius of an atom equals a ~ 10 ®-
cm. Therefore the radius of the nucleus is estimated at a size of approximately
10~ "*cm, and is roughly the same as the size of an electron; thus the size of atoms
is 100,000 times greater than the size of their nucleus. Therefore, on the face of it, the
volume of an atom looks “empty”; however, in solid-state physics, the atom is usu-
ally represented by a solid ball, and this is a “good working” model. The fact here is
that this “ball” is “filled” by a very strong electromagnetic field [3].

Next, to simplify further consideration, the simplest atom is discussed, namely,
the hydrogen atom consisting of one proton and one electron. In this atom, the pos-
itively charged nucleus holds a negatively charged electron by the Coulomb force of
attraction:

2
Feou =€"/a,

where e is the electron’s charge (the proton has the same charge). To ensure the sta-
bility of the atom, the force of attraction must be balanced by the force of repulsion.
This force is the centrifugal force:

2
Feenir = mo /a,

where m is mass of electron and v is its velocity. The equality of Fcoy and Feengr
makes it possible to determine the velocity of an electron’s movement in its circular
orbit:

U:(ez/ma)l/z.

Both the charge ¢ and the mass m of an electron are fundamental constants. By
substituting the values of these constants in a given formula, it is possible to find
the velocity of the electron’s rotation in its orbit: v = 10® cm/s. In these calculations,
the relativistic effects are negligible because v/c ~ 1/300. However, if the atom has a
size close to that of its nucleus (10_13cm), the velocity of the electron’s rotation
would be close to the velocity of light (obviously, this is impossible).

The total energy of the electron in the field of the nucleus (sum of its kinetic and
potential energy) is:

E=—¢*/2a.
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The “minus sign” means that for zero energy electrons that have been sent an
“infinite” distance away from the nucleus should be considered (with decreasing dis-
tance, the energy decreases).

According to a simple model, the electron moves in an atom with a velocity
v &~ 10® cm/s in a circle; therefore the vector of velocity constantly changes its direc-
tion. It is reasonable to believe that Av = v, which means that the uncertainty of
velocity Ao is equal to the velocity. From the indeterminacy principle (i.e., the uncer-
tainty relation), it follows that Ax- Ap > Y5h. Taking into account that the impulse is
p=mv, the uncertainty in an electron’s coordinates is Ax > h/2mv. From the mass of
electron m ~ 10~% g, its velocity is ~10®cm/s and, using the Plank constant &, it is
possible to find the uncertainty of the electron’s location Ax > 10~ ®cm that exactly
corresponds to the size of the atom.

This means that the sphere of radius a represents the volume containing the elec-
tron; however, to clarify its position in this volume is impossible. The quantum inde-
terminacy principle (the Heisenberg principle) allows the estimation of the size of an
atom, namely, atomic radius is determined by the uncertainty of the orbital position
of electrons: a =~ Ax ~ h/mv. Using this expression for the orbital velocity of the
electron: v=(e*/ma)"?, it is possible to get:

a=ag=h>/me*.

Thus the atomic radius ag can be expressed through fundamental parameters: the
Planck constant f, the mass of electron m, and the charge of the electron e. This
radius approximately equals 0.5 x 10~®cm and it is the Bohr radius; it coincides with
the radius of the hydrogen atom in its ground state.

According to quantum mechanics, not all states are allowed but only states with
certain energy are permitted; thus there is one state (ground state) in which electron
does not radiate energy. In addition, besides the ground state with Bohr radius a,
there are a number of excited states; the emerging transitions between them result
in the emission (or absorption) of light quanta.

Inasmuch as the electronic waves in an atom propagate in three dimensions, it is
possible to depict them graphically through intersections (Fig. 4.14). A section shows
two types of permitted waves (a and b) in three quantum systems: an electron in a
hydrogen atom (/), a one-dimensional particle in limited space (2), and a quantum
oscillator (3) [3].

It is a fact that all electronic waves in an atom have “tails” that extend to large
distances (infinitely); Fig. 4.14(/) shows that the electron has a slight chance to
extend to a large distance, but it is most likely to have its location near the nucleus.
Thus the energy levels of an electron that correspond to its possible natural waves in a
hydrogen atom (Fig. 4.14 shows only two of them) can be placed in a series that con-
verges as shown in Fig. 4.15B.

Unlike energy levels in the quantum oscillator, in which the distance from each
other is always /v, the distance between an electron’s energy levels in an atom
decreases with the increase in energy [3]. Therefore by acquiring adequate energy,
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Waveform probabilities for two permitted states of electrons in atoms (1); for a particle that
moves in a straight line (2), and for a harmonic oscillator (3).
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The energy spectrum of the quantum oscillator and the hydrogen atom: (A) permitted energy
levels of the quantum oscillator; (B) permitted energy levels of the electron in the hydrogen
atom; and (C) correspondence to levels of permitted states (number of strokes).

an electron can finally leave the atom; next, its energy changes continuously, as is
shown at the top of Fig. 4.15B by a continuous energy spectrum. Exactly the state
at which an electron is found very far from its nucleus is selected as the “zero point”
of energy.

When the approach of each electron falls under the influence of the electromag-
netic field of adjacent electrons (without outside electromagnetic field), electrons
interact with each other as if they are two small interacting magnets. The Pauli prin-
ciple proclaims: if two electrons are in one of the stationary states (e.g., on a single
orbit), they cannot have spins oriented in one direction, but necessarily must orient
their spins in the opposite direction.
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In the helium atom, both electrons at normal conditions are authorized by a state
with the lowest energy. Because both of them are in the same state, their spins,
according to the Pauli principle, are opposed and form a complete s-shell
(Fig. 4.16A).

The lithium atom has three electrons; two of them choose a complete s-shell,
while third electron would also acquire a condition with minimal energy. However,
this case is prohibited by the Pauli principle, because the main (s-) state is already
fully occupied by two electrons with opposite spin directions. Therefore, the third
electron in the lithium atom reluctantly takes one of four following states, character-
ized by higher energy than the s-state (Fig. 4.16B).

Lithium starts a new row of elements in Mendeleev’s periodic table. The state that
takes the third electron is one of four possible levels in the electronic p-shell, follow-
ing the s-shell (Fig. 4.16B). Each item in this series can be filled by electrons, and
there might be eight electrons in the p-state district. They are all completely filled in
the neon atom (Fig. 4.16C): electrons occupy all four levels that are in the p-shell,
and each of them contains two electrons with spins in opposite directions [3].

The condition of electrons in atoms of a given element determines its physical
and chemical properties. For example, the chemically neutral inert gas argon has
18 electrons, but adding only one electron to a shell (and one proton to the nucleus)
transforms the inert argon atom into a chemically very active potassium atom.

Electrons in crystals. The energy model of a crystal is considered at the elemen-
tary level and in close connection with the previously explained concepts of the
energy spectrum of the atom (see Figs. 4.15 and 4.16). Without knowledge of the
main features of the energy spectrum of electrons in a crystal, it is impossible to
understand the principles of operation of microelectronic devices (most of which
are based on semiconductors).

The spectrum of electronic energy of a crystal is directly related to the energy
spectrum of atoms entering the crystal structure. Specific examples of energy band
formation as well as the creation of overlapping areas are considered further with a
relatively simple example—metallic sodium. The energy diagram of the sodium
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Electrons and their spins in atoms: (A) wave function for two electrons with opposite spins in
helium; (B) basic (£7 and E») levels in lithium atom (dotted line shows the next higher allowed
states); and (C) five levels in the atom of neon, occupied by electrons.
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atom with 11 orbital electrons (balancing the same number of positive charges in the
nucleus) is shown in Fig. 4.17. The first two electrons occupy the lowest level of
energy ls in the K-shell. Next, the third and fourth electrons occupy the lowest
energy level 2s (shell L), the fifth electron is located in the lowest remaining level
(shell Lyy), and so on. From Fig. 4.17, one may conclude that, on the third level, six
electrons are set. However, there are three levels that differ only by a little energy
(this is peculiar in atoms with a low atomic number); therefore, they cannot be
depicted with boundaries.

The correspondent energy levels for all 11 electrons are shown as characteristic of
the neutral atom of sodium. With the addition of each subsequent electron, the form
of the potential energy curve E, changes (Fig. 4.17), while location of energy levels
becomes different. Each outer electron can approach the atom with lower velocity
because it is subject to not only attraction from the nucleus, but also repulsion from
other, deeper electron shells.

At the highest occupied level M (Fig. 4.17), the nonexcited sodium atom has only
one valence electron (in the state 3s), and it is this electron which determines most of
the chemical, electrical, and optical properties of sodium. The remaining 10 electrons
are located so deep in the well of potential energy that they cannot participate in
chemical, electrical, or thermal processes.

In case of solid-state formation from individual atoms, the energy description in
the first approximation is necessary for constructing potential energy curves for a
series of atoms, located at a distance equal to the crystal lattice constant
(Fig. 4.18). Because atoms in the crystal lattice are located close to each other,
the potential curve between them cannot rise to the level E=0, as it happens in
an atom located outside the crystal (Fig. 4.17). The maxims of potential energy
between atoms cannot reach even the energy of a single valence electron of the atom.
Therefore, nothing prevents valence electrons (which originally belonged to the
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FIG. 4.17

Electron configuration in the sodium atom: the valence electron is located on level 3sin the My
shell; K, L, and M—designations of electron shells, £;—potential energy.
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One-dimensional energy model of a crystal: a is the interatomic distance; L is the overall size
of the crystal; A is the potential barrier that limits electron transition from one atom to its
neighbor; and B is the potential well.

atom) from leaving their atom and starting to move freely through a crystal under the
influence of heat or other impacts.

As shown in the simplified diagram in Fig. 4.18, valence electrons belong to the
whole crystal and have the same energy. At first glance, this contradicts the Pauli
principle. However, experiments show that the emission spectra of metal are not dis-
crete (as it is seen for atomic spectra), but they are continuous.

Thus discrete energy levels of atoms become split, and they form the band (or
zone) consisting of the same number of separated levels as there are atoms in the
crystal. It is expected that the crystal is characterized by as many energy bands as
the energy levels that have isolated an atom of substance (see Fig. 4.17). In this
example, in 1cm® of sodium crystal, the number of electronic levels in any band
equals 3 x 10%; therefore all valence electrons occupy different levels, but in the
same area 3s.

As can be seen from Fig. 4.19, the valence band holds N with narrowly located
energy levels; in accordance with Pauli principle, this band can accommodate 2N
electrons. Therefore, levels in the valence band are only half filled, because the sep-
arated sodium atom has only one valence electron. In addition, specifically for
sodium, the width of the highly placed bands corresponds to the number of 3s
and 3p levels that overlap each other. Therefore some electrons move out from
the 3s zone to lower levels of the 3p zone such that both zones are filled together
until the entire stock of electrons is exhausted (other energy bands, located above
areas that overlap, are not shown in Fig. 4.19 in order to simplify the figure). Thus
the valence band of sodium crystal is not fully occupied by electrons. The top energy
level, which in metals is occupied by electrons at temperatures 7=0, is the Fermi
level, Er [9].

The valence electrons of metal are not located near their individual atoms, but
move freely around a crystal similar to gas molecules in a certain vessel. This system
of electrons in metals is the electronic gas (or quantum electronic liquid). The Fermi
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Electronic energy spectra of system of N atoms of sodium (Na) depending on the distance
between them; CB, conduction band; VB, valence band; Er, Fermi level.

level in metal plays the same role for “electronic liquids” as the level of fluid in com-
municating vessels. If two crystals with different Fermi levels touch each other, elec-
trons will “flow” from one crystal to another until their Fermi levels are aligned.
A clearer definition of the Fermi level position is presented in thermodynamics.

If an electrical field is applied to a metal, electrons can easily change their energy
states, going from one level to another (located very close). Electrons, in addition to
their random thermal motion, move in opposite directions to the electrical field that
causes an electrical current. The monovalent metal sodium is the simplest case of the
location of electronic levels in the energy spectrum of metals. Sodium demonstrates a
purely electronic conductivity that is verified experimentally by Hall’s effect study
and by the definition of a sign of thermoelectromotive effect.

The electronic spectrum of copper is not as simple as that in sodium (however, it
is not as complicated as the spectra of some rare earth metals). However, as already in
the case of copper, the contribution to the conductivity is made not only by free elec-
trons, but also by electronic vacancies—holes. The energy diagram of a copper crys-
tal is shown in Fig. 4.20, where not only a band diagram with overlapping energy
levels, but also the formation of energy bands in case of individual atoms coming
into contact is shown.

The energy levels of Cu in Fig. 4.20B appear discrete and narrow. However, as
atoms converge, the interaction between electrons of outer shells begins and overall
energy levels become split, thereby creating the band. With subsequent convergence
of atoms, the splitting amplifies, and energy levels become deeper. When the intera-
tomic distance of copper becomes equal to the lattice constant a,, the bands 3d, 4s,
and 4p become so extended that they overlap with each other, as shown in
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Fig. 4.20A. Deeper energy bands (only the 3p level is shown) expand considerably
less. In case of the entirely separated copper atom, its energy levels are completely
filled up to the 3d level; on the 4s level (that can accommodate two electrons), only
one valence electron of each atom is located. In the copper crystal, the three top areas
are united and completed.

In the described cases, the valence band is found to be partially filled with elec-
trons (Na), or to have some overlapping energy bands with the formation of a broader
band of levels that remain partially unfilled (Cu). In metals that can be characterized
by the discussed energy diagrams, the electrons are free; therefore these materials are
good conductors of electrical current.

Thus the interaction of atoms in a solid significantly changes the electronic
energy spectrum. Highly located discrete energy levels of isolated atoms are changed
into wide energy bands (zones) when atoms are interconnected in a crystal. The
dependence of potential energy on coordinates U(x,y,z) radically changes: it becomes
periodic. The neighboring atoms of a crystal change each other’s potential such that it
turns into a periodical set of potential barriers and potential wells (Fig. 4.18). Fur-
thermore, the interaction between atoms causes changes in the initial position of dis-
crete quantum states and splits them into separate closely located energy bands. The
permitted band, in which valence electrons are located, is the valence band. In the
sodium crystal, this band is formed as a result of 3s-level splitting.

Consequently, during crystal lattice formation, all peculiar electronic levels for a
given type of atoms (as filled by electrons, or therefore unfilled) are displaced as a
result of the neighboring atoms’ influence on each other. Due to the convergence of
atoms, the electronic energy levels of individual atoms become separated into the
bands of energy levels of electrons.

Interatomic
distance

(A)
Lower levels l
(B) not shown

FIG. 4.20
Energy bands of copper overlapping (A) and splitting of energy levels in case of copper atoms

coming into contact (B); ag—Tlattice constant (bands are arbitrary shading, lower levels are
not shown).
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ELECTRONS IN METALS, DIELECTRICS,
AND SEMICONDUCTORS

The foregoing analysis of electron behavior in simple monatomic crystals opens a
possibility to draw a preliminary conclusion as to the cardinal types of solids.
The fact is that features of the energy electronic spectrum cause a large difference
in the electrical, optical, thermal, and mechanical properties of materials.

Metals and dielectrics, due to the fundamental distinction in the nature of their
atomic connections, differ significantly from each other in thermal and mechanical
properties*® as in their electrical and optical properties.

*Note. However, it should be noted that, very seldom, it is possible to encounter
crystals wherein the energy barrier between dielectric and metallic states is not large,
and these materials can exist in both states. Moreover, some solid materials undergo
phase transition of the “dielectric-metal” type. At these transitions, the conductivity
jumps by thousands and millions of times, and this property is used in electronic
devices [5].

Initially, it is better to compare electrical properties: conduction and polariza-
tion. The temperature dependences of conductivity ¢ in dielectrics and metals are
shown in the Introduction (Fig. 1.8). These dependencies are opposite: while in
dielectrics, ¢ increases with temperature according to the exponential law (because
thermal motion in a crystal generates new charge carriers), in metals, owing to the
charge carriers scattering on the thermal vibrations of the crystal lattice, conductivity
decreases approximately as 1/7.

Therefore when metal is cooled to a low temperature, its conductivity greatly
increases, tending to infinity (superconductors really have o =o0). In dielectrics,
on the contrary, o value is close to zero at very low temperatures, because free charge
carriers are not generated in dielectrics if the intensity of thermal motion is small
(and there is no radiation exposure). Similarly as in dielectrics, the conductivity
of semiconductors at low temperatures tends to be zero.

Electrical polarization (which is the most important phenomenon for dielectrics)
does not occur in metals due to the high concentration of free electrons, which form
an almost free “electronic gas” around positively charged ions. The electronic gas in
metals gives rise to an almost complete screening of the electrical field. Only at very
high frequencies, much higher than the frequency of visible light (i.e., >10'°Hz), the
electronic gas in metals demonstrates its sluggishness: it has no time to interact with
the extremely fast change of the electromagnetic field, and ¢ = 0. Thereby, it is pos-
sible to notice the polarization of deep electronic shells, which are located closer to
ion nuclei. Such polarization, occurring at frequencies higher than the optical range,
determines the specific permittivity in metals.

Comparing optical properties of metals and dielectrics, it should be noted that
free electrons in metals cause almost a complete reflection of electromagnetic waves
from the surface of metals, which explains their metallic shine. In contrast, electro-
magnetic waves of optical frequency can easily penetrate into dielectric substances,
and the majority of them are optically transparent (the color and opacity of some
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dielectrics are due to the presence of impurities that absorb or scatter light by their
inhomogeneous structure).

A significant discrepancy between dielectrics and semiconductors can be seen in
the frequency dependence of absorption of electromagnetic waves in these materials.
Dielectrics are transparent in their optical wavelength range: their fundamental
absorption is observed solely in the ultraviolet wavelength region. Only at a very
high frequency (10'®Hz) does the energy of photons exceed the bandgap in the elec-
tronic spectrum of a dielectric, whereby both photoconductivity and light absorption
appear. In semiconductors, the absorption and reflection of electromagnetic wave
start at approximately 10'* Hz (in the near-infrared region); however, semiconduc-
tors, unlike dielectrics, have good transparency in the far-infrared wavelength range.

The thermal properties of dielectrics and metals differ mainly in the value of
their thermal conductivity. The very high thermal conductivity of metals is due to
the participation of free electrons in heat transfer, whereas in solid dielectrics, heat
passes mainly through crystal lattice vibrations (phonons). The magnitude of the
thermal expansion and heat capacity of metals and dielectrics are not very different:
due to quantum effects, the specific heat of electronic gas in metals is very small as
compared with the specific heat conditioned by lattice vibrations.

With regard to mechanical properties, crystalline dielectrics are more fragile,
while metals are usually pliant. This is also due to the impact of free electrons on
the properties of metals, which crystallize in simple, densely packed lattices, where
the overwhelming strength of interaction is the metallic bond (other types of electri-
cal bonds between atoms in metals are shielded by free electrons). In contrast, dielec-
trics have complicated polyatomic structures with different physical natures of
interaction in their structural elements.

Several investigations of dielectrics and metals have shown that the main differ-
ences in their properties are conditioned by the presence of free electrons in metals
and the complicated atomic bonding in dielectrics. A more rigorous deduction of the
difference between the properties of metals and dielectrics is explained on the basis
of the energy-band theory.

The energy-band structure of electrons in crystalline dielectrics and metals is
qualitatively different. As atoms approach each other and form a crystal, many levels
of electronic energy appear. Due to the interaction of electrons, the splitting of
energy levels takes place, forming zones (bands; Figs. 4.19 and 4.20). This cleavage
occurs mainly in those energy levels that correspond to the outer (valence) electrons
as they have much stronger interactions with each other than electrons of the deep
shells of an atom. The type of electronic spectra of crystals depends on the peculiar-
ities of atomic wave functions and on the degree of overlap of those functions when
atoms approach each other during crystal formation.

In the theory of electronic energy spectra, the one-electron approximation is typ-
ically used: it is assumed that each electron moves in a force field of ions and elec-
trons, while individual (pair) interactions are not taken into account even between the
nearest neighboring electrons. The interactions are taken into account as a so-cold
middle field. In this case, the solution of Schrodinger’s Equation in the periodic
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potential of the crystal lattice is the Bloch function, and the eigenvalue spectrum of
electrons forms the energy bands (Figs. 4.19 and 4.20).

The number of levels in each band is determined by the number of atoms in the
lattice, thereby forming quasicontinuous energy bands. According to the Pauli prin-
ciple, only two electrons (with opposite spin values) can coexist in each level of a
zone; at T=0K, electrons occupy states with minimal energy in each energy band.

The electronic energy spectrum of crystals, that is, electron energy distribution in
permitted bands, is usually described in the quasimomentum space, that is, in the
reciprocal lattice. The dispersion law W(p) for free electrons is the dependence of
electron energy W from their momentum p = /ik, where £ is the wave number. In case
of free electrons, the function W(p) is a simple parabolic function:

e p?
T 2m 2m’

where m is the mass of the electron. Accounting for the periodic potential of the crys-
tal lattice (Bloch method) complicates this relationship, resulting in breaches of par-
abolic dependence W(p) in the area of the forbidden energy band (Fig. 4.21). The
function W(p) is continuous only in definite intervals of momentum space, namely,
in the Brillouin zones (the first zone corresponds to #/a < k < zr/a). During transition
from one to another Brillouin zone, this function is terminated.

The one-electron band theory with Bloch wave functions perfectly agrees with
and is justified in crystals with s- and p-electrons that have a big orbital space with
significant overlap. In crystals with d- and f-orbitals, this band theory might be
applied with caution.

T

FIG. 4.21

Splitting of energy levels of electrons of isolated atoms, energy band formation due to atom
convergence: CB, conduction band; EG, energy gap; VB, valence band; a, lattice constant; W,
electrons energy; r, distance between atoms.
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Electronic levels in spectra (filled levels are shaded): (A) “true” metal with odd number of
electrons in unit cell; (B) dielectric or semiconductor with gap AW between the valence band
and the conduction band; (C) metal with even number of electrons in the unit cell; and
(D) semimetal.

The energy-band structure of the electronic spectrum allows the construction of
models of different variants of electronic spectra of crystals. There are three main
cases:

1. Energy bands of the electronic spectrum do not overlap (Fig. 4.22A and B).

a. Crystals with an odd number of electrons per unit cell of crystal have an
upper energy band filled to exactly half (Fig. 4.22A). These crystals are
metals; in each energy level, two electrons can be placed (according to the
exclusions principle). Thus the energy band has 2N vacancies, half of which
is occupied by electrons: electrons occupy the lowest energy levels. In the
ground state (when T=0K), the boundary of filling that separates in the
impulse space that is the filled part from the unfilled part of the valence band
is the Fermi level F (in the three-dimensional model, F' corresponds to the
Fermi surface). If 7> 0K, the boundary of the Fermi surface becomes
smeared as a result of thermal perturbations (phonons), and part of the
electrons goes on to levels above F (therefore some levels below F are
released). Because the distance between the levels in band is extremely small
(~10"*eV), even a very small external electric field can increase the
energy of electrons and cause electrical conduction in metals (limited only
by electrons scattering due to lattice vibrations). With decreasing
temperature, the conductivity of metals increases: if temperature T — 0,
then conductivity ¢ — oo.

b. Crystals with an even number of electrons per unit cell are dielectrics or
semiconductors (Fig. 4.22B). In the ground state (at 7=0K), their energy
bands are completely filled or empty. Therefore the electrical field cannot
change the energy of electrons in the filled bands (because all levels are
filled), while in the empty bands there are no charge carriers. Consequently,
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if the temperature is critically reduced (T — 0 K) in dielectrics or
semiconductors, conductivity is absent (¢ — 0). The upper filled band
(valence) and the nearest empty band (conduction band) are separated by the
energy gap AW (forbidden band; Fig. 4.22B).

In crystals with energy gaps, the Fermi surface in the electronic spectrum
is absent; however, in the middle of a gap (when there are no impurities and
local levels), there exists the Fermi level F (Fig. 4.22B). To excite electrical
conductivity in these crystals by thermal vibrations or by other factors, it is
required that the valence band is partially released from electrons (holes
mechanism of electrical conductivity) or that the conduction band is
partially filled by electrons (electronic conductivity mechanism).

2. Bands of electronic spectrum overlap (Fig. 4.22C and D).

Such crystals, similar with even or odd numbers of electrons per lattice site,
are referred to as metals. Significant overlap of two bands (Fig. 4.22C) results in a
situation that is not very different from the case shown in Fig. 4.22A. In the event
of a small overlap of bands, the crystals belong to the class semimetals
(Fig. 4.22D). The Fermi surface for semimetals has discontinuities, and their
conductivity by several orders of magnitude is lower than the conductivity of
metals. For example, in the semimetal bismuth, the number of filled states in a
conduction band is 10* times smaller than in conventional metals, and,
consequently, bismuth shows much lower conductivity. Other examples of
semimetals are antimony and graphite.

3. Bands of energy spectrum are in a contact without overlapping.

Crystals of this rare class are gapless semiconductors. The Fermi surface of
such semiconductors is a line or a point in the impulse space (whereas, in
semiconductors, such a surface does not exist and, in semimetals, this surface has
discontinuities). In the semimetal under the influence of an electrical field,
electrons move within their area, but the lower density of states reduces their
mobility. In the gapless semiconductor, electrons relatively easily (as compared
with conventional semiconductor) come into the conduction band, but the
dynamic properties of charge carriers in these materials are significantly
modified.

Therefore crystals that, in the ground state, have no partially filled bands belong to
the class of dielectrics or semiconductors. Metals and semimetals, in contrast, are
characterized by an electron spectrum with partially filled bands.

A comparison of the electronic spectra of metals, semimetals, semiconductors,
and dielectrics is shown in (Fig. 4.23), which demonstrates the energy spectra of
electrons in these materials. In metals, there is no energy gap between the valence
and conduction bands; therefore electrons can easily change their energy, moving
from level to level; thus they are free. Electrons in metal are not localized—they
belong to the entire crystal and do not form spatially directed bonds between ions.
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In all other crystals, most of the electrons are, to some extent, localized. In semi-
metals, however, excitation energy is almost zero; therefore, even at temperature
T — 0K, mobile electrons exist and can provide essential conductivity. However,
some electrons in semimetals are localized between atoms and form spatially
directed linkages.

Valence electrons in semiconductors (which are mainly covalent crystals) form
the directed orbitals to link atoms, and their excitation energy (energy gap AW) usu-
ally exceeds the thermal energy (AW >kpT). However, in semiconductors, this
energy gap is smaller than the energy of visible light (AW <3eV).

Valence electrons in dielectrics (which are predominantly ionic and molecular crys-
tals) are localized much stronger than in semiconductors. Thus they are localized not at
the bonds between atoms (as in the case of semiconductors) but near individual mole-
cules or anions. The binding energy of electrons in dielectrics far exceeds not only their
thermal energy (AW >> kgT), but also the energy of the visible light quantum: AW > fv.
Therefore the probability of electron excitation in dielectrics by thermal motion and
even by light is very small. Moreover, the small curvature of the band frontiers in the
vicinity of their extremes in dielectrics (Fig. 4.23A) gives rise to increased effective
masses of charge carriers, which result in the low mobility of electrons.
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Comparison of energy bands: (A) dielectric, (B) semiconductor, (C) semimetal, and
(D) metal. CB, conduction band; VB, valence band; EG, energy gap.
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Dielectrics and semiconductors are qualitatively similar: they both have an
energy gap in the spectrum of their electronic states. However, in semiconductors,
this band gap is much smaller. Therefore the conductivity in semiconductors takes
a wide interval, separating the value of conductivity of metals and dielectrics. For
example, pure lead at temperature 300K has a conductivity 6 =35 x 10°S/m whereas
in pure germanium conductivity is 6 =2.5 S/m. That is, the conductivity of semicon-
ductors is approximately a million times lower than the conductivity of metals, but
the conductivity of semiconductors is greater than in insulators.

In semiconductors, the o(T") dependence can acquire a “metallic character” only
in exceptional cases and in a narrow temperature range; in general, the temperature
dependence of conductivity in semiconductors and dielectrics is similar. The width
of the energy gap of germanium is 0.72¢V, in silicon it is 1.12eV, while in the dia-
mond (a dielectric of the same crystal structure as silicon and germanium), the energy
gap is approximately 5eV. If the band gap AW < 3eV, the crystal can be regarded as
a semiconductor, while with larger values of AW, it is a dielectric.

The qualitative difference in the band gap and conductivity results in significant
differences between the optical, magnetic, and electrical properties of dielectrics and
semiconductors. In the visible optical range, dielectrics are light transparent and only
a few reflect light, while semiconductors have an almost metallic reflection but a dull
sheen. The reason for this lies in the fact that the narrow energy gap of semiconduc-
tors allows light quanta with energy of approximately 2.5eV to excite free electrons,
which results in light reflection. In dielectrics, such reflection is possible only in the
eye-invisible ultraviolet part of the spectrum.

The covalent crystals of semiconductors (e.g., silicon), however, in contrast to
ionic dielectrics, have good transparency in the infrared region of the spectrum,
as the energy of photons of this frequency (10'>~10'* Hz) is insufficient to excite free
electrons. Therefore in the far-infrared electronic devices, silicon and germanium
can be used as a transparent material for optical elements (lenses). Consequently,
typical silicon and germanium semiconductors in the far-infrared range play the role
of “perfect dielectrics.” However, glasses and ionic crystals, commonly used in vis-
ible optics, cannot be used in the far-infrared range because they strongly absorb and
intensively reflect these electromagnetic waves. Thus in the far-infrared range, the
own oscillation frequencies of the ionic crystal lattice are located, and this causes
absorption of these waves.

Thus it would not only roughly divide materials into dielectrics and semiconduc-
tors, but rather would distinguish the semiconducting and dielectric properties of
crystals that have an energy gap in the spectrum of electronic states.

SUMMARY

1. A crystal is the aggregate of regularly spaced and strongly interacting
particles. However, any oscillations and other excitations of these particles
can extend through the crystal in the form of weakly interacting waves with
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wave vectors k; and frequencies w;(k;). Each wave can be associated with an
oscillator that has a certain frequency.

To explain the main characteristics of solids, one should imagine that they
contain some “hidden” states that resemble the properties of different
aggregate states of a matter, namely, the gas of quasiparticles (atomic
oscillations), the quantum fluid (electrons in metal), and even the electron-hole
plasma (in semiconductors).

The quasiparticle is the collective movement (disturbance) of many closely
located particles of solids, such as local vibrations of neighboring atoms in the
crystal lattice. Although many atoms are involved in each excitation, this
movement, nevertheless, has an atomic scale, as the mean energy of each
excitation (phonon) is approximately kzT.

The energy distribution in quantum systems is expressed as a function of
energy, the degree of degeneration, and the number of particles in system.
For particles, whose number in any state is unlimited, a special case of
quantum statistics—the Bose-Einstein distribution—is valid (such particles
are bosons). If particles are subject to the Pauli principle (i.e., in a certain state,
only one particle can exist), the Fermi-Dirac distribution is applicable, and
particles are fermions.

The photon is a typical example of bosons—that is, an electromagnetic
wave that can extend both in vacuum and in dielectrics. The photon, as well as
the electron, shows dualism, sometimes revealing the properties of the
particles. The corpuscular property of the phonon is its impulse, whereas its
wave property is a wave vector. Both of them are related by the de Broglie
ratio: p=hk, and this ratio can be read inversely as: ik=p. The spin of the
photon is integer-valued: the photon can have only two states of spin: +1
and —1. The two spin states of a photon means a right and left circular
polarization of the electromagnetic wave, respectively; this fact is important
for an understanding of some electro-optical and magneto-optical effects in
solids.

The phonon is a quantum-mechanical description of elementary oscillation
movement in the crystal lattice, wherein some adjoining atoms oscillate
with a single frequency. The comparison “wave — quantum oscillator —
phonon” is arranged in such a way that the energy of the excited state of
each quantum oscillator E,, is an integer quantity of Zwi(k): E, =nhw(n+%2),
where n=0, 1, 2, 3, ... (here, n is the number of a certain type of phonons
with impulse p = /ik and energy E = /w;). The average number of phonons with
impulse p and energy FE is determined by the Bose distribution and is
proportional to [exp(fiw/kzT) — 1], Thus the ensemble of interconnected
harmonic oscillators that describe atomic oscillation in crystals can be
expressed by a set of so-called normal (not interconnected) oscillators, whose
number equals the number of degrees of freedom of a system.

A model of phonons, in many cases, allows consideration of any solid as a
“vessel” containing in it the “gas of phonons.” Similar to conventional gas
particles, phonons can move from “wall to wall,” facing each other. The gas of
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11.

12.

phonons is the main heat reservoir of a solid; however, it differs from the
conventional gas: the number of phonons in a crystal is not a constant (whereas,
in normal gas, the number of molecules in the vessel is invariable). The
greater the number of phonons, the more intense the thermal motion of
atoms—the higher is the temperature. At high temperatures, the energy of
phonons increases in proportion to temperature T; however, at low
temperatures (closer to absolute zero), their number tends to zero in
proportion T*—the fourth degree of temperature.

There are acoustical phonons and optical phonons. It is obvious that phonons
cannot leave the crystal because they are only the motion of the atoms of a
crystal. At low temperatures, when the quantum description of crystal
properties is necessary, the number of thermally excited optical phonons is
very small because the heat energy is inadequate for their formation.
Therefore the acoustic phonons determine the heat capacity and thermal
conductivity of a crystal.

Phonons differ from photons, firstly, by a relatively low velocity: their
velocity corresponds to the rate of sound, being in four orders of magnitude
less than light velocity. Secondly, phonons differ from photons by their
distinction among the types of waves. Namely, the elastic wave (phonon)
has one of three types of polarizations (L+2T), whereas light wave
(photons) has one of fwo types of polarizations (27).

In the space of impulses at low temperatures (T < 0p), thermally excited
phonons occupy only a small area near the center of the Brillouin zone. As
temperature increases, the number of phonons increases as well; as the
temperature becomes higher, the space of impulses gets more uniformly
filled with phonons. In the range of low temperatures, the main
contribution to the oscillation energy of a crystal is given by long acoustic
waves. The energy of the corresponding oscillators is small; therefore they
are easily excited. On the contrary, short acoustic waves and optical waves
at low temperatures are practically not excited: there is not enough heat
for their stimulation in the temperature range 7 < 6p.

The magnon or spin wave is quasiparticle that can be ascribed to the
properties of such crystals that have an orderly arrangement of spins:
ferromagnetics, antiferromagnetics, and ferrimagnetics. Magnons are
generated by thermal motion that excites elementary magnetic
excitations in a crystal, when the spins of some electrons do not
coincide with their magnetized ground state. This magnetic excitement
can move in a crystal lattice from one place to another due to exchange
interaction, and it is characterized by quasi-impulse and by energy. The
properties of magnons can be described in Bose statistics. In crystals
that have many atoms in a unit cell, there are several magnon branches
(by analogy with relevant branches of phonons).

Magnons interact with each other and with other quasiparticles. The
existence of magnons is confirmed by experiments using neutron scattering,
as well as from electrons and light scattering in magnetic states, during
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which spin waves are excited. The model of magnons is used in solid-state
physics to explain not only magnetic properties, but also to explain some
thermal and high-frequency properties of magnetics. For example, the
increased heat capacity (C,) in ferromagnetic crystals below Curie
temperature (including C,, maximum in Curie point) is due to the fact
that (in addition to phonon contribution to heat capacity) a similar
contribution is made by magnons.
Free electrons in space can have any energy: they have a continuous
energy spectrum. However, electrons in an isolated atom, according to
quantum mechanics, have discrete values of energy. According to the
Bohr postulate, in an isolated atom, the energy of the electron can take
only strictly discrete values (respectively, one can assume, that the
electron occupies one of some possible orbitals). In several atoms
combined by chemical bonds (i.e., in molecule), electronic orbitals
split in an amount proportional to the number of atoms, forming the
so-called molecular orbital. A similar discrete electronic spectrum is
characteristic of nanoparticles, inclusive of dozens of atoms.
In a macroscopic crystal—a solid body with tightly bound atoms—the
number of possible electronic orbitals becomes very large such that the
electronic energy spectrum consists of a large number of levels, joined in
the permitted energy bands that are separated by the forbidden energy
bands. Because the difference in energies of electrons for adjacent orbitals
is very small, the energy levels are split up almost continuously and
make discrete sets (energy bands). One of them is the valence band: at
temperatures close to zero in dielectrics and semiconductors, electrons
occupy all their energy states. In metals, the highest allowed band is the
conduction band, wherein levels of conduction electrons are located.
At the heart of band theory, there are some approximations: firstly, it is
believed that a solid is a perfectly periodic crystal; secondly, it is assumed
that the equilibrium position of crystal lattice is fixed (nuclei during fast
motion of electrons are practically immobile—this is an adiabatic
approximation); finally, the many-electrons system is reduced to a
one-electron task (impact on a given electron from all other electrons is
accounted by an averaged periodic field).
The band theory is the foundation of the modern theory of solids. It allows
an understanding of the physical nature and explains important properties
of conductors, semiconductors, and insulators. The value of band gap E,
(energy gap between valence and conduction bands) is a key value in band
theory; it predetermines the electrical and optical properties of dielectrics
and semiconductors.
In various crystals, as well as in different forms of same crystal, energy
bands are different. With the relative position of these bands, all substances
are divided into three groups:

the conductors—in which the conduction band and valence band

overlap, forming a zone that is called the conduction band; thus electrons
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can move freely occupying higher levels in this band when received
even at low energy (in case of a potential difference applying to
conductors, electrons are free to move from a point of lesser potential
to a point with higher potential, creating an electrical current);

+ the dielectrics—in which electronic energy bands do not overlap, and
the distance between them is more than ~3eV; to transfer an electron
from the valence band into the conduction band, a considerable energy
is required; therefore dielectric-insulators practically cannot conduct
electricity;

+ the semiconductors—their bands do not overlap, but the distance
between them is smaller than ~3eV; to transfer an electron from the
valence band into the conduction band, much less energy (than in
dielectric) is required; therefore in chemically pure semiconductors,
only weak electrical current can pass.

18. 1In a more general approach of solid-state theory, it turns out that the
prediction of various physical effects by band theory methods is much
wider from the initial approximations. For example, small fluctuations of
atoms around their equilibrium positions (which can be described as
phonons) can create perturbations in the electronic energy spectrum.
However, a bunch of many-electron physical phenomena, such as
ferromagnetism, superconductivity, and others, where the role of excitons
offer benefits, cannot be consistently reviewed as part of band theory.
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The most important property of metals is their large electrical conductivity. How-
ever, it should be noted that in addition to metals good conductors of electrical cur-
rent might be also other solids, liquids, and even ionized gas (plasma). Among
nonmetal solid conductors, there are some modifications of carbon and metal-oxides
(the latter are usually used at very high temperatures). However, metals and their
alloys, of course, are most important conductive materials that are applied in elec-
trical engineering, electronics, and instrumentation. Due to high conductivity, metals
are used in chips (as joining), in wires and cables, windings of transformers, micro-
wave waveguides, generator tubes, etc.

In some cases, it is necessary to employ the very low resistive metals—
hyperconductors and superconductors. On the other hand, metals with high resis-
tance are also widely applied: in resistors and electrical heating elements. Some-
times, liquid conductors are also of technical interest: they are various
electrolytes and molten metals. However, for most metals, rather high melting point
is peculiar; only mercury and some special alloys (e.g., indium-gallium alloy) can be
applied as liquid conductors at conventional temperatures.

The mechanism of current flowing in metals—as in both solid and liquid
phases—is due to the movement of electrons; therefore, they are called as conductors
with electronic conductivity.
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DEFINING FEATURES OF METALS

The term “metal” originated from the Greek word “metallon,” which means “mine.”
Distinctive properties of metals are high electrical conductivity, ability to reflect
light (shine), mechanical plasticity and flexibility, as well as large thermal
conductivity.

Most chemical elements (simple substances) are metals, and many alloys of these
elements and their compounds are also metals. Sometimes, other substances can be
referred to as metals, having one or other of metallic properties, and they are called
“synthetic metals” (intercalated), “organic metals,” and others. Of 119 elements of
Mendeleev’s periodic table, 92 are metals. The boundary between metals and non-
metals in this periodic table has a diagonal from B to At. Some elements, such as
germanium (Ge) and antimony (Sb), are difficult to be qualified; however, Ge is con-
sidered as a semiconductor, while Sb is a semimetal. It is interesting to note that tin
can exist in metallic modification (f-Sn), so in a semiconducting phase (a-Sn).

However, in Ge, Si, P, and some other “nonmetals” another modifications can be
obtained under increased pressure that exhibit properties of metals. Moreover, at
super high pressure all substances must acquire properties of metals [1]. To find
out whether any material is metal or nonmetal, not only physical properties but also
chemical properties should be taken into account. Sometimes, for elements that lie on
the border between metals and nonmetals the term semimetal is used.

Earlier, mostly specific shine, plasticity, and malleability were considered as
characteristic features of metals. However, metallic shine might be seen in some non-
metals and semiconductors a well. Plasticity also cannot be a reliable defining feature
of metals, as many brittle metals are known. Therefore the negative temperature
coefficient of electrical conductivity should be considered as the main feature of
metals (i.e., electrical conductivity decrease with temperature rise) [2].

Metals are characterized by a special type of bonding—metal type connection
(see Section 1.1), in which crystalline lattice is formed by the positive ions, while
valence electrons are delocalized throughout a lattice space. Therefore metals can
be presented as the lattice of positive ions crowded by “gas of electrons” that com-
pensates forces of mutual repulsion of positive ions.

According to structure of electron shells, metals can be divided into four groups:
s-metals (all s-elements, except H and He); p-metals (elements of third group, except
B) and Sn, Pb, Sb, Bi, Ro; d-metals (transition elements); and f~-metals (also transition
elements but of lanthanide group) [3]. Metals of the first two groups are sometimes
called as “simple metals.” In these groups, some narrower subgroups can be
highlighted. Among s-metals, there are alkaline metals and alkaline earth elements;
among d-metals, we find platinum subgroup of metals. The group of rare earth ele-
ments includes f~-metals, Sc-subgroup, and lanthanides.

Most metals are crystallized in one of three structural types, namely, cubic, hex-
agonal dense packing, and space-centered cubic lattice. In case of dense packing,
each ion of metal at equal distances has 12 nearest neighbors. In the space-centered
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cubic lattice, each ion has eight equidistant neighbors, while another six neighbors
are located at slightly more distance (15%). Therefore the coordination number of
this structure is considered equal to 14 (8 +6). Interatomic distances in metal struc-
ture are characterized by the “metallic ionic radius.”

After melting, metals, basically, retain their electrical, thermal, and optical prop-
erties (this indicates the importance of short-range order in arrangement of atoms).
Near melting temperature in liquid metals approximately the same short-range order-
ing is preserved as in crystalline metals. However, with increasing temperature, this
short-range ordering is disrupted until complete disorder.

Physical properties of metals vary widely. For example, melting temperature can
be found between —39°C (Hg) and +3380°C (W), while metal density might be from
0.53 g/cm3 (Li) to 22.5 g/cm3 (Os). Specific electrical resistance p of metals at nor-
mal temperature has a magnitude between 1.6 yfOmsm (Ag) and 140 pOm sm (Mn).
However, temperature coefficient of resistance does not vary much: from
4x 107K~ (Hg) to 9x 10 ° K~ (Be).

As for the special effects, in metals thermoionic emission can be observed, that is,
the ability to emit ions at high temperature. Electronic emission also occurs under the
influence of electromagnetic radiation in visible and ultraviolet regions of spectrum
(photoelectronic emission). Under the influence of external electric fields of high
intensity, autoelectronic emission is possible. During metal surface bombardment
by electrons, the secondary electron emission occurs, while ionic bombardment
results in the ion-electron emission. Finally, when metal surface interacts with
plasma, the explosive electron emission can be observed. Thermal-EMF (electromo-
tive force) is caused in metals under temperature influence.

Optical range radiation is almost entirely reflected from metal surface such that
metals are opaque and have a peculiar metallic luster. Being reflected from metal
surface, the plane-polarized light becomes elliptically polarized. Some metals, such
as gold (Au) in a form of very thin foil, can be light translucent.

To use metals as constructive materials, a combination of mechanical properties
(plasticity and viscosity) with considerable strength, hardness, and elasticity is essen-
tial. These properties depend not only on the chemical composition and purity of a
metal, but also on the perfection of its crystal lattice (presence of defects), as well as
on other features of structure, obtained during previous thermal and mechanical
processing [4].

In practice, most mechanical properties of metals are determined by the presence
of defects, firstly by dislocations (see Section 1.2); therefore movement of disloca-
tions in crystal lattice is the main mechanism of plastic deformation of metal. Inter-
action of dislocations with other defects increases metal resistance to plastic
deformation. In the process of deformation, the number of dislocations increases,
and correspondingly, resistance of metal to deformation increases (strain hardening).
However, stressed state and slander after deformation can be eliminated by metal
annealing. Increased tension in the places of dislocations—“thickening”—causes
nucleation of cracks that promotes destruction. The most important characteristic
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of mechanical properties of metals is the modulus of elasticity (Young’s modulus),
that is, mechanical tension, which corresponds to a unit of mechanical deformation.

ELECTRICAL CONDUCTIVITY OF METALS

Regarding electrical field, the main property of any matter is electrical charge trans-
fer, that is, the conductivity—the ability of material to conduct electrical current
under the influence of constant voltage (not changing in time). If the substance is
placed in an electrical field E [V/m], free charged particles—the carriers—under
the force FF'=gFE get acceleration, where ¢ is charge of particle; in metals, this is
charge of electron: g=e. The acceleration of charges is directed toward the vector
E for carriers with positive charge +¢ (i.e., for electronic holes or positive ions), or in
the opposite direction for charge carriers with negative charge — ¢. Directed in space
motion of electrical charges is electrical current.

With regard to electronic conductivity (¢ =e), when only one sign of free charge
carriers exists, the current density j, that is, electrical charge that flows per unit time
through unit area (oriented perpendicular to vector E) equals to:

J=nev, (5.1

where 1 [m ] is the number of charge carriers per unit volume of substance (carrier
concentration); v [m/s] is the drift velocity, that is, average velocity of ordered move-
ment of charge carriers that arises under electrical field influence. This velocity usu-
ally is proportional to the field strength E:

v=uk, 5.2)

where u is the proportionality factor called the mobility of charge carriers, measured
in [m%/(V s)].
With expression (5.2), Eq. (5.1) can be represented as

j=ocE=E/p, (5.3)

where o [S/m] is specific electrical conductivity, p=1/6 [Ohm m]=[Q m] is elec-
trical resistivity ([S]=Siemens is SI unit of conductivity). Eq. (5.3) is Ohm’s law.
Specific conductivity o or resistivity p defines current density in material at a given
electrical field; at that, the phenomenon of electrical conductivity is the electrical
charge transfer.

Parameter p or ¢ also determines the scattering process (losses) of electrical
power in a matter. According to Joule-Lenz law, the density of thermal energy p,
[W/m?], that is, electrical energy that is converted into a heat per unit time and in
unit volume, is

p:Ez/p:(;Ez. 5.4

From formulas (5.3) and (5.4) it is possible to pass into the formulas for material
conductance G, resistance R, and power P dissipated in a sample of any size and
shape:
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P=U*G=U*/R. (5.5)

In commonly used practice, to measure resistivity p some outboard units are custom-
ary. While unit of specific resistance in SI is [Q m], for metals another unit
[Q mm?*/m] often is applied, because the cross-section of conducting wire usually
is measured in square millimeters (mm?) and the whole length of a wire [ is measured
in meters [m]:

1Qm = 10°pQm = 10°Qmm? /m.

This unit is very convenient because in commonly used conductors comfortable
numeric values are kept. At temperatures near 300K, the range of p for metals is from
0.016 pQ m (silver) up to 10 pQ m (resistive alloys); this means that p in metals
covers three orders of magnitude.

The temperature dependence of conductivity. Electrical conductivity of metals
varies significantly with temperature (Fig. 5.1). Temperature dependence of conduc-
tivity can be described by o(T) ~ T~", but at very low temperatures this dependence
is another. The point is that in case of deep cooling dependence o(T) reaches satu-
ration, the level of which depends on the concentration of “static” defects. When
cooling metals that have ferromagnetic impurities, at a certain interval of tempera-
ture o(T") dependence can even show a decrease (Kondo effect).

In electrical engineering and electronic equipment, in addition to high conductiv-
ity, high thermal conductivity 1., [W/(Km)] (Fig. 5.1), of metals is very important.
Thermal conductivity of metals is conditioned mainly by the presence of high-
mobility electrons, and, therefore, 1, is proportional to conductivity. The identity
of A./o ratio for different metals is the Wiedemann-Franz law: the ratio A./oT is

" W/(m K)

(-

Q' 'm"'and 110

a,

1 10 100 1000
T,K
FIG. 5.1

Temperature dependence of conductivity ¢ and thermal conductivity A in copper.
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weakly dependent on temperature (because 4, is practically independent on temper-
ature). This ratio has the same value for many metals and represents the Lorenz num-
ber: L=(1./06T). For most metals at temperature 300 K, this parameter equals
L~24x10*WQK 2~

Frequency dependence of conductivity. Due to large electrical conductivity of
metals, they almost entirely reflect electromagnetic waves: their reflection coeffi-
cientisR=[(n—1)/(n+ 1)]2 ~ 1, where refractive index is n = (e,u)l/z. Up to the opti-
cal range of electromagnetic waves, conductivity of metals practically does not
change with frequency, because electrons have very low inertia (due to small
mass) [5].

Since in the range of optical frequencies magnetic permeability =1, very large
optical reflection of metals (R ~ 1) means that effective dielectric permittivity
eer & n” is large (and negative). However, in the ultraviolet range of spectrum inertia
of “electrons ensemble” (which is associated with ionic lattice) shows plasma res-
onance at frequency wy,. Frequency of this resonance (located approximately at
10'°Hz) is inversely proportional to relaxation time of electrons in plasma:
wp1=1/7c1. As a result, in the range of ultraviolet light, conductivity of metals
decreases with increasing frequency (Fig. 5.2), and metal gradually becomes trans-
parent for harsh electromagnetic waves (x-rays).

Charge transfer description. Valence electrons in ionic lattice of metals are prac-
tically free, because ions form energetically favorable lattice for electron movement.
Concentration of free electrons in metals is large (the number of atoms per unit vol-
ume is approximately equal to 10 cm ). Electrons can be treated as particles that
weakly interact with each other; virtually they have no volume and move randomly
through a crystal. The assumption that electrons practically do not interact with each
other, seemingly, contradicts Coulomb repulsion between them. However, the Cou-
lomb attraction of electrons to positively charged ions of crystal lattice should be
also taken into account. As quantum mechanical analysis shows, these joint actions
in the strongly periodical structure of crystal make a reasonable assumption about
“practically free electrons” (although this supposition has approximate nature).

;7
\ 4

—
S

FIG. 5.2

Frequency dependence of conductivity ¢ and plasma contribution to effective permittivity ey,
in the vicinity of plasma resonance in metals (in ultraviolet part of spectrum).
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Electronic gas exists in the thermodynamic equilibrium with crystal lattice that is
established through the collisions of moving electrons and ions in lattice. Electrons in
metal are always found in a movement, and they move even at lowest temperatures
(near absolute zero) [6]. This quantum motion of electrons is chaotic, and different
electrons move with different velocities. Most electrons in metals move with Fermi
velocity vy~ 10°m/s. This value can be defined from Fermi energy, taking into
account kinetic energy of electron: (mw7)/2=Ep.

In the ideal metal with infinite conductivity, an electrical field cannot exist. To a
real metal only very small electrical field can be applied (otherwise, huge electrical
current would appear and melt the metal). Under the influence of external electrical
field, a current flows in metal, that is, the chaotic movement of electrons becomes
partially directed: on disordered motion of electrons, their drift is superimposed. To
calculate corresponding current, one needs to take into account the average velocity
v,y of electron drift (at that, velocity of random motion of electrons is independent on
electrical field).

As current density j is the amount of electricity passing per second through unit
area of a conductor, then, according to this definition: j = — n.ev,,. If current density
is large enough, for example, j= 1 A/cm?, calculations show that average drift veloc-
ity of electrons is only vg, < 10~>cm/s. Thus directional movement of electrons in
metals is very slow as compared not only with velocity of their chaotic movement but
even in the macroscopic scale. The smallness of drift velocity is because only a very
weak electrical field can be applied to the metal.

Charge carrier mobility. There exists a direct proportionality between difference
of potential applied to metal and caused by its current:

j=oE. (5.6)

Using expression (5.6) for current density, it is possible to establish that average drift
velocity of electrons in a conductor is proportional to the force acting on them:

vy = (6/en.)E =ukE. (5.7)

Parameter u =o/en,, that is, drift velocity caused by influence of unit of field, is the
mobility. Its unit can be clarified from the formula u=wv/E; as a result, in SI the
dimension of mobility is [u]= [mz/(s V)]. It can be seen that such unit of mobility
is difficult to relate with the physical meaning of this phenomenon [7]. If one con-
tinues to find physical sense of mobility unit using the SI system, it can be written as
[u] :Tﬁl, that is, return value of “Tesla” that is unit of magnetic induction in SI,
because Vs=Wb (Weber) and Wb/m?=T. Another possibility to find mobility unit
in SI is also inconvenient for easy interpretation: [u]=As>kg .

On the contrary, in the Gauss system of units (CGSE), the unit of mobility is esti-
mated as [s/g] (second/gram), that is much more simple, hence making the content
more understandable. In fact, mobility characterizes the increase of velocity (m/s)
under force influence of v =u-f. The force is f=ma and in SI has unit [N] =Newton;
therefore in the Gauss system force is I N=10? g- 10* sm/s*; then mobility has a sim-
ple unit: u =wv/f, therefore [u] =[s/g].
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In fact, mobility indirectly characterizes the opposition of a medium through
which electrons drift under influence of electrical field. If any braking force is absent,
then the electron under electrical field will move with constant acceleration (such as
in vacuum), but not with constant velocity as they move in crystals. Mobility char-
acterizes how charge carriers, being forced by electrical field to the directed ordered
motion, can overcome their thermal chaotic motion that is characterized by contin-
uous collisions with phonons and defects. Therefore mobility is the degree of free-
dom of electron’s directed motion in a media [7] (while almost nothing prevents the
electrons in their chaotic quantum Fermi motion).

Analogy of a current, flowing in a conductor, with a liquid flowing through the
pipe indicates that electrons in a conductor move with some similarity of “friction.”
Thus there are some reasons that violate field-induced directional movement of elec-
trons inside a metal. Analyzing these reasons and taking into consideration that
mobility should be expressed through specific conductivity, it is possible to obtain

o =n.eu. (5.8)

The necessity to express metal conductivity ¢ by means of two other parameters 7,
and u is because each of them can be found in independent experiments.

Indeed, the concentration of free electrons n, never changes with temperature: it
is a peculiar property of the given metal. Conversely, another parameter, the mobility
u, can vary with the change of temperature 100 times, even 1000 times. In addition,
by cleaning a metal from impurities it is possible to increase electron mobility many
fold. For this reason, it is important that two characteristics—number of electrons per
unit volume #n, and their mobility u—allow independent measurement.

Hall’s effect. One of the most suitable methods to find concentration of electrons
n, is Hall’s effect, that is, potential differences across plate-shaped conductor with
flowing current, which arises when a conductor (semiconductor) is placed in the
transverse magnetic field (Fig. 5.3).

The cause of Hall’s effect is Lorentz force that acts on electrons under combined
influence of electrical and magnetic fields:

=

FIG. 5.3
Experimental scheme for investigating Hall effect.
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FLo=¢(E+[vxB]), (5.9

A moving electron forcedly shifts in direction, perpendicular to both vectors E and B.
At the condition when the circuit is opened, the charge redistribution leads to inhib-
itory force: electrical field directed of y-axis (axes are marked in Fig. 5.3).

After transformations it is possible to obtain the next expression for y-component
of electrical field:

E,=(1/neec)j-H. (5.10)

As charge of electron e and light speed ¢ are known, while current j and magnetic
field H are measured directly, expression (5.10) determines the number of electrons
per unit volume of a conductor. These measurements show that in metals—good
conductors—the density of electrons is close to the value 1, ~ 10* cm . The great-
est density of electrons is seen in beryllium (7, ~ 2.5 X 10**cm ) and in aluminum
(0.8 x 10% cm73), and the smallest density is observed in cesium (0.09 x 102 cm 2
and rubidium (0.1 x 10 cm73). Also, the metal that has the highest electrical con-
ductivity at temperature 300K is silver; however, its density of electrons is
n,=0.6 x 10 cm . Therefore the conductivity depends not only on the concentra-
tion of charge carriers.

The conformity between density of electrons and density of ions validates the
foregoing assumption: from each metallic atom one or more electrons come off
and then can move freely through a crystal. This is another proof of relative
“freedom” of electrons in metals, especially given data on electronic density are con-
sistent not only with electrical, but also with other properties (e.g., with electron heat
capacity).

If the number of electrons per unit volume is found, it is possible to calculate the
mobility of electrons in a metal using formula (5.8). In copper, for instance, this
mobility at room temperature equals u=2 x 10"*s/g (electrons in copper are most
mobile among other metals under normal conditions). Near absolute zero of temper-
ature, electron mobility becomes greater thousands of times [7].

The effect of magnetoresistance is the change of electrical resistance in the mag-
netic field. In general, in case of magnetic field impact the change of electrical cur-
rent is observed. Therefore, any substance, to some extent, exhibits the effect of
magnetoresistance, not only metals. Also, in the semiconductors, the relative change
of resistance in magnetic field might be greater than in metals [2].

Magnetoresistance of a substance depends on the orientation of the studied sam-
ple relative to the magnetic field. Magnetic field does not change the projection of
electron’s velocity on the direction of magnetic field, but because of Lorentz force
the magnetic field distorts the trajectory of a moving electron in a plane perpendic-
ular to this field. This effect explains the reasons for the transverse magnetic field
acting on the resistivity being stronger than the longitudinal magnetic field.

The effect of magnetoresistance can be explained while examining the trajectory
of charged particles in the magnetic field. Consider passing along a sample current j,
along x-axis (Fig. 5.3). Electronic gas is degenerated; therefore average velocity of
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electrons is Fermi velocity (near Fermi level), which significantly exceeds the veloc-
ity of directional movement (drift velocity). Charge carrier, between its collisions,
without magnetic field influence moves in a straight line. However, in the external
magnetic field H (applied perpendicular to electrical field) free path of electron will
have another length: /.~ cos ¢ (where [ is average free path). Therefore, during the
time between two collisions along electrical field direction, the electron overcomes
the path smaller than /. This results in drift velocity decrease, hence, in the decrease
of conductivity, that is, resistance increases. Therefore magnetoresistance is the rel-
ative difference between resistance measured at the presence of magnetic field and
resistance, measured without the magnetic field. Based on this effect some electronic
devices are elaborated and used as magnetic field sensors. However, except for
metals, there are other much more sensitive materials: semiconductors and, espe-
cially, ferromagnetic and nanomagnetic materials.

Response time and free path of electrons. With the knowledge mobility, it is pos-
sible to estimate two very important characteristics of electrons in a metal. As
already indicated, during mobility analysis, it seems more convenient to express
the unit of mobility in CGSE system: [s/g], because from this follows that average
free time 7 = m,u has the dimension of seconds. The important parameter 7 [s] can be
defined in many ways, but in solid-state physics the most often used term is response
time (or time constant); it should be noted that an analogous term free run time is used
in molecular-kinetic theory of gases, while in the theory of scattering the term relax-
ation time is more familiar [8].

Analysis of particle movement “with a friction” shows that as soon as the acting
force is an electrical field the electrons start to move with acceleration, and their
velocity increases; however, at the same time, frictional force also increases propor-
tional to velocity. During time 7 =m.u, the inhibitory force completely compensates
the external accelerating strength, and particle moves with constant drift velocity.
Thus response time describes the interval at which steady state of motion is installed
(i.e., movement with constant drift velocity).

Response time for electrons moving in metal is very small: z~ 10" '*s. During
electrical field switching, it looks impossible to notice the start of free movement
of electron: as soon as metal is placed in the electrical field, Ohm’s law in a circuit
begins to operate immediately. However, despite extreme smallness of response
time, dynamics of electron “free” movement can still be estimated by 7 indirect mea-
surement. In this case, one needs to explore behavior of metals at very high frequency
fields, as already shown in Fig. 5.2. By studying the variance of o(w), that is, fre-
quency dependence of conductivity, it is experimentally possible to evaluate 7 for
different metals.

Thus, from a microscopic point of view, electron movement “with a friction” can
be represented as the “flight” under force influence that accelerates the electron up to
its collision, wherein the electron returns energy, gained by electrical force, to a lat-
tice. At that, parameter 7 is the average time between two collisions, while the prod-
uct of this time on Fermi velocity vy gives the average free path 6 that is the distance
between electron collision: vy =24.
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To explain the nature of a conductor’s resistance, why an electron in a crystal has
finite average free path and what is its numerical value have to be elucidated. In the
ideal crystal (without defects), in which each ion is fixed in its place, the electron
moves quite freely ignoring surrounding ions. In an ideal case (when T— 0 K and
no defects) the electron, being accelerated by applied field, would increase its energy
until facing the border of a sample. However, a real crystal exists in conditions of
lattice thermal fluctuations; moreover, static defects of a structure also prevent free
movement of an electron. From the expression for conductivity (¢ =n.eu) and using
response time (7 =m,u), we get:

o =neet/m,. (5.11)

If both numerator and denominator in this formula are multiplied by v, the expres-
sion for conductivity will take another form:

0 =n.e8/mur. (5.12)

The skin effect. At very high frequencies (10°-10"" Hz) electromagnetic field can
penetrate in a conductor only to a small depth, which becomes less when the fre-
quency is higher and conductivity and magnetic permeability are greater. The result
is the uneven distribution of current density in the cross section of a conductor—this
is the surface effect (or skin effect) [5].

The depth of penetration (skin) Jg, is such a distance inside a conductor, at
which the amplitude of electromagnetic wave reduces in “e” times. Using Maxwell
equations, the following expression for the depth of penetration can be obtained:

Sekin = (2/woupy)'?, (5.13)

where o is circular frequency, o is conductivity, and u is relative permeability of
conductor. Relative permeability in most good conducting metals is close to unity
(u=1). However, in ferromagnetic materials where y~ 10’ the penetration depth
is much lower than in nonmagnetic metals. The minimal penetration depth
(8skin— 0) is observed in superconductors, in which ¢ — co.

In radio engineering, especially in ultrahigh frequency (UHF) range, for skin
effect description the concept of surface resistance R, (measured in ohms per square)
is used:

Rx = l/aéskirr (514)

In microwave transmission lines, wave oscillations extend by both electrical and
magnetic fields. Wave oscillations cannot pass through metallic walls of transmis-
sion lines, and, therefore, are distributed in the dielectric between waveguide walls.
If these walls were made of ideal conductors (with 6 = ), then microwave signals
will not penetrate in walls of the guiding conductor (closely related to this case are
superconducting materials that sometimes are used in microwave devices, and they
essentially decrease wave attenuation).

In normal cases, waveguide walls are not perfect conductors; thus the microwave
field can penetrate the waveguide walls. The depth of penetration, as shown in
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formula (5.13), depends on microwave frequency and conductivity of the metal from
which the transmission line (waveguide) is made. For example, in copper at a fre-
quency of 10GHz the penetration depth is only 0.5 microns. This implies that just
a surface of conductors significantly affects quality of microwave transmission line.
Imperfect surface leads to losses—attenuation of signal, propagating through the
microwave waveguide. To adequately transfer signals, the microwave power trans-
mission line should have a wall thickness that equals approximately 10 layers of skin
thickness (at a frequency of 10GHz it is less than 10 microns).

Thus the main cause of microwave energy losses is the skin effect, which is not so
large in high-conductive metals. Skin effect is absent in case of superconductivity.

Hyperconductivity (cryoconductivity) in metals. High conductivity is a favorable
factor to reduce attenuation of waves in waveguides and microwave resonators. Cur-
rently these devices have expanded their use up to millimeter waves that need to
increase the quality factor of resonant microwave structures. In case of low temper-
atures (see Fig. 5.1), conductivity of metals increases significantly. Moreover, some
metals at low temperatures become superconductors. The electrical resistance of
superconductors below their critical temperature 7, (phase transition temperature)
at low frequency becomes close to zero (p=~0).

Superconductivity is used in cryogenic electronics. However, in metals supercon-
ductivity is possible only by using helium temperature (7 ~4K), but liquid helium is
very expensive in practical use. Nevertheless, in electrical engineering and electron-
ics hyperconductivity might be successfully applied at another cryogenic tempera-
ture (77K, liquid nitrogen that is much cheaper than helium). In some metals, at
temperature 77K, it is possible to obtain very small resistance (thousands of times
lower than at normal temperatures).

Metals with favorable characteristics in the range of cryogenic temperatures are
the hyperconductors (or cryoconductors). The phenomenon of hyperconductivity is
not similar to superconductivity. Application of cryoconductivity in metallic micro-
wave resonators and other microwave devices significantly increases their operating
parameters. It is necessary to mention that there are many metals with small resis-
tance at nitrogen temperature. However, a significant advantage at liquid nitrogen
temperature is beryllium: exactly it has the smallest possible p value. In contrast
to superconductivity, hyperconductivity is not destroyed by magnetic field. At that,
hyperconductive metals must be well cleaned to have perfect structure [5].

THERMAL PROPERTIES OF METALS

According to classic electronic theory of metals, a solid conductor may be repre-
sented as a system, consisting of ionic lattice that contains inside “gas” of collectiv-
ized (free) electrons. Assuming the metal as a crystal, in which positive ions form
stable lattice with mobile electrons between them can explain many basic properties
of metals: ductility, malleability, high thermal conductivity, and large electrical con-
ductivity. Similar to a solid state, in a liquid state of metal a large number of free
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electrons exist: 7, =(0.5-25) x 10~%? cm ™ %; they are the charge carriers providing
electrical current passage through a metal. At normal temperature, electron mobility
in metals is u=(2-7) x 107> m*/(Vs).

Thermal conductivity of metals. Heat transmission through a metal occurs by the
same free electrons that determine electrical conductivity. Thermal conductivity of
metals is high due to a large number of electrons per unit volume of metal. At the
same time, the coefficient of thermal conductivity by electrons 1, in metals exceeds
thermal conductivity 4y, in dielectrics, where heat transferred mainly has phonon
nature.

Obviously, if other things being equal, the higher the specific electrical conduc-
tivity o in a metal the greater the metal thermal conductivity 4,. As temperature
increases, the mobility of electrons in metal and, therefore, its electrical conductivity
o reduces; at that, ratio 1./c has to grow. Mathematically, this law is expressed by the
Wiedemann-Franz-Lorenz expression:

de/o=LT, (5.15)
where T is absolute temperature and L is Lorenz number that equals:
L= (7/3)(kg/e)’. (5.16)

Substituting Boltzmann constant kz=1.38 x 102J/K and charge of electron
e=—16x10""C in Eq. (5.16), it is possible to obtain Lorentz number
L=245x10"WQK >

In most metals, Wiedemann-Franz-Lorenz law is well evidenced at temperatures
close to normal temperature or at slightly elevated temperatures. For example, for
copper at temperature T=293K, by substituting conductivity ¢=257 x 10°S/m
and 1,=390W/(mK) in formula (5.16), it is possible to obtain Lorenz parameter
L=2.54x10"®W Q K that is very close to theoretical value. At normal temper-
ature, in aluminum L=2.1x10""%, in lead L=2.5x 10", and in iron 2.9 x 10~°
W QK2 However, at low temperatures Lorentz number might be changed; for
example, while cooling it passes through minimum (in copper), but approaching
absolute zero Lorentz factor again becomes close to theoretical value of L.

Thermal capacity of metals. Despite large and almost independent of tempera-
ture electronic conductivity, in metals the electronic contribution to specific heat
Celec at normal conditions (T ~300K) is small (Fig. 5.4). This feature of metals
should be considered while elucidating those electronic devices that have to work
at increased power [6].

Heat capacity of metal, predominantly, is formed by thermal fluctuations in crys-
tal lattice (phonons) and at low temperature Cjagice ~ T°. At that, electronic contribu-
tion to heat capacity of metal increases in direct proportion to absolute temperature:
Celec =¢T. That is why electronic heat capacity in metals becomes significant at very
low (cryogenic) temperatures (T < 6p), because lattice (phonons) contribution to
specific heat tends to zero much faster in comparison with electronic contribution
Celec. Sometimes, below temperature 7T~ 10K electronic C.j. can exceed lattice
(phonon) contribution Ciagice-



178 CHAPTER 5 Metals

A
~ SF
&0
L
-
e 4
3
o 3
3
=
& 2f Phonons
3
o
2
1-
Electrons _
0 02 04 06 08 1 12 14
770

FIG. 5.4

Temperature dependence of phonons and electron contribution to specific heat in metals (@ is
Debye temperature).

Similarly, at very high temperature, when 7 > 6, and metal still remains solid
(not molten), electronic contribution to heat capacity can be compared with lattice
contribution.

Thermoelectromotive properties (thermal EMF). When two different metals (or
semiconductors) are in contact, the difference in contact potentials occurs between
them, caused by the difference in electronic work function and by distinction in free
electron concentration in relevant metals (or semiconductors).

If temperature of two distant contacts (junctions) of different metals (entering
into a closed circuit) is equal, the distinction in potentials in these metals is zero,
and no current in circuit can be seen. However, if one junction of metals A and
B has temperature T while another junction has temperature T, (T # T5), thermo-
electromotive potential occurs:

U= (kg/e)(T) —T) In(na/np),

where 1,4 and npg are concentrations of free electrons in metals A and B, respectively,
kg is Boltzmann constant, and e is charge of electron. This formula, referring to phe-
nomena of thermocouple, can be also written also U=a(T; — T,), where a is constant
factor for given pair of conductors—the thermoelectric coefficient. Thus thermal
EMF must be proportional to temperature difference between junctions (Fig. 5.5).

Thermocouples, composed of two different metals or alloys, are widely used for
measuring temperatures. As a thermocouple wire, the metal with large and stable
coefficient of thermal EMF should be applied [1]. On the contrary, in high-quality
measurement systems and in reference resistors contacting metals and alloys that
have the lowest thermal EMF should be used to avoid any interference from
unwanted thermocouples in measuring.
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Thermal EMF dependencies on temperature difference between two junctions of

thermocouples: I—platinum-rhodium-platinum; 2—chromel-alumel; 3—copper-copel, and
4—chromel-copel.

The linear thermal expansion coefficient is defined as
TC,=1I""dl/dT,

where [ is arbitrary linear dimension of the studied sample. The knowledge of this
coefficient is necessary to coordinate joining parts of devices, when in their design
various combinations of materials are used (metals, dielectrics, semiconductors).
Ignoring the coordination of thermal expansion may result in stresses or even in
cracking, for example, in case of vacuum-tight connections of metals with glasses,
and in the event of temperature change, this connection might be broken [4].

Using TC), it is possible to calculate the temperature coefficient of electrical resis-
tance of a wire:

TCr =TC,—TC,. (5.17)

In pure metals usually 7C,<TC,, that is, it can be approximately considered that
TCr~TC,. However, in case of alloys with low TC, formula (5.17) has
practical value.

The value of TC, of metals increases with temperature rise, especially when
approaching melting point of a metal. Therefore, the fusible metals typically have
relatively high TC,, while in the refractory metals their TC, has relatively small value.

Tensosensitivity of metals is used for strain measurements. Electrical resistance
in metals changes significantly in case of metal deformation. This phenomenon is
applied in strain-sensing elements. Tensiometric (strain-gage) alloys are applied
in various devices used for strain measurements under mechanical influence (usu-
ally, the stretching is studied).
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The principle of operation of these sensors is based on the change in resistance
during metallic element stretching. At that, strain-sensitivity factor is determent by
expression Ciens = (AR/R):(Al/l), where AR/R is change of resistance due to defor-
mation A/ of element with length /. In most cases Cies = 1.6...2.2, with the exception
of nickel that has this ratio Ci.,s = 10 (this feature of nickel is due to peculiar structure
of its Fermi surface).

Basic material for strain measurement sensors that operates at relatively low tem-
peratures is constantan (Cu-Ni-Mg alloy). In the high-temperature range, sensors
with Fe-Cr-Ni alloys are usually used [5].

The mechanical properties of metals are characterized by limiting strength dur-
ing stretching, by relative elongation at break, by brittleness, hardness, and other
parameters. Mechanical properties of metallic conductors are strongly dependent
on the mechanical and thermal processing of a metal, as well as on the presence
of impurities in a metal, and so on. The annealing leads to significant decrease in
strength but increases elongation.

ELECTRONIC PROPERTIES OF METALS AND FERMI
SURFACE

Classic electronic theory of metals (Paul Drude’s theory). High electrical and ther-
mal conductivity of metals as well as typical metallic luster indicate that electrons in
a metal can be treated as free. Analysis of Ohm’s law leads to the same conclusion:
when even a very small voltage is applied to metal it is always seen that current is
proportional to voltage, and proportionality factor (1/R) is the same as it is for
increased values of voltage and current. If electrons in a metal are linked to specific
nodes in a crystal lattice, then the threshold electrical field will exist, from which
“normal” Ohm’s law will begin to operate. In other words, conductivity of metal
would be less in a smaller electrical field than at a larger electrical field. The fact
that such phenomenon is not observed testifies the model of free electrons [1].

A study was conducted to determine the ratio of charge to mass for charge carriers
in metals. In these experiments, the coil with a metal wire (copper, aluminum, or
silver) is exposed to a rapid rotation and then abruptly pulled up. Under these con-
ditions, free charge carriers would have to move by their inertia. Indeed, at the
moment of sudden stop of coil the electrical current is registered; corresponding cal-
culation gives the value of ratio e/m, close to ratio of charge to mass for free electrons
(1.76 x 10""). Therefore this experiment supports the assumption that electrical cur-
rent in metals is caused by free electron directional movement.

Drude’s theory, supposing chaotic (thermal) motion of electrons and their drift
under the influence of directional electric field, makes possible to substantiate Ohm’s
law. In case of electron collision with imperfections in crystal lattice, the energy,
accumulated during electron acceleration in the electrical field, passes into crystal
lattice such that it becomes heated (Joule-Lenz law). Thus classic electronic theory
of metals can analytically describe and experimentally explain obtained basic laws of



5.4 Electronic properties of metals and Fermi surface 181

conductivity and power losses in metals. It can also explain the relationship between
electrical conductivity and thermal conductivity of metals. Moreover, some other
experiments confirm the hypothesis of electronic gas existing in metal, for example,
the curvature of electron trajectory in the transverse magnetic field: electromotive
force changes electrical resistance of a conductor.

Therefore metals are different from other solid bodies because of free electron
existence that practically are not connected with atoms but nearly freely move inside
a metal. Using the concept of free electrons not only electrical properties of metals,
but also other peculiarities can be explained, such as flexibility.

Assuming that electrons in a metal represent the classic gas, Drude’s model
offered metal as a “vessel” containing “gas” of freely circulating electrons that
makes possible to get formulas for high-frequency conductivity o(w) and for elec-
tronic contribution to thermal conductivity A,:

o=o00/(1—iwr); a:neez'r/m; Ae = Loy,

where 1, is number of electrons in 1cm?; w =2zv is frequency of electrical field; o
is conductivity at very low frequency; 7 is free path of electron; and L is universal
constant (Lorentz number). Frequency dependence of o is shown in Fig. 5.2, while
Wiedemann-Franz law that implies Lorentz number is discussed in Section 5.3.
Thus, by introducing metal as a system, in which positive ions are fastened by means
of freely mobile electrons, it is possible to explain basic properties of metals:
elasticity, ductility, high thermal conductivity, and large amount of electrical
conductivity.

However, there are some contradictions between conclusions of Drude’s theory
and experimental data [3]. These contradictions are as follows:

(1) disagreements in experimental and theoretical data in the temperature
dependence of resistivity;

(2) discrepancies between theoretically predicted and experimentally observed
specific heat of metals.

Namely, in metals observed specific heat is much less than predictions of Drude’s
theorys; it looks like electronic gas hardly absorbs heat during metal heating. Exper-
iments show that required energy is much less than expectations of Drude’s theory.
The main drawback of Drude’s model is the assumption that free electrons in metal
are as free as molecules in an ideal gas. Also, electron-to-electron interaction is
completely neglected. These contradictions can be overcome by considering the
main standpoint of quantum mechanics.

Quantum distribution of electronic gas. The quantum theory of electronic gas in
metal helps to explain all electrical and thermal properties of electronic gas, partic-
ularly, low heat capacity of electronic gas that is not explained in Drude’s model.

In the process of metal heating, electrons located in the lower energy levels can-
not increase their velocity (by perceiving heat energy) because higher energy levels
are already occupied. Occupied levels and free levels in the electronic energy spec-
trum of metal are divided by the Fermi level. Thus only those electrons that are
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located near the Fermi level can be thermally excited—only they can rise to the unoc-
cupied states located just above the Fermi level.

Quantum distribution of electronic gas velocities is significantly different from
classic distribution of molecule velocity in the normal gas, described by Maxwell-
Boltzmann function. The point is that classic distribution is greatly dependent on
temperature: at lower temperature, the maximum of distribution is narrower than
at higher temperature. Moreover, this maximum becomes more blurred and notice-
ably shifts toward higher velocities (see Fig. 5.6A). In contrast, in case of quantum
electronic gas distribution, the density of states at room temperature (Fig. 5.6B, dot-
ted line) differs only a little from the density of states at absolute zero (Fig. 5.6B,
solid curve).

However, during the study of electrical and thermal properties of metals, usually
the distribution of energy but not the velocity is used.

Fermi energy level. Main ideas of electron quantum statistics were considered
previously (Section 4.6). To determine the number of free charge carriers in metal
the quantity of energy levels (states) of electrons in that conduction band, which
is actually occupied needs to be known. Dependent on temperature and energy,
the probability w(T,E) of electron existing on the energy level E is determined by
distribution function of Fermi-Dirac:

w(T,E) = {1+exp[(E —Er)/kgT]} ",
where kg is Boltzmann constant, T is absolute temperature, and energy Er is Fermi
level. As seen from this formula, at T # O distribution function for level E=Ep is

w="Va,
In the ground state, that is, at temperature T=0K:

» For energy levels that are located below Fermi level distribution function is unity
(w =1), because E < Ep and exp[(E — E)/kgT — 0. This means that all
levels that lie below Fermi level at absolute zero are occupied by electrons.

Particle quantity
N
- &
Particle quantity

—
-——

Velocity Velocity

(B)
FIG. 5.6
Comparison of classical Maxwell-Boltzmann distribution of gas molecule velocity (A) and

quantum Fermi-Dirac distribution of electronic gas velocities (B); dotted lines corresponds to
higher temperatures.
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» For energy levels that are located above Fermi level the Fermi-Dirac distribution
function equals zero (w =0), because if energy £ > Er and T — 0 the
function exp[(E — Er)/kgT — oo, so the probability w(7T,E) — 0, that is, at
absolute zero all levels, lying above Fermi energy, are empty.

Thus, in metals at temperature 7 =0 Fermi level divides conduction band by a half:
entirely occupied part of a band and entirely empty part of a band without any energy
gap between these parts.

Fig. 5.7 shows the difference between Maxwell-Boltzmann classical statistics
and Fermi-Dirac statistics. However, Fermi-Dirac statistics should be used only
when the quantum effects are considered, and particles (in this case, electrons) do
not differ from each other. Quantum effects are found when concentration of parti-
cles n is greater than quantum concentration n,, while the distance between particles
is close to de Broglie wavelength, that is, if wave functions of particles are fouching
but not overlapping.

This situation corresponds to metals. As a result of electrostatic repulsion, free
electrons in a metal never come close to one another: each electron is surrounded
by a free cavity, into which another electron cannot enter. However, this cavity is
partially filled by positive charge of lattice; therefore this positive charge screens
given electron from all others. Thus, due to electrical repulsion force, electrons move
inside a metal with very rarely collisions between them.

Typically, Fermi-Dirac statistics is used at low temperatures, but in case of metals
this statistics should be applied at normal temperature. The point is that temperature
~300K with correspondent energy kzT~0.03eV for metals seems very low,
because Fermi energy in metals is large (Er~5...10eV). As shown in Fig. 5.7, Fermi
function at temperature 300K for metal varies only in the narrow range near Fermi
energy.

In contrast to the ideal gas, in which additional energy is absorbed by all mole-
cules, in metal absorbed heat can excite only a relatively small amount of electrons
located near Fermi level. For this reason, to raise temperature of electronic gas much
less heat is required (see Fig. 5.4, electronic thermal capacity Cejec)-

Fermi surface. Unlike classic electronic theory, quantum mechanics shows that
gas of electrons in a metal under normal temperature is found in a state of

A
1.0 ‘

0.8F
0.6F |Am Jeo
04F

0.2f =y

0 2‘0 4.0 6.0 8‘0 160
FIG. 5.7
Maxwell-Boltzmann fyg and Fermi-Dirac frp distributions near room temperature.
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degeneration. In this state, energy of electronic gas is practically independent of tem-
perature, that is, thermal motion changes electron energy only a little. That is why
thermal energy practically cannot heat electronic gas, and this is clearly detected by
measurement of thermal capacity. In this state, similar to conventional gas, electronic
gas appears as if its temperature were several thousand degrees [6].

According to quantum statistics, gas of electrons cannot have more than two elec-
trons with same quantum parameters. Electrons occupy all allowed states of
impulses, but not higher than those limited by Fermi level. The Fermi surface
(Fig. 5.8) is a boundary between occupied and unoccupied states of electronic gas
at absolute zero. Therefore Fermi surface is the isoenergetic surface in a space of
quasipulses (p-space) that corresponds to Fermi energy Ep:

E,(p) =Er.

Here E((p) is dispersion law of conduction electrons; s is number of energy band;
therefore Fermi surface at temperature 7=0K separates occupied electronic levels
from empty levels.

Sometimes, in Fermi-surface representation, it is possible to restrict the task by
using only one p-space, namely, the 1st Brillouin zone, located just at the ends of
vectors p that describes all nonequivalent states. If the Fermi surface is completely
housed in one cell of p-space, then this surface is closed (Fig. 5.8A). In this case,
Fermi surface is a sphere with radius kF:(ZmEF)mFL_1 that is determined by the
concentration of valence electrons. If Fermi surface intersects the boundaries of cell
in p-space, it is called opened (Fig. 5.8B). When extended p-space is used, closed
Fermi surface is endlessly repeated from cell to cell.

In the impulse space, all states inside Fermi sphere of radius py are filled. The
linear response of metal to electrical and magnetic fields or to thermal gradient is

Closed (A) and opened (B) Fermi surfaces for copper and lead, respectively.
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determined by a shape of Fermi surface, because electrical current is due to changes
in the occupancy of states near Fermi energy.

Thus Fermi surface is the abstract boundary in the reciprocal space, which is
useful to predict thermal, electrical, magnetic, and optical properties of metals
and semimetals [1]. The shape of Fermi surface is derived from the periodicity
and symmetry of crystal lattice, as well as from occupation of electronic energy
bands. The success of Fermi surface model is direct confirmation of Pauli principle
that allows maximum one electron per one quantum state. Most electrons are placed
inside Fermi surface, and only some of them can be outside of it (in the strip of kg7,
see Fig. 5.7)

Remarks on band theory of metals. Band theory uses the fact that an electron has
both properties of particle and wave; therefore in case of close location to ions in a
lattice, wave properties of electrons necessarily manifest themselves. The Bloch
wave functions, used in one-electron band theory, is true for metals with s- and
p-electronic orbitals, which have a large length of orbital space with considerable
mutual overlap. However, in case of metals with d- and f-orbitals, band theory
should be used with caution. Conduction electrons in these metals (and in their
alloys) have increased effective mass; moreover, other physical properties of these
crystals might be very specific [7].

Electronic energy bands of metals with s- and p-electrons are discussed in more
detail in Section 4.6, where specific examples are shown: energy spectra of sodium
that has very simple electronic energy spectrum (Fig. 4.19), and more complicated
band structure of well-known conductor—copper (Fig. 4.20). The wavelength of
electron in crystal depends on its impulse; simply stated, not a wavelength (1) is used,
but the wave number (k) that is expressed as k=2xz/1. Obviously, wave number is
directly proportional to wave velocity. Movement of electron can be described,
using the relationship between wave number of electron and its energy; this depen-
dence looks similar to energy dependence on velocity. Therefore Fermi surface can
be shown in the space of wave numbers.

The curvature of Fermi surface is dependent on density of allowed states near it,
and this curvature affects electrical, thermal, and magnetic properties of metal.
The more electrons are located near Fermi surface, the more electrons can increase
their energy during metal heating as well as the more electrons can orient their spins
in magnetic field (which results in paramagnetism of electronic gas in metal).

Metals always have some electrons on the blank levels above Fermi level (for this
reason, metals are good conductors of electricity), implying that metals have such
Fermi surface from which electrons can easily be transferred to the blank (allowed)
higher energy levels. Current in conductor is carried by those free electrons that can
be easily accelerated, moving through allowed unfilled states.

Decrease of electrical conductivity with increasing temperature is a typical prop-
erty of metals. This dependence is due to local thermal vibrations in crystal lattice.
Accelerated by electrical field, electrons are scattered on these vibrations, and,
therefore, the velocity of electrons reduces. Raising temperature increases thermal
vibrations intensity, thereby decreasing free path of electrons between two collisions.
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Conversely, with lowering temperature, the interval between collisions (and relax-
ation time) increases and conductivity increases. Electrical conductivity of any metal
can be calculated, if the shape of Fermi surface and the relaxation time for these elec-
trons are known. Fermi surface also permits to evaluate electrical and thermal con-
ductivity of metal at different conditions. Finally, knowledge of Fermi surface shape
is necessary to explain peculiarities of metal structure and their absorption and
reflection properties, as well as to describe superconductivity in some metals at
low temperatures, and many other physical properties.

Charge carriers in metals are free electrons that are also called as conduction elec-
trons. They are typical quasiparticles. Their properties are substantially different
from “normal” electrons existing in a free space, although electrical charge of con-
duction electron coincides with the charge of electron in a vacuum. However, the
energy of “electron = quasiparticle” is a complex periodic function of impulse. When
an electron is found in a free space, the surface of its equal energy is a sphere. For
conduction electron in metal, the surface of equal energy might be complicated,
being correspondent to the surface of equal energy in the impulse space. The form
of this surface and its size depend on energy value that, its turn, is dependent on qua-
siparticle dispersion law [7].

Fermi surfaces of different metals can be quite various. In some metals, they
resemble billiard balls (K, Na, Rb, Cs), and in others, they are complex designs
of various shapes (Au, Ag, Cu, Zn, Cd, and others). One of ordinary Fermi
surfaces—for copper crystal—is shown in Fig. 5.8 A. This example is chosen because
copper has one of the highest values of conductivity at 300 K and copper is widely
used in electrical engineering and electronics.

The change of particle energy is equivalent to its impulse change multiplied by
velocity. Therefore, to explain complicated energy spectrum in a given metal,
one needs to know the shape of Fermi surface and superpose electron velocity
with this surface. Increasing energy of any crystal (particularly, metal) can be
described as generation of new quasiparticles. The increase of conducting elec-
trons’ energy in metal is possible by moving at least one electron under the Fermi
surface into external impulse space. At that, the appearance of electron beyond
Fermi surface is always accompanied by unoccupied state in filled part of a
band—the hole, which can also be interpreted as a kind of quasiparticle—the anti-
particle to the electron that emerges from under the Fermi surface. Therefore
increasing energy of free electrons in metal is always accompanied by the birth
of two quasiparticles. Calling hole as an “antiparticle,” there is the possibility of
recombination: when electron returns “into its place” (under Fermi surface), metal
is returned again closer to its ground state, because both quasiparticles—electron
and hole—disappear.

Therefore from full Fermi sphere only those electrons that are located directly
beneath the surface and in small distance from it should be selected. For this reason,
it is important to identify and explore just nearest neighborhood of Fermi surface—
the portion of impulse space in which quasiparticles—electrons and holes—can
coexist. The mechanism of current flow through conductor might be rather intricate.
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Due to applied electrical field, electrons by infinitely small portions increase their
impulses (and energy); next, by collisions with foreign atoms, dislocations, bound-
aries of crystallites, and phonons (i.e., with any kinds of defects in crystal lattice),
electrons return its impulse, gained from electrical field, to the lattice. For electrons
located in fully filled areas deep under Fermi surface, such a process is impossible:
Pauli principle of exclusion prevents them to leave their energy levels; electrons can
only move from their level to the releasing level.

The quantum model of nearly free electrons is successful in theoretical descrip-
tion of many properties of metals. It has been found that in some cases the main cause
of Fermi surface complications is the interference effects, arising due to crystal peri-
odicity. This understanding allows building models of Fermi surfaces for polyvalent
metals, and, with the support of a variety of methods, specifies their quantitative
characteristics.

ELECTRON SCATTERING IN METALS

While referring to average free path or average free run time, the term “average’ has
two senses: all electrons are averaged (although one is scattered in a certain manner,
and another a little differently), or the obstacles, in which electrons are scattered,
are averaged.

An ideal crystal does not exist, with the absence of such a thing in nature. At
that, each violation of lattice periodicity is perceived as the barrier to electrons.
These obstacles can be the impurities of atoms that accidentally fall into crystal,
the boundaries of crystallites (usually metal consists of many small crystals—
crystallites), the vacancies that appear in crystal when regular sequence of ions is
disturbed, and so on.

Thus, in the real crystal, there are many varieties of defects. However, at normal
(room) temperature, the main cause of electron scattering (hence, the cause of which
electrical resistance) predominantly depends not on the static defects in crystal but
also on the thermal motion in lattice. Only at very low temperatures (near absolute
zero), when thermal motion is almost absent, the structural defects become main cen-
ters of scattering.

Mechanisms of electron scattering can be divided into three classes: collisions of
electrons with phonons (with thermal motion in crystal lattice); collisions of elec-
trons with static violations of crystal periodicity; and collisions of electrons with
each other [7].

Scattering on crystal defects. If it would be possible to create a perfect infinite
crystal, even in this case electrons will have a limited free path—due to the thermal
motion. However, free path in an ideal case infinitely increases with decreasing tem-
perature; the length of free path in a perfect crystal is the ideal free path l4, while
resistance of ideal crystal is the ideal resistance p;q.

In a real crystal, near-zero-temperature electrons collide mostly with static struc-
tural defects. The length of free pass that depends on these collisions is the residual
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free pass /.5, while corresponding resistance is the residual resistance p.,. This resis-
tance remains even if temperature is very close to absolute zero.

There is a simple rule, according to which the resistance p of a real metal is con-
sidered as the sum of ideal and residual resistances (Matthiessen rule):

P =Pid T Pres-
Analysis of experimental data supports this rule formulation. It has been experimen-
tally shown that in samples of the same metal (but with different additives) the tem-
perature dependence of resistance is quite similar. As shown in Fig. 5.9, one p(T)
curve is shifted relatively to another on value p.; — pPres2 (the number indicates
the number of sample).

In order to determine using Matthiessen rule what is the ideal resistance of metal,
there is no necessity to create a perfect sample (usually this is not possible). Tem-
perature dependence of real sample resistance should be extrapolated to absolute
zero. Accordingly, it is possible to find the p;4 for given metal, studying its nonideal
samples: p..s=p(T — 0) by subtracting from p(T') the part p,c.

Resistance caused by scattering. Average free path and average free time have a
simple meaning: the probability of collisions (scattering) w ~ 1/z. If in a crystal there
are several possible reasons for scattering, the probability of collisions is the sum of
probabilities of each obstacle:

W = Wres + Wid.
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FIG. 5.9

Experimental verification of Matthiessen rule for copper and its alloys; dotted line shows
copper with distorted structure.
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A comparison of w,, probability of collisions, correspondent to residual free pass,
and wjq, probability of collisions in perfect crystal, gives

1/lzl/lres+l/lid7

that is equivalent to Matthiessen rule, because resistance p = 1/o, while coefficient of
proportionality between p and 1// is independent of scattering mechanism. Thus it is
possible to divide various mechanisms of resistance, studying each of them
separately [7].

Electron scattering on phonons. The term “collision” needs clarification—it
should not be understood mechanically. In fact, just as electrons so also phonons
are waves, and interaction between waves should take place as between quasiparti-
cles; therefore the laws of energy and impulse conservation must be implemented
(Fig. 5.10).

Solid lines in the figure depict electrons, while dashed lines depict phonons;
near these lines, pulses and energies of electron and phonon are written, before
and after collisions. In the first case, collision does not occur, but electrons gener-
ate phonons. In the second case, there is electron and phonon collision. However,
here phonon “dies” (being absorbed by electron). It is possible to determine
whether such a process can really take place, by applying conservation laws to
impulse and energy [7]. Neglecting indexes, in both cases the conservation laws
can be recorded by the same way:

E(p) +ho=E(p+hk). (5.18)
7:5(5) 56(5)
¥ 1k ho (k)
5:5(5) 5e(5)

h/?,hw(ié)

FIG. 5.10
Symbolic description of electron scattering on phonon mechanisms.
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It is pertinent to recall that at electrical and thermal conductivity only those elec-
trons whose energy is close to Fermi level are primarily involved, wherein it
should be noted that Fermi energy is much higher than energy of phonon:
Er > ho=hwy.«=kzbfp. Indeed, Debye temperature usually equals 0 ~ 10°K,
while Fermi temperature of electronic gas is T ~ 10°K. Therefore in formula
(5.18) the value Aw can be neglected; therefore conditions of birth (or death) of pho-
non with absorption of its pulse can be simplified:

Ep(p) :Ep(p+hk)

This equation shows that this process is allowed, that is, just as the “birth” (gener-
ation), so also the “death” (doom) of phonon is possible. Turning to classic descrip-
tion, it is better not to speak about “birth or death of phonon” but about sound wave
radiation (or absorption). Radiation or absorption of sound waves is possible,
because the Fermi velocity much exceeds sound velocity in crystal: vz >> vgoung. This
condition always holds true: vy ~ 5 x 10° m/s, Vsouna ~ 3 x 10> m/s.

In order for collisions to take place, implementation of conservation laws is not
adequate: the effective interaction between colliding quasiparticles is also necessary.
Phonon is a quantum of lattice vibrations, while electron moves in the field of oscil-
lation ions. When ions are shifted from their equilibrium positions, interaction
energy between electron and ions varies; therefore, energy of electron-phonon inter-
action changes due to the shift of ions.

Calculations show that only that part of electrical resistance, which nature owes
to the collisions with phonons, turns to zero at absolute temperature. The point is that
collective motion (drift) of electrons is described by the average velocity that is very
low. An “average” electron cannot emit sound waves, that is, generate phonon, but it
can be dissipated on the oscillating ions. However, when such a condition is created,
under which average velocity of directional motion of electrons becomes greater,
then conductor’s resistance increases dramatically—"“average” electrons begin to
excite phonons.

Scattering of “average” electrons can be also described without using the under-
standing about phonons. Such an approach can be used not only to understand the
nature of electrical resistance, but also to estimate the ideal free path. Thermal
motion disturbs strong periodicity of lattice: ions oscillate in disorder and create dis-
ordered scattering. The probability of scattering w is a value inversely proportional to
average free pass: w=uvy/ly,, and this value becomes greater the larger the square of
amplitude of ion oscillation: x*. Correspondingly, the average free path of phonon lon
is determined by

1/l =N,

where N, is number of ions per unit volume. This formula means that the probability
of dissipation is proportional to the area that oscillating ion occupies in a plane, per-
pendicular to electron’s velocity. Calculations show that at all temperatures x* < a”;
therefore in the case of scattering on phonons, free path is much higher [7].
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The inefficiency of electron collisions on oscillating ions is an important phenom-
enon, which is a main cause of deviations from Wiedemann-Franz law. In the event
of collision, an electron changes its energy on phonon energy, while its impulse
changes on a value of phonon impulse. Estimations show that the module of impulse,
which is changed by phonon absorption, is very small compared with Fermi impulse,
and this confirms the fact that for a significant deviation of electrons a large number
of collisions are required.

When studying thermal conductivity, one needs to know how an electron loses its
heat. With each collision, an electron changes its energy by amount close to kgT.
Although an electron only slightly deviates from its path, nevertheless, it loses
energy. When colliding with phonon, the length of an electron’s free path /I (rela-
tively to heat loss) is much less than its common free path / for loss of direction.
The ratio of I7/l <« (T/6)? is a measure of collision inefficiency at low temperatures;
therefore deviation from Wiedemann-Franz law is possible. At higher temperatures
(T > 6p), the majority of phonons have energy kgT; therefore each collision
completely knocks electron out of its way, and, hence, if /7~ [ the Wiedemann-Franz
law is performed.

Electrons collision with each other. The term “gas” corresponds to the image of
many particles moving in different directions with different velocities; they collide
with each other and change their direction, exchanging by energy and impulses.
Electrons in metal also face each other and this affects resistance of metals, but only
in such a case when these processes are accompanied by the transference from one
band to another [7].

Both before and after collision, all energy states that are less than Fermi energy
are occupied. However, what kind of electrons exactly occupies these levels is
impossible to determine, because all electrons are indistinguishable (indistin-
guishability of electrons is one of basic principles of quantum mechanics). The con-
sequence of this principle is the infinite length of electron free path at absolute zero
temperature.

As the resistance is proportional to 1//, then a part of resistance, caused by elec-
trons collision, is proportional to square of temperature (pe ~ T°). However, this term
(in Matthiessen rule) can be reliably observed only in the transition metals; in
other metals this mechanism is not seen on a background of more significant
mechanisms.

Thus at high temperatures (T > 6p), the main reason for resistance in metals is the
scattering on thermal vibrations of ionic lattice (phonons), and, therefore,
Wiedemann-Franz law is executable. At low temperatures (T < 6p), the resistance
of metals can be submitted as a sum of three items:

P =Padd t Pph t Pel- (5.19)

The first item p,q4 is conditioned by scattering on impurities and it is independent on
temperature; the second item pp, that corresponds to scattering on phonons is pro-
portional to T%; the third item p.,, being responsible for scattering electrons on elec-
trons, is proportional to T*.
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The resistance in an ideal metal is determined both by phonon item p,;, and by
electron item p,. True properties of metal (i.e., peculiarities of given metals p;4) that
are not associated with technology of preparation of the studied sample can be deter-
mined by examining the “ideal part” of resistance using the Matthiessen method [5].

As a part of resistance piq = ppn + el 18 the fundamental parameter of given metal
(and it falls with decreasing temperature); therefore the desire to reduce resistance by
decrease of p,qq is natural. The art of growing pure metal samples at present is so
advanced that the average free path, in fact, is no more a microscopic parameter.
In most pure metals near absolute zero, the average free path reaches several milli-
meters. At that, in these pure metals at room temperature the free path of electrons is
approximately 10~°cm. Note that in atomic scales this free path is not so small: it is
about 100 times that of atomic distances. Therefore collisions are not a restricting
factor for freedom of electron movement in a metal.

SPECIAL ELECTRONIC STATES IN METALS

Based on quantum mechanics, band theory of solids successfully explains most prop-
erties of metals. However, in some cases, experiments are confronted with habitual
simple explanations, and these cases are not only important in themselves but also
allow to enhance understanding of some peculiarities of band theory. In this section,
highly unusual properties of some metallic alloys are discussed that extend the appli-
cation possibilities of band theory.

There is a special class of metals and alloys with strong anomalies in many prop-
erties: compounds of rare-earth metals, characterized by incomplete 4f-shell. Their
electronic properties are difficult to explain using existing concepts. The point is that
these substances are the intermediate materials between magnetic and nonmagnetic
materials as well as between metals and dielectrics, while valence electrons in them
are found between the localized and free states. Investigation of these compounds
helps to understand their metallic and magnetic properties, specify the conditions
of “energy band arrangement” in metal and dielectric states, and understand some
peculiarities of electronic states in crystals [9].

Metals with intermediate valence. During investigation of rare earth metal prop-
erties, the main attention is focused on a phenomenon known as “intermediate
valence” or “heavy fermions.” It is appropriate to bear in mind that all electrons
of atoms that form a solid can be divided into two groups: electrons strongly bounded
inside atom (in the residue) and electrons that can leave its atom—they either move
to another atom (i.e., from atom Na to atom Cl during formation of ionic rock salt
crystal, NaCl) or form covalent bonds (such as in germanium crystal). Electrons also
might be generalized within crystals, and this occurs with conduction electrons in
metals. In all these cases, the conception of atom valence is used, that is, a number
of electrons that can be detached and moved away from the atom in the process of
solid formation. For example, valence of Na is “+1” as in ionic crystal (NaCl) so also
in metal (Na).
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However, there are some known substances in which outward electrons demon-
strate a binary, ambivalent nature: keeping partly localized in “native” atom, they
also can demonstrate the intention to collectivization. Regarding the systems with
unstable valence (or intermediary valence), some compounds of rare-earth metals
can be included (those elements that have unfinished 4f- electron shells). These com-
pounds have unique physical properties and anomalous characteristics that can be
accounted for formation of heavy fermions: extraordinary electrons whose effective
mass is 10°~10° times greater than the mass of free electron.

Historically, the study of this phenomenon began when peculiar o~y phase tran-
sition in the metallic cerium was discovered. Most phase transitions in solids are
accompanied by a change in crystal symmetry, which means change in atom packing
in a lattice (as well as the spin ordering in ferromagnetics or dipole ordering in fer-
roelectrics). However, the a-y phase transition in Ce appears to be an exception:
when it occurs, the ordering in lattice symmetry does not change, but transition is
accompanied by an essential jump in crystal volume, reaching 15%.

Primary explanation of this phenomenon is reconstruction of electron structure of
ionic residue during a-y transition in cerium. This concept, with some additions and
changes, is still preserved, and even applied to many other systems. Recently, a
rather wide class of compounds have been found, in which valence instability is
accompanied by strong anomalies of almost all physical properties of correspondent
substances.

Among these systems, many features are close to the ordered magnetic states, and
some substances have been found to be ready to transform into the superconducting
state. This is quite unexpected: the antagonism between magnetism and supercon-
ductivity is well known (see next Section 5.7). However, an important fact is that
not only normal, but also superconducting properties of these substances are quite
unusual, which has led to speculation that these are a new type of superconductors
that differ from all available data.

Compounds with intermediate valence and heavy fermions, where anomalous
properties are most severe, include UBe; 3, in which uranium atoms form cubic lattice
while Be 3 atoms are placed between them, creating an almost regular polyhedron—
icosahedron Be, with another “extra” Be in the center of this icosahedron. There are
also some cerium compounds: CeAl; with hexagonal lattice, CeCug with orthorhom-
bic structure, CeCu,Si, with tetragonal lattice, and some others. Besides, there are
many systems with less-heavy electrons; they are compounds with the intermediate
valence.

Specific heat in metals with heavy fermions. Heat capacity is a well-known
defining characteristic of solids. In ordinary metals, electronic contribution to spe-
cific heat linearly increases with temperature: C =yT. At that, temperature depen-
dence of lattice specific heat corresponds to Debye law: C ~ T°. In sum, the
specific heat of normal metals is C =yT+£T°, but using scale (C/T)(T) more simple
for analyses dependence can be seen: C/T=y+&T* (Fig. 5.11A). In Fig. 5.11B, to
compare the behavior of ordinary metals (curve /) and metals with heavy fermions
(curve 2) another comfortable coordinates can be also used: (C/T)(T?).
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FIG. 5.11

Specific heat temperature dependence in various scales (A, B); comparison of normal metals
(1) and systems with heavy fermions (2).

Table 5.1 Proportionality Factor y=C/T and Magnetic Susceptibility y
in Different Metals

Crystal Cu Li CePds CeAl; CeCug CeCus,Si, UBeq3
y, mJ/molK? | 0.695 1.63 35 1620 1500 1000 1100
& (T—0) 0.008 0.03 1.5 36 27 8 15
10"3CGSE/

mol

Temperature coefficients of specific heat in normal metals and heavy-fermion
materials at low temperatures are given in Table 5.1. In conventional metals (Cu,
Li), the proportionality coefficient y =C/T is about 1 mJ/mol K?, while in the tran-
sition metals this ratio is greater by order of magnitude y ~ 10mJ/mol K?: this indi-
cates a particular behavior of electronic subsystem already present in transition
metals.

It is noteworthy that heavy-fermion systems have coefficient y even greater by
2-3 orders of magnitude (and the same applies to their magnetic susceptibility).
At that, CePd; is the compound with intermediate valence, while CeAls, CeCug,
CeCu,Si,, and UBe; are the systems with heavy fermions. If specific heat were
to be estimated as in normal metals, the observed values of y will correspond to
the effective mass of electron 10°-10% times greater than the mass of free electron.
Unusual is also the temperature dependence of specific heat (Fig. 5.11B).

Magnetic properties of heavy-fermion metals. In conventional metals with col-
lectivized electrons, magnetic susceptibility @ of free electrons is almost indepen-
dent on temperature: @ = const (Fig. 5.12A, curve 1). This is because @ (as well
as the temperature coefficient y of specific heat) is proportional to the effective mass
of electron. However, in paramagnetic metals (Fig. 5.11A, curve 2), temperature
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Comparison of normal metals and heavy-fermion metals: (A) temperature dependence

of magnetic susceptibility: 1-—nonmagnetic metal, 2—paramagnetic with localized
magnetic moments, 3—heavy-fermion systems, this susceptibility really is situated much
above than curve 2; (B) temperature dependence or resistivity: 1—normal metal, 2—metal
with heavy fermions.

dependence of susceptibility obeys Curie law: @& ~ 1/T, that is, parameter @ increases
as temperature decreases (sometimes, such substances at low temperatures can even
come to a state with magnetic ordering—ferromagnetic or antiferromagnetic).

In the systems with heavy fermions at low temperatures, increase of @(T) with
decreasing temperature is also seen, but, unlike paramagnetics, the increase reaches
saturation (stops at fixed temperature, Fig. 5.11A, curve 3). At that, any magnetic
ordering in systems with heavy fermions is not established (except for some special
cases, such as U,Zn;7), but temperature change of susceptibility @(T) enters onto a
mode, peculiar in conventional metals, when @ = const (such as in curve 1). It is nec-
essary to note that the quantity of this constant looks abnormally large (Table 5.1).
When T — 0 magnetic susceptibility in systems with heavy fermions may exceed
values of paramagnetic susceptibility of conventional metals more than 1000 times.

Previously, such a large value of paramagnetic susceptibility was supposed as
specific property of the ferromagnetics. Among ‘“nonferromagnetic” substances
the record shows metal Pd, in which at low temperature y(T—0)=0.7 x 107>
CGSE/mol. However, it is necessary to note that palladium is nearly a ferromagnetic
metal: adding to Pd only a few percent of iron makes it a typical ferromagnetic. Nev-
ertheless, in CeAls, for instance, paramagnetic susceptibility is 50 times greater than
in Pd, although no ferromagnetism in this alloy can be observed. Despite this, some
heavy-fermions systems, instead of magnetic ordering, become superconductors (we
recall that in classical cases superconductivity is incompatible with magnetism).

Electrical conductivity of heavy-fermion systems. It should be also recalled that
in conventional metals specific electrical resistance p decreases with temperature
fall, at that, approximately linearly. The resistance of pure metals, ideally, in case
of T— 0 tends to zero (Fig. 5.12B, curve 1), while in the presence of impurities small
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residual resistance can be observed. As stated earlier, positive temperature coeffi-
cient of resistance (which means negative temperature coefficient conductivity) is
the hallmark of metal.

By contrast, in semiconductors or dielectrics electrical resistance increases with
decreasing temperature and at 7 — O tends to infinity. Similarly, at a sufficiently high
temperature in the heavy-fermions metals p(7T") dependence resembles the behavior
of dielectrics or semiconductors that is quite atypical for conventional metals
(Fig. 5.12B, curve 2). However, at a certain temperature p(T') reaches a maximum
and then, as in metals, it decreases practically linearly in the low-temperature region.

Theoretical explanation of this unusual combination of properties of heavy-
fermions materials will be given later.

Band theory and heavy fermions. According to band theory, it is possible to
make a conclusion that all properties of solids depend on the ratio of free electron
number to the number of states in bands. If the quantity of electrons is just enough
to fill a certain band completely (while the next band that has higher energy remains
empty), those crystals belong to dielectrics or semiconductors (see Section 4.6). Inas-
much as electronic states are localized, under the influence of electrical field, no
electrical current can flow in such crystals. At zero temperature in dielectrics and
semiconductors, electrons in conduction band are absent, while valence band is
completely filled, in accordance with Pauli principle: every energy level can hold
only two electrons with opposite spins.

Another possible behavior of electrons is realized in metals, in which only lower
energy levels of the conduction band are filled, while the nearest energy levels are
available for electrons—without any energy gap. In this case, even arbitrarily small
electrical field can easily move electrons; therefore crystal exhibits metallic conduc-
tivity. It is appropriate to recall that highest energy level, occupied in metal at zero
temperature, is the Fermi level.

Therefore for most solids the states of valence electrons are clearly described: in
metals (such as Na, Al, Pb), semiconductors (such as Ge and Si), and typical dielec-
trics, such as NaCl. Metal type of electron behavior is symbolically illustrated in
Fig. 5.13A: it shows trajectories of collectivized (delocalized) electrons and elec-
trons localized near atoms. Conception of delocalized states supposes that internal
electrons of atomic residue have relatively small radius of their orbits and, of course,
these orbits vary only slightly in case of associations of atoms in a crystal.

However, quite another behavior is possible for electrons, based on the external
shells of atoms: they can be only partially tied with their native atoms, so only for a
while revolve around residue, but from time to time they move to neighboring atoms
like “free” electrons (Fig. 5.13B), and then return to the partially connected state.
These electrons are almost delocalized.

According to band theory, developed for crystal with entirely delocalized elec-
trons, they move in the periodical field of ionic cores: the result is formation of allowed
and forbidden energy bands. Electrons have effective mass m™* that is described by
energy near the bottom of energy band: E=p*/m*, that is, by the same equation
as for free electron, but with effective mass m* instead of free electron mass m,.
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Schematic representation of electron movement: (A) in metals with delocalized electronic
states, (B) in metals with heavy-fermion state.

The value of effective mass m* is closely connected with the width of conduction band
AE: m*~1/AE. If impulse of electron runs a certain value (actually, in crystal
|p| < h/a, where “a” is interatomic distance), the width of band is AE ~h?/ 2ma2,
that is, small effective mass meets the wide band, while large effective mass corre-
sponds to the narrow band.

However, another description of electron properties in solids is considered: the
delocalized electronic states, the collectivized electronic states, and the states of elec-
trons localized in atoms. Despite the fact that this discussion concerns metals, it
makes sense to consider whether all dielectrics are similar. Each substance, including
dielectric, is individually different from another substance by a specific set of attri-
butes: color change, hardness, electrical conductivity, and so on. Hence, it is not evi-
dent whether the nature of dielectric state is the same in various substances.

Corresponding to standard band theory, dielectric is a substance, in which
valence energy band is entirely occupied, while located above it conduction band
is empty and separated by the essential energy gap. However, not all dielectrics
are arranged exactly this way—another nature of dielectric state is possible.
Description of electronic structure of solids is based on the conception that an elec-
tron moves in the lattice, created by regularly situated atoms or ions. If there are
many electrons, it is assumed that they do not interfere with each other, and they
are allowed to occupy energy levels in accordance with Pauli principle. However,
in reality all electrons interact with each other; therefore it is necessary to compare
their interaction energy U with their kinetic energy, which is characterized by the
width of energy band AE. If U < AE, then simple band theory is applicable. If,
on the contrary, U > AE, the situation changes cardinally.

Formally, energy band can be completed only partially, but the movement of
electrons (that is required for charge transfer) is prevented by other electrons—
electrons of neighboring atoms. By their influence, they can “lock” each electron
in the atom and make the dielectric crystal, although based on energy band charac-
teristics it would be a metal. These substances are Mott’s dielectrics, named after
English physicist H. Mott. The width of band AE depends strongly on interatomic
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distance a, more precisely, on ratio between a and corresponding radius of orbital a:
the smaller the a,/a, the narrower the energy band.

Therefore, to obtain a status of “dielectric crystals” there is not only a single way,
but at least two: (1) complete filling of energy bands (in usual band diagram), and
(2) strong repulsion of electrons that leads to Mott type of dielectrics. Metals with
heavy fermions sometimes behave like Mott-type dielectrics (it suffices to recall
dependence p(T') shown in Fig. 5.12B, curve 2).

Specificity of rare-earth metals. The electronic structure of rare-earth com-
pounds is as follows: typical valence of rare-earth metals is “+3,” that is, three outer
electrons can be detached from the rare-earth atom and directed into the conduction
band (or form chemical bonds in the compound). As a result, ion R>** is formed,
which usually keeps incomplete 4f-shell. For example, in gadolinium ion (Gd**)
instead of 14 electrons permitted in the 4f-shell, only partial filling of shell is
observed: 4f, while in dysprosium ion (Dy**) only 9 from 14 electrons exists: 4f°
(Table 5.2).

As the f-states are located rather close to atom’s nucleus, they have a small radius:
ap~0.4 A. Tt is much smaller than the distance between atoms in solids that is usually
about 3 A. Therefore it looks like f-electrons are not involved in chemical bonding,
and it would seem that their state can be considered as localized; therefore they

Table 5.2 Electrons Spins Allocation in the Orbitals of Lanthanides
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64 Gd iy Do OO0O000 M
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70 Yb HEENMNEN B R OOO000 ©
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belong to the ionic residue. By analogy with Mott type of dielectrics, f-electrons
can be regarded as being located far on the “dielectric side” of Mott-type transition.
The nature of chemical bonding and the type of crystal lattice (which determines
metallic or dielectric properties) should have been identified only by three valence
electrons.

Therefore electrons of f-state strongly influence the magnetic properties of cor-
respondent crystals. If f-shell is only partially filled, magnetic moments of electrons
are not compensated, so total magnetic moment is nonzero. Thus such ions are sim-
ilar to elementary magnets. It is clear that the presence of these ions in crystal results
in the fact that crystal is paramagnetic with localized magnetic moments, and at low
temperatures these moments might be spontaneously ordered, making crystal either
ferromagnetic or antiferromagnetic, or might acquire a more complicated ferrimag-
netic structure.

Valence instability of rare-earth elements. This instability is caused by the fluc-
tuations of a valence. In conventional rare-earth compounds the valence of rare earth
ion is “+3” while f-shell is filled only partially. However, sometimes, the rare-earth
elements in their compounds exhibit the anomalous valence: “+4” or “+2.” For
example, among crystals, based on cerium, there is ionic compound CeF,, in which
cerium is clearly tetravalent, while the rare-earth metal Eu (europium) even in its
metallic modification can show properties with valence “+2.” Among other things,
it should be noted that europium is one of basic materials of magnetic semiconduc-
tors: EuO and EuS, where europium is bivalent.

Anomalous valence in the compounds is peculiar for rare-earth elements located
in the beginning, in the end, and just in the middle of rare-earth elements group
(Table 5.2). At the beginning of this period, there are Ce and Pr; in the end of the
period, there are Tm and Yb, and in the middle of the period, Sm and Eu are located.
The quantum theory offers a convincing explanation of this situation, which implies
that such electronic states have anomalies in valence stability, when 4f-shell appears
empty, or completely filled, or filled in exactly half.

Aforesaid can explain the nature of anomalous valence in compounds of
these elements. As cerium would have normal “+3” valence, its f-shell will have
only one f-electron. However, this configuration is competing with the empty con-
figuration of f-shell, that is beneficial to pull away from ion still one (the fourth) elec-
tron. The result is a state of fetravalent cerium, in which its f-shell is empty. This
situation is quite competitive, because its energy is close to the energy of conven-
tional trivalent state.

Similar arguments show, that, for example, compounds based on ytterbium ion
instead of valence “+3” (when 4f-shell has 13 electrons) might have an advantageous
condition for Yb?* in which f-shell is completely filled, that is, ny=14 (Table 5.2).
Similarly, for europium the valence of Eu’* state is competitive (and often preferred)
before expected Eu’*, because in a state Eu>* has exactly half-filled f-shell, ny="7.

The presence of similar energy states in rare-earth ions with different valences
significantly affects their properties, changing fundamentally all characteristics of
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(A) (B) (©)
FIG. 5.14

Electronic structure of ~metal, illustrating nature of transitions with changing valence;
conduction band is filled up to Fermi level Ef, while f-level marked as &r.

correspondent substances. The instability of ionic valence state leads to the emer-
gence of a special class of systems with intermediate valence, and, in some special
cases, heavy fermions.

A possible situation for metals is demonstrated in Fig. 5.14 (while the situation
for semiconductors is shown in Fig. 5.15) [9].

The normal state of a rare-earth metal with whole valence (i.e., with whole filling
of f-levels) corresponds to a picture shown in Fig. 5.14A. It is evident that for such a
rare-earth metal the energy Eyof f-level is much lower than Fermi level Ex. Accord-
ingly, in the semiconductor (Fig. 5.15A), f-level is located in the forbidden band
(energy gap) below the bottom of empty conduction band.

In metals with unstable valence, such a situation is realized, when level E is
located near the Fermi level Ep (Fig. 5.14B; or in the semiconductor Ey is located
close to bottom of conduction band, Fig. 5.15B). Complex configuration of f-orbital
leads to the fact that some external conditions can move Ey level, for example, this
level floats up when pressure increases or temperature changes (Figs. 5.14B
and 5.15B).

If, due to this displacement, the Eylevel rises sufficiently to cross the Fermi level
of metal (Fig. 5.14B; or cross the bottom of conduction band in semiconductor,
Fig. 5.15B), the energy of those electrons that occupy Eflevel becomes greater than
the energy of other states in conduction band, located between Ef and Er (most of

(A) (B) (©)
FIG. 5.15

Transition with a change in valence for compound that in initial phase is a semiconductor with
whole number valence.
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them previously were empty). It is obvious that this is not profitable energetically;
therefore the electrons will move from E level to empty states of conduction band
(Fig. 5.15B).

If the number of these empty states is large enough, this situation leads to dev-
astation of the Elevel (Figs. 5.14B and 5.15B). However, in a more general case, the
electron filling of E; level is arranged in such a way that only one of E; electrons
leaves each ion. Because of this, in the conduction band only one electron per ion
can be found (Fig. 5.14C; in semiconductors with rare-earth element—
Fig. 5.15C). This corresponds to the increase by one the valence of rare-earth ion.

This change in electronic state results in a fundamental modification of crystal
properties. Very often, a possibility occurs for transition from nonmagnetic to mag-
netic state. Indeed, if the initial situation (Fig. 5.14A) with localized electron on the
f-level remained unchanged, the system with localized magnetic moments can
become ordered at low temperatures (leading, e.g., to ferromagnetism). At the same
time, the situation with the f-level devastation (Fig. 5.14C) would lead to the
unpaired electrons leaving f-level, making localized in ion magnetic moments dis-
appear (Fig. 5.14C) that corresponds to normal nonferromagnetic metal.

Thus the position of f-level relative to Fermi level determines the presence or
absence of magnetic properties in a system: at that, a possible shift of the f-level
(e.g., under temperature action) may cause phase transition from a magnetic to
nonmagnetic state.

In the case of semiconductors, in conduction band the initial state is empty
(Fig. 5.15A), but after possible transition (Fig. 5.15C) some electrons appear in this
band and then can move freely in a crystal. In other words, the valence transition will
be also the transition of metal-dielectric type (such transitions are described in
Chapter 10).

There are some systems in which a new state of electrons can be implemented as
described earlier; however, the transition with a change in valence might be not com-
pleted in full, but stopped “halfway.” There are some compounds, in reality, that in
normal conditions (standard temperature and pressure) exhibit the intermediate sit-
uation. Many compounds with unstable f-shell are known, in which the intermediate
phase is realized; therefore this state demonstrates specific physical properties. Also,
in this case special electronic states are formed, and compounds with intermediate
valence are identified as possessing of “heavy-weight” fermions [9].

Thus, when such a state of intermediate valence occurs, in which f-level is located
very close to Fermi level, this f-level will be filled only partially. For example, exper-
iments show that, on average, f-electron level has only 1/3 of electrons. At that, a
possibility arises that a crystal, regularly or randomly, possesses atoms with two dif-
ferent types of f-electrons. If f-electron exists in every third atom, so, on average, one
atom holds only 1/3 of f-electron. Compounds of this type really exist: they include,
for example, crystals such as Eu;S4 and Sm3S,, very important for electronic tech-
nology, as well as well-known ferrimagnetic magnetite (Fe;0,).

At high temperatures, crystals Eu;S, or Sm3S, show a rapid exchange by elec-
trons that resembles Eu** < Eu>* transition and determines a conductivity of metal
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type. However, at lower temperatures, these electrons become “freezed” in their cen-
ters; therefore the segregation of valence occurs, that is, ions Eu?* and Eu®* now
become different from each other and occupy in the lattice fixed positions, alternat-
ing by a certain way.

This “freezing”-type electronic transition is the phase transition that is accompa-
nied by the restructuring of crystal lattice with the superlattice arising and essential
changing in electrical properties. It is this transition that actually occurs in the mag-
netite Fe;0, at temperature 119 K. This transition has long been discovered, and it is
the first experimentally studied metal-dielectric type of transition. Thus crystals with
intermediate value of average valence can be arranged simply as alternation of ions
with different but integer-valued valence. Such substances are the mixed-valence
substances.

However, systems with intermediate valence can be arranged differently. All
ions, that is, all centers of crystal lattice, are completely equivalent; at that, the con-
centration of centers is the same as unit cells, that is, about 10?2 cm 3. Therefore
they are not impurities but the principal system, and each cell contains rare earth
ions. Intermediate filling of f-level, that is, the fractional number of f-electrons per
one center, remains all times, but it captures the electron from f-level, sometime
(e.g., 1/3) holds it, and then throws out this electron into conduction band [9]. Then
the probability of finding any ion in the state of “f-electron” is 1/3 (while the prob-
ability of state “without f-electron” is 2/3), that is, on average, the chance of f-level
filling is 1/3.

This situation is symbolically illustrated in Fig. 5.13B: electron moves in the con-
duction band, then is captivated by a center on closed orbit, almost being localized,
sometime it turns again on this orbit, and next jumps back into the conduction band,
only to be caught again by some other center, and, possibly, by the same center. Thus,
in systems with intermediate valence, all centers are equivalent but each of them
shows the valence fluctuations, giving on average the fractional filling of f-state.
From a quantum mechanical point of view, this means that the total electronic wave
function ¥ is superposition of wave functions ¥, of the f-state and the state in con-
duction band ¥, that is, ¥ =a¥¥s+ ¥ ..

The “weighting factor,” with which ¥function is included in this sum, deter-
mines the probability to find electron in the f-orbital, because the average number
of f-electrons per one center is ny;=|a |2. This process of constant conversion from
f-state of electron into conduction band and back characterizes the probability of
such transition, or the lifetime of electrons in the f-state. Through uncertainty rela-
tion, Af- AE =h, the finite lifetime of state means the uncertainty of its energy.

Explanation of heavy-fermion system features. Abnormal behavior of heat
capacity (Fig. 5.11), as compared with conventional metals, follows from the fact
that basic electrical properties of metals in dependence on temperature are deter-
mined by the electrons located in the energy range kgT near Fermi level. Indeed,
in conventional metals at temperatures T =0 all states inside Fermi sphere are occu-
pied, while outside of it, when energy E > Ep, all states are empty. With increasing
temperature, a redistribution of electrons on energy states starts, inasmuch as some
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electrons gain energy and move into the empty states above Er. Accordingly, under
Fermi level the holes remain. At that, a rather small number of states of electrons are
exited: only in the range of kgT < Ef.

However, in systems with heavy fermions the number of states in the range kgT is
much greater (from two to three orders of magnitude!) than in conventional metals.
Therefore factor y is in many times larger (see Table 5.1). A high value of y (see
Table 5.1), observed in systems with heavy fermions, becomes understandable, as
well as a slightly smaller (due to increased width of f~zones) but still quite high values
of y in compounds with intermediate valence.

As for peculiarities of magnetic properties (see Fig. 5.12A), it should be noted
that heavy fermions below a certain temperature T* are degenerated, that is, they take
their “heavy band” according to Pauli principle, but above temperature T* they
become nondegenerated. Consequently, these fluctuations smooth out various sub-
levels and stop the growth of magnetic moment, which results in saturation of mag-
netic susceptibility @(T'). Magnetic properties of heavy-fermion systems also cause
anomalies in temperature dependence of electrical resistance (Fig. 5.12B).

Thus heavy fermions arise in such systems that contain the uncompleted 4f-shells
(or 5f-shells), where filling of electronic orbitals is unstable; therefore there is a prox-
imity of valence instability [9]. These fermions have a record high value of effective
mass, and the heaviest fermions are observed primarily in compounds of cerium and
uranium—just in the elements located in the beginning of 4f- and 5f-periods. Among
compounds with heavy fermions, there are magnetics as well as superconductors.

The mechanism of heavy electron appearance right at the Fermi level can be
rather complicated. Generally, different opportunities should be noted.

One such situation is when f-level itself goes to Fermi level and at low temper-
atures forms an energy district, where f-electrons are mixed with conduction elec-
trons. In this version, heavy fermions are primarily f-electrons themselves that are
found near the Fermi level, and they are partially delocalized. In this case, the inter-
action of f-electrons with other excitations in crystal (phonons, conduction electrons,
and maybe others) might play a special role. These types of interactions can result in
the narrowing down of energy band and, consequently, the effective mass of electron
increases.

In another tested case—electron-phonon interaction influence—effective mass
increases due to the “polaron” effect: electrical field of electron deforms crystal lat-
tice in its nearest surroundings, and then electron moves in a crystal, surrounded by
“coat” of lattice deformations created by electron itself. Similar interactions with
conduction electrons can lead to “electronic polaron” formation: deformed lattice
near heavy fermion that additionally increases its mass.

The interaction of f-electrons with each other is another possible mechanism of
their effective mass increase. Such interaction between electrons may even result in a
complete localization of electrons, that is, their mass becomes “infinite” (Mott’s
dielectric). However, if the limit of localization is not exceeded but only draws near,
the crystal can remain a metal, but with very a narrow energy band and, correspond-
ingly, with a large effective mass of charge carriers.
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SUPERCONDUCTIVITY IN METALS AND ALLOYS

Superconductivity is one of “cooperative” effects in the ensemble of conduction
electrons, but it cannot be explained using simple models within “independent
electrons.” Superconductivity is highly interesting in science and is important for
technique, in the sense that superconductors have no skin effect; therefore energy
losses are significantly reduced. In addition, as found by Josephson, the contact of
various superconductors, separated by thin dielectric layer, can produce microwave
generation, as well as enabling the creation of a variety of sensory devices.

Superconductivity was discovered about 100 years ago when comparing plati-
num and mercury electrical resistivity at cryogenic temperatures. The change in
resistivity p during deep cooling of platinum (Pt) and mercury (Hg), in which at
the time of conducting the experiment a superconductivity was discovered, is shown
in Fig. 5.16. Platinum is not a superconductor, but in the superconductor mercury
below critical temperature DC resistance becomes zero: p =0 (respectively, conduc-
tivity 0 =o00). In mercury this phenomenon occurs at 7.~4K, but in some others
pure metal temperature of phase transformation to superconducting phase is higher:
for lead T.~ 7K and for niobium T,.~9K. In the alloy Nb;Sn, transition tempera-
ture is T, ~ 18 K, while Nb;Ge reaches the highest transition temperature for super-
conducting metallic alloys: T.~23K.

Theory of superconductivity in metals (having 3D lattice) was created much later
after this discovery. Conduction electrons form the Cooper pairs (that belong to
bosons), and they can propagate in superconducting metals without any loss of
energy [1]. However, according to theory the temperature of superconducting tran-
sition cannot exceed 25K (in agreement with experiments conducted on metals and
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FIG. 5.16

Temperature dependence of resistivity of platinum and mercury; p»>73 means resistivity at
room temperature.
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alloys). This limit follows from the mechanism of electron-phonon interaction in the
3D regular structures.

Indeed, despite many years of research, either in pure metals or in metallic alloys,
effort to reach a higher temperature of superconducting phase transition than 25K
was not met with success. For this reason, application of metallic superconductors
in power engineering, electronics, and microwave technique necessarily requires
devices that could cool to liquid helium temperature (near 4 K). This leads to a very
high cost of cryogenic devices. Nevertheless, cryoenergetics with hardware elabo-
rated for helium cooling and superconducting alloys of NbsSn type are widely
applied. In microwave cryoelectronics, mainly niobium is used (in resonators and
millimeter range waveguides). In the devices based on Josephson effect, lead, tin,
and other superconductors cooled by liquid helium are applied.

In contemporary cryoelectronics and some electronic devices, cooling by liquid
nitrogen is also used (at 77K, i.e., 100 times less expensive than helium hardware);
this has become possible after discovery of high-temperature superconductivity.

Zero resistance of superconductors. Temperature of phase transition into super-
conducting state is critical temperature T.. Most prominent pure metals-
superconductors are lead, tin, niobium, and some others. Note that conductors, which
are best in normal conditions, such as copper, gold, or silver, cannot turn into super-
conducting phase: at very low temperatures, they are only cryoconductors.

Most known superconductors are alloys and composite compounds; their total
number is up to several hundreds, and growing. In particular, the substances that
belong to a family of high-temperature superconductors (HTS) consist of three, four,
and even five components. In principle, due to high-pressure technology, it is pos-
sible to transfer into superconducting state even typical dielectrics, such as solid
nitrogen and oxygen, but physicists expect the highest T in the solid hydrogen (how-
ever, superconductive “metallic hydrogen” up to now is not reliably prepared).

Magnetic field influence. It was found that superconductivity in metals can be
destroyed not only by temperature growth, but also under the influence of magnetic
field that is also the critical parameter, H... This effect is shown in Fig. 5.17 in a phase

A HIH,

1 /T,
FIG. 5.17
Phase diagram: dependence of superconducting phase S on relative temperature 7/7. and

relative magnetic field H/H, for superconductor of the first type; the border between
superconducting S and normal metallic phases N is shown.
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diagram of superconducting state S and normal state N. This diagram is drawn using
“normalized” temperature (ratio 7/T.) and “normalized” magnetic field (ratio H/H ).
However, such a diagram is characteristic only for superconductors of a first type. In
the superconductors of a second type (that are not considered here), the dependence
of T. on magnetic field is much more complicated [1].

Therefore superconducting state can be realized at very low temperatures and at
relatively small magnetic fields. Magnetic field influences the orientation of electron
spins: in the Cooper pairs (that mainly cause superconductivity) spins of interacting
electrons obviously must have opposite orientation.

Meissner effect. When temperature decreases below critical T, the superconduc-
tor completely forces itself out of the magnetic field: the first-type superconductivity
is incompatible with a magnetic field.

While an “ideal conductor” (i.e., not a superconductor) is first exposed to a steady
magnetic field, penetrating through it (Fig. 5.18A), and then is cooled down, the
magnetic field in it will be same, Fig. 5.18B (in this experiment, the conductor is
supposed as diamagnetic). However, the magnetic behavior of a superconductor is
quite different from an “ideal conductor” (Fig. 5.18C and D). When passing through
phase transition into superconducting state, it will actively exclude any magnetic
field presence. Expulsion of magnetic field from the superconductor at phase tran-
sition from normal to superconducting state is the Meissner effect.

As shown by direct experiments, at temperatures T < T, under external magnetic
field, regardless of how superconducting state is activated, inside of superconductor
any magnetization is always absent: B =0. Otherwise, this result is treated as zero
permeability of superconductor, that is, u=0. This fact clearly demonstrates that
a superconductor is quite different from an “ideal conductor.” Superconductivity
can exist when the external magnetic field is less than the value of critical field

(D)

FIG. 5.18

Diagram of Meissner effect. Magnetic field lines are represented by arrows: (A) ideal
conductor at elevated temperature; (B) same conductor at extremely low temperature;
(C) superconductor above T.; and (D) superconductor below T..
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(H <H,), and it is independent of previous history of a sample. Corresponding equi-
librium state is thermodynamically stable, and it can be characterized within thermo-
dynamic approaches.

Therefore one can make an important conclusion: superconductivity is such a
state of high conduction systems in which two conditions are always fulfilled:

p=0

n=0.
A theoretical explanation of Meissner effect comes from London equations [1]. They
show that magnetic field, actually, can slightly penetrate inside a superconductor, but
with an exponential decrease over a distance of 20—40nm. It is described in terms of a
special parameter: London’s penetration depth.

As a rule, at a rather strong magnetic field superconductivity disappears
(Fig. 5.17). However, known superconductors can be divided into two classes,
according to how magnetic breakdown occurs. In type I, superconductivity is
abruptly destroyed, when the strength of the magnetic field rises above critical value
H,.. However, in type II superconductors, magnetic field, which exceeds first critical
value H.;, converts the superconductor to a peculiar mixed state, when magnetic
fluxes can penetrate locally in the material, but, as a whole, the superconductor
remains as nonresistive up to achievement of second critical field H., (when electri-
cal current in the superconductor becomes too large). Pure metallic superconductors
usually belong to type I, while most superconductive alloys belong to type II.

Anomaly of heat capacity at phase transition. The change of energy and entropy
in a superconductor can be expressed through magnetic interaction; firstly, because
the magnetic field H is able to destroy superconductivity, and, secondly, the surface
current in a superconductor creates magnetic moment M that completely compen-
sates the external magnetic field applied to the superconductor. Calculations show
that at the point of phase transition into superconducting state specific heat must
show a jump (Fig. 5.19), and this expectation is confirmed by numerous experiments.
Indeed, a maximum of heat capacity at superconductor transition point exists despite
the expected linear increase C(T') in metals (in normal metals the electrons with their
half-integer spin obey Fermi-Dirac statistics that cause linear dependence C=yT).

However, it is noteworthy that not linear but the parabolic temperature depen-
dence of specific heat is seen below phase transition temperature, that is, in super-
conducting phase: C ~T>. This fact clearly indicates that statistics of electrons in the
superconductor is changed: now it is the Bose statistics that is a characteristic for
substances with the integer spin (Cooper pairs of electrons are bosons).

Quantization of magnetic flux. If one would take the ring of superconductive
material and induce a current in it by the external magnetic field (Faraday effect),
this current will flow in the ring indefinite time, because any resistance in the ring
is absent. To realize this experiment, superconducting ring should be taken at a tem-
perature higher than the transition temperature (7> T,); at that, lines of magnetic
field cross the area of a ring (Fig. 5.20A).
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FIG. 5.19
Specific heat capacity temperature anomaly in superconductor phase transition.
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FIG. 5.20

Quantum properties of superconductivity: (A) frozen magnetic flux through superconducting
ring; (B) schematic representation of Josephson contacts—weak connection.

Then temperature might be lowered below T, and the source, creating the mag-
netic field, is turned off. At the time of switching off the magnetic flux, the decrease
starts inducing electromotive force in the ring with a current. This current will pre-
vent the reduction of magnetic flux; therefore after turning off the external magnetic
field, the magnetic flux in the ring will remain at the same level, because it is sup-
ported by a current in the superconducting ring [2].

If this ring has a resistance R, after turning off the external field the current in the
ring (that has inductance L) will disappear with time dependence of exp(— t/7), where
7~ R/L. Since the superconductor has R =0, the time of current existence is = oo.
This means that the magnetic flux is “frozen” due to constant current in the super-
conducting ring. Moreover, this “frozen” magnetic flux has not any, but a certain,
value multiplied by @,=2.07 x 10~ Gs/cm?®. This parameter is a fundamental
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constant, the quantum of magnetic flux that can be expressed through other funda-
mental constants: @y=hc/2e. Magnetic flux quantization identically confirms the
quantum nature of superconductivity.

Josephson effects. These effects also demonstrate the quantum nature of super-
conductivity. There are two Josephson effects: stationary and nonstationary, and they
both belong to a weak superconductivity—when two semiconductors are connected
though any nonsuperconducting layer. This “weak coupling” can be tunnel junction,
thin-film narrowing, and, finally, simple touching of one superconductor to another
at a point (Fig. 5.20B).

The stationary Josephson effect is a small current, passing through the poor con-
nection, even if this weak link is a dielectric layer. Under created conditions, the weak
link does not show electrical resistance when movement of electrons in both supercon-
ductors is agreed coherently. The weak connection does not prevent superconducting
electrons to be in the same quantum ensemble. In other words, wave function of elec-
trons is able to penetrate the weak connection from one superconducting area to
another—this is the interference. All electrons in the macroscopic superconductor
can be described by a single wave function (such as electrons in individual atom).

The nonstationary Josephson effect is the increase of current through a weak con-
nection when voltage V is applied to it. Then, under the influence of voltage, in addi-
tion to constant component the variable current component appears, described by
frequency v, related to applied voltage by ratio v =2eV/h. The frequency of this gen-
eration is very high (located in the range of microwaves), and this frequency is a lin-
ear function of applied voltage. Nonstationary Josephson effect can be used to
generate microwaves in the GHz range [5].

Electron-phonon interaction. It is important that in superconductors the isotopic
effect is discovered: this means that the temperature of phase transition depends on
the mass of ions of crystal lattice. Such experimental data clearly indicate the active
part of lattice oscillations (i.e., ionic cores) to create the superconducting state.
According to results of theoretical analysis, interaction between electrons and lattice
vibrations is the main reason for superconductivity in simple metals and their alloys.
Under certain conditions, electron-phonon interaction might have a character of
attraction. If this attraction is stronger than Coulomb repulsion between electrons,
it dominates between charge carriers; as a result, at very low temperature, supercon-
ductivity looks as the more ordered and, therefore, more comfortable energy state.

For a simplified analysis of electron-phonon interaction, let us initially assume
that in a metal at temperature 7= 0 no thermally excited phonons exist (it is believed
that nothing disturbs a lattice or nothing interacts with it). When an electron moves in
crystal lattice with wave vector Ky, it can collide with a stationary ion, and due to
scattering process this electron will turn into another energy state with wave vector
k;. In such a case, one can say that “electron generates” phonon, which was absent
before scattering. Lattice is characterized by invariant translations; therefore the law
of impulse conservation has to be implemented:

ky =k/1 +q.
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FIG. 5.21

Diagram explaining electron-phonon-electron interaction in superconductors.

Next, this phonon can be absorbed by a second electron with wave vector k», forcing
it to move to state k,. As the phonon was generated and it disappears, the electron’s
impulse before and after scattering must be the same:

kl +k2 :k,l +k’2

It is considered that such scattering corresponds to the electron-phonon-electron pro-
cess, or otherwise, to indirect electron-electron interaction that can be characterized
by a diagram shown in Fig. 5.21. When electron goes from state k; to state ky, the
oscillations of electronic density occurs with a frequency

v=[E(k;)—E(K})]/h,

where E(k,) and E(kll) are energies of initial and final state of electron, respectively.

Suppose that as a result of such fluctuations of electronic density in one place this
density locally becomes increased. Positive ions of lattice will sense this temporary
attraction that occurs in this place. They will move to it, and, having relatively larger
mass and inertia, will continue their movement even after the compensation of local
negative charge is achieved. This, in turn, results in the excess of a positive charge in
the same place. Now it becomes the center of attraction for electrons, to where they
move toward from nearby regions. As a result, a dynamic picture is created in such a
way that it looks like an attractive interaction between electrons.

However, it should be noted that attraction by this scheme is only possible if dis-
tinctive frequency of such interaction is less than the own frequency of ionic subsys-
tem (last is characterized by Debye frequency vp). In order for electron to move to
state k’1 from its initial state k1, first of all, this state should be free (Pauli principle).
This is possible, as is known, only near the Fermi surface (or in the vicinity of Fermi
energy) that can be simplistically represented as a sphere of radius & in the k-space
(Fig. 5.22).

Next it is possible to formulate the rule of interaction of electrons via phonons
involving, or, finally, through interaction with them [1]. The electrons, whose energy
is different from Fermi energy on a value Avp, can attract together (with the remain-
ing electrons continuing to leave). Considerable attraction is peculiar only to those
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FIG. 5.22
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Schematic representation of Fermi surface in metal; interaction of Cooper electrons is
possible just near this surface layer.

electrons in which energy states lie in a narrow spherical layer around the Fermi
energy; its thickness 2Ak corresponds to energy 2hvp (Fig. 5.22).

High-temperature superconductivity (HTS) is possible not in classic metals but
in other crystals—semiconductors and even dielectrics. In these uncommon cases, at
low temperatures the conductivity, instead of smooth reduction to zero, can be con-
verted abruptly to endless value (despite relatively small concentration of charge car-
riers). At that, the energy of electron connection into Cooper pair is carried out not by
electron-phonon-electron interaction, but through some other mechanisms (excitonic
type) that also can result in superconductivity.

The crystals that have high density of excitonic states appear to be promising
materials for elaboration of high-temperature superconductors. For a long time, the-
oretical predictions showed the possibilities of electron attraction and Cooper pairs
rising by means of excitonic exchange. In principle, with such predicted mecha-
nisms, superconductivity can be obtained even at 300 K (currently, in 2017, high-
temperature superconductivity reaches temperature of about 200K).

When discussing the possibility of superconductivity, the term “exciton” should
be interpreted clearly: it means any polarized excitation in the electronic subsystem
of a crystal, including the variety of vibration modes of spatial or surface type. As
classic superconductors are three-dimensional (3D) metals or alloys, while excitons
can be extended only in dielectrics, the excitonic superconductor has to be both metal
and dielectric simultaneously, introducing a system of “crystal in the crystal.” This
system might be a complex substance, in which the metallic subsystem allows free
movement of electronic pairs, while the dielectric subsystem is the environment for
excitons spreading that join electronic pairs. In this case, the dimensionality of a mat-
ter should be decreased.

Among other possibilities, excitonic mechanism of electron coupling in Cooper
pairs might be possible in the one-dimensional system (1D, needle-like crystal). It is,
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for example, the long well-conductive molecule thread with easily polarizable side
radicals that can provide attraction of conductive electrons due to excitonic
exchange. The presence of excitons makes an appearance of high-temperature super-
conductivity possible because excitons can compensate Coulomb repulsion of elec-
trons. However, achievement of superconductivity in the 1D crystal is almost
impossible due to thermal fluctuations (so-called Peierls prohibition). Nevertheless,
in the 1D system phase transition from the quasimetallic phase to the high-¢ dielec-
tric phase is possible: quasi-1D highly conductive (above T,.) system at low temper-
atures turns into “superdielectric” with £~2000 [5].

In the vicinity of phase transition, physical properties of 1D structure are very
sensitive to fluctuations. Theoretically, in 1D longitudinally ordered structure a full
disordering (with violation of main properties) can occur just in one point. However,
in reality, in quasi-1D structures (thin, needle-like, but still macroscopic crystals by
their thickness), the situation changes, and stability of system to fluctuations
increases due to the interaction between neighboring “threads” of such structure.
The degree of “three-dimensionality” is qualitatively assessed by degree of anisot-
ropy of conductivity and permittivity in these crystals. Three-dimensional interac-
tion not only can “extinguish” fluctuations, but also can suppress Peierls
transition. Due to this suppression, in some quasi-1D structures superconductivity
becomes possible: for example, in the polymer (SN), that is, a quasi-1D supercon-
ductor, the dielectric phase does not occur; however, temperature of transition is very
small (T=0.3 K).

Impact of fluctuations onto the phase transition of metal-dielectric type of crys-
tals is minimal in ordinary 3D structures, in which violation of ordering should occur
on certain surface inside a crystal. The 2D structures, in terms of resistance to fluc-
tuations, are found in intermediate position, as for destruction of their ordering, that
is, “fluctuating break” should be seen on certain /ine (but not in a point as for ID
structures). Therefore, in quasi-2D structures, the probability to obtain superconduct-
ing state is much greater, than in 1D structures.

Electron formation into the Cooper pairs is promoted by large permittivity (¢) that
strongly reduces Coulomb repulsion of electrons. As is known, at helium tempera-
tures some paraelectrics and ferroelectrics have very huge permittivity. Indeed,
superconducting phase transitions in these dielectrics were first discovered in the
doped strontium titanate (it has e~40,000 at temperature T <4K), as well as in
narrow-gap ferroelectric-semiconductor SnTe (e ~2000). Although the temperature
of superconducting transition in these dielectrics is less than 0.3K, a possibility of
superconductivity in these cases seems fundamentally significant.

This opportunity is used to find HTS in the mixed oxides of the perovskite struc-
ture (which is a typical structure for ferroelectrics). HT'S was discovered experimen-
tally only in 1986, although theoretical prediction of this phenomenon was long time
before, known as for 2D and 1D nonmetallic structures. Theoretically, the mecha-
nism of electron interaction by excitonic exchange in these structures has no
temperature limit.
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History of superconducting materials research.

A short history of HTS is shown in Fig. 5.23. Among superconductive 2D sys-
tems (complex oxides), first several tungstates of A,WO; type were discovered (A is
alkali metal). Phase transition into superconductive state in tungstates was observed
at temperatures up to 7 K. Then it turned out that in another complex oxides super-
conducting transition occurs even at temperature near 7= 13 K, for example, in the
compound LiTi,_ ,O4 and in the ferroelectric BaPb;_ Bi,Os. This solid solution is
of interest not only because superconductivity occurs in the material with low density
of charge carriers, but at relatively high temperature. Similar to most ceramic mate-
rials, BaPb; _ \Bi, O3 demonstrates chemical and thermal stability; these ceramics can
be made by a standard technology (including thin films). Films of ferroelectric-oxide
superconductors are considered as promising for use in various devices of cryogenic
(helium) electronics.

Finally, a significant increase of superconducting phase transition temperature is
achieved: firstly, up to 40K in ceramic compound La,Ba;_ ,CuQy,, next supercon-
ductivity is discovered above nitrogen temperature (liquid nitrogen boils at temper-
ature T=77K). The mechanism of superconductivity is of a bipolyaronic type:
polarons bound in Cooper pairs (like electrons in metallic superconductors). The dis-
covery of HTS in the polycrystalline oxides, such as compounds Y,Sr;_,CuOy,
(T.~35K, Nobel Prize for 1987) and YBa,Cu;0;_, (T.~ 100K), becomes the basis
for new components of electronic equipment [5].

In 2001 superconductivity in the fusion MgB, (magnesium diboride) was discov-
ered with relatively high transition temperature: T.=40K. The crystal structure of
this substance consists of boron and magnesium layers (earlier certain compounds
of copper and oxygen, so-called cuprates were believed to have HTS properties).
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In 2008, several iron-based compounds became known as superconducting at high
temperatures. At present, the “record” of HTS is 203 K: in hydrogen sulfide (H,S)
under pressure of 150 gigapascals. Theoretically, there is possibility of supercon-
ducting materials development with an operating temperature of 300K (available
experimental information is controversial).

Thanks to the discovery of HTS, it becomes possible to construct high-speed
computer memory devices, microwave converters and generators, electronic sensors,
and others. Microwave technique from many of HTS mainly uses the composition
designated as “1-2-3” with the chemical formula YBa,Cu3;0;_,. In Fig. 5.23 this
compound is designated as Y-Ba-Cu-O that has a transition temperature slightly
higher than 100K. This transition temperature is sufficient for HTS application at
a temperature of 77K, that is, with cooling by liquid nitrogen. This type of cooling
costs hundreds of times less than cooling by liquid helium. Moreover, at increased
operating temperature of HTS, microwave devices can be applied in the space elec-
tronics. The technology of “1-2-3” composition is well developed: Y-Ba-Cu-O is
prepared as thin poly- and monocrystalline films, deposited onto dielectric substrates
that have low microwave losses, such as MgO, LaAlO;, Al,O3 (sapphire), and so on.

In high-frequency and microwave technologies, conductors and superconductors
are compared by their surface resistance R, measured in ohms. For ordinary metals
the value of Ry is defined by the skin effect, then

Ry = (1/2pp00)"",

where p is resistivity, yo is magnetic constant, and @ =2zv is circular frequency.
Thus, Rg in conventional metals slowly increases with frequency as /v.

In superconductors, particularly in HTS, the skin effect is absent, but there is
another effect uncomfortable for microwave applications: the depth of penetration
of electromagnetic field in surface of superconductor. The reason is the presence
of not only Cooper pairs of electrons (which do not cause any resistance), but also
ordinary electrons that make such a resistance in superconductors. It is determined
that at high frequencies in superconductors, Rg is nonzero, and it rather increases fast
with frequency: Rg~1”.

Theoretical calculations are well documented experimentally. Frequency charac-
teristics of the best (at room-temperature) conductor, copper at 77 K, niobium in the
normal state (at temperature 300K), and in the superconducting state (at liquid
helium at temperature 5.2 K) are compared in Fig. 5.24. The most important in this
figure is the frequency dependence of the Y-Ba-Cu-O film: surface resistance
increases with frequency very rapidly as in classic superconductor Nb, so also in
the HT'S film. Therefore, at millimeter waves (100 GHz and above), superconductors
have no advantage over copper.

However, at frequencies lower than 20 GHz, the HTS electrodes have a signifi-
cant advantage as compared to Cu (even being cooled to liquid nitrogen, 77 K). At
that, electrodes made of niobium look better than HT'S, but they need very expensive
cooling by helium. Superconducting YBa,Cu30,_, films deposited on dielectric
substrates are successfully used instead of the usual superconductive metals in
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Frequency dependence of surface resistance in superconductors and copper.

microstrip and coplanar microwave devices, thus allowing obtaining record high-
quality filters, phase shifters with small losses of energy, and other passive micro-
wave devices [5]. There are also some active devices based on the HTS films that
use Josephson effects.

SUMMARY

1. Mechanical properties of metals are characterized by great durability, hardness,
and other parameters; these properties are dependent on mechanical and
thermal processing, determining structural defects and impurities. Annealing of
metals results in a significant decrease in their strength and increases their
compliance. Assuming metal as a system, in which positive ions are fastened by
means of freely mobile electrons, corresponds to basic properties of metals:
ductility, plasticity, high values of thermal conductivity and electrical
conductivity.

2. Most metals crystallize in one of three main structural types: cubic or hexagonal
dense packing and space-centered cubic lattice. In dense packing, each
metal ion is located at equal distances from 12 nearest neighbors.
Interatomic distances in crystalline structure of metals are characterized by
“metallic ionic radius.”

3. The negative temperature coefficient of electrical conductivity should
be considered as the most characteristic physical feature of metals, that is,
electrical conductivity decreases with increasing temperature. At that,
temperature dependence of conductivity is close to law o(T) ~ T~ '. In case

.
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of deep cooling, the ¢(T") dependence shows saturation, the level of which
depends on concentration of static defects. In metals that have ferromagnetic
impurities at low temperatures, the o(7T") dependence may show even a decrease
while cooling.

. Electromagnetic waves up to optical range are almost entirely reflected from the

surface of a metal, so that metals are nontransparent for electrical field

and demonstrate metallic luster. Metals have high thermal conductivity 4,
[W/(Km)] caused by high-mobility electrons; at that, thermal conductivity A,
is proportional to conductivity o. The uniformity of ratio A./o for various
metals is Wiedemann-Franz law. Electrons in metals are always found in fast
movement; they move even at lowest temperatures (near absolute zero).

This motion of electrons is chaotic; therefore different electrons move with
different velocity. In most metals, electrons move with Fermi velocity:

Vp ~ 10° m/s.

. In an “ideal metal” with infinite conductivity, electrical field cannot exist.

In a real metal only very small electrical field can be applied, as high
current will lead to metal melting. In the presence of external electrical field,
the current flows through a metal, that is, movement of electrons becomes
partially directed; electron drift superimposes over their chaotic movement.
To calculate, this current one needs to estimate average drift velocity v,
(velocity of chaotic motion is independent of applied field).

. Direct proportionality of electron drift velocity to strength of electrical

field is characterized by the mobility. Mobility characterizes the resistance

of substance to electron drift in direct electrical field. If inhibitory force is
absent, then electrons will move in the electrical field with acceleration
(such as in vacuum), but not with constant average velocity as they

move in crystals. Therefore mobility is degree of electron freedom in crystals.

. One experimental method of electron concentration n, measuring in conductors

(and semiconductors) is Hall’s effect—the difference of potential across
investigated sample placed in perpendicular magnetic field, when current
flows through the sample.

. Magnetoresistance is the change of material’s electrical resistance in

magnetic field. It depends on the sample orientation relative to the

magnetic field; that is, magnetic field does not change projection of particle’s
velocity on direction of magnetic field, but, due to Lorentz force, bends

the trajectory in plane perpendicular to magnetic field.

. Movement of electron in real metal under external electrical field is not

continuous but interrupted: as soon as electrical force appears, the electron
starts moving with acceleration and its velocity gradually increases, but
also the force of “friction” increases that is proportional to electron’s
velocity. After time 7 = m,u the inhibitory force compensates completely
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the acceleration force; therefore electron (or hole) moves with constant velocity.
The time constant, characterizing installing of steady state of electron
movement in metal, is small: 7 ~2 x 10~ .

Parameter 7 is average time between two collisions of electron; using its
product by Fermi velocity v it is possible to estimate average free path &
(middle distance between electron collisions): oy = 6. Charge transfer in
metals is carried out by electrons and holes located near Fermi surface; they take
energy from applied electrical field. As far as electrons (being excited by
external field) move to higher levels, they are replaced by other electrons,
previously located much deeper under Fermi level.

At high and ultrahigh frequencies (10°~10"" Hz), electromagnetic field
penetrates into conductor (metal) to a small depth, and damps the faster the
higher field frequency and magnetic permeability of metal. The result is
nonuniform distribution of current density in the cross section of conductor—
this is the surface effect (or skin effect).

Heat can be extended in metal rather easily by the same free electrons that
determine metal conductivity. Thermal conductivity of metals is high as
number of electrons per unit volume of metal is large. Therefore electronic
thermal conductivity 4, in metals usually is much higher than heat transport
by phonons 4, in dielectrics that have predominantly lattice-vibration
mechanism of thermal conductivity.

Despite large electronic conductivity, metals under normal conditions

(T ~300K) give a rather small electronic contribution C, to specific heat.
However, electronic contribution to heat capacity of metals increases in
direct proportion to absolute temperature: C, = £T without any saturation at
high temperatures. Besides, it is necessary to note that in metals at very
low (cryogenic) temperatures heat transferred by “electronic gas” can
surpass phonon contribution to specific heat.

In case of two different metal connection (and semiconductors also), the
difference of contact potential occurs between them. If these connections are
found at different temperature, a thermoelectric power is caused due to
distinction in electronic work functions of two metals; thermoelectromotive
power is dependent on free electron concentration in relevant metals.

Classic electronic theory of metals is based on Drude hypothesis about free
electronic gas. This theory enables to explain and describe analytically most
experimental data in metals (conductivity, power losses, relationship
between electrical conductivity, thermal conductivity, etc.). In addition,
some experiments confirmed the hypothesis of electronic gas, such as the
curvature of electron trajectory in metal placed in transverse magnetic field,
as well as the change of electrical resistance in magnetic field. However,
Drude’s theory has contradictions with some experimental data. For
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example, this theory cannot explain experimentally observed paramagnetic
susceptibility in some metals; another discrepancy is the theoretically
obtained value of specific heat: experimentally seen specific heat of metals
is much less than it follows from Drude’s theory (it looks like electronic
gas hardly absorbs heat while metal is heated). Quantum mechanics
overpasses these contradictions.

Unlike classic electronic theory, quantum mechanics show that electronic gas in
metals under normal (and higher) temperature is found in the state

of degeneration. In this state, the energy of electronic gas is almost
independent on temperature, that is, any alterations in thermal motion of
ionic lattice almost do not change energy of free electrons. Therefore,

while crystal is heating the energy practically is not consumed by electronic gas,
as clearly seen during heat capacity measurements. In a state similar to
conventional gases, the electronic gas would have temperature estimated as
thousands of degrees.

Quantum mechanics explain why for metals normal temperature looks like very
“low”: because Fermi energy of electrons in metals is large (about 5-10eV).
Electronic gas in metal is always degenerated; therefore energy distribution
function at normal temperature varies only in narrow range kgT near Fermi
energy level. From Fermi surface electrons can be easily transferred to the
allowed higher energy levels; for this reason, metals are good conductors of
electricity.

Fermi surface in the space of impulses at 0K separates occupied by

electron ground states from the empty states. At nonzero temperature, most
electrons, however, are placed under Fermi surface, and only some of them
shift outside of it (in energy stripe kgT). Fermi surfaces in different metals
might have quite a different form. In metal energy, increase can be described as
the birth of quasiparticles. The increase of electron energy in metal is
possible by moving at least one electron under Fermi surface into external
allowed level in the impulse space. At that, the appearance of this electron above
Fermi surface is accompanied by unoccupied state below Fermi surface—the
hole, which can be interpreted as a kind of quasiparticle that is the antiparticle as
to the born electron. Therefore increasing energy of free electrons in a metal
always is accompanied by the birth of two quasiparticles. Calling hole as
antiparticle, there is the possibility of its recombination, when electron will
return “in its place” under Fermi surface, and metal again returns closer to its
ground state, because both quasiparticles—electron and hole—disappear.

Behavior of conductors in magnetic field can be determined, taking into
account, firstly, that magnetic field does not change energy of electron
(Lorentz force vector is directed perpendicular to velocity of electron),
and, secondly, Lorentz force has no effect on electron, which moves along
the magnetic field.
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Mechanisms of electrons scattering (collisions) can be divided into three
classes: (1) electron collision with static violations of crystal periodicity;

(2) electron collision with thermal motion of lattice (phonons); (3) collisions of
electrons with each other. At normal (room) temperature, the main cause

of electron scattering, and, hence, resistance of metal is not due to crystal
lattice defects, but to phonons—thermally excited wave-type motions of ionic
lattice. Only at very low temperatures (near absolute zero), when thermal
motion in crystal is almost frozen, scattering on defects of structure becomes
a more important mechanism of electrical resistance.

In recent years, an important class of solids with anomalous properties was
discovered: they are compounds of rare-earth metals, characterized by
incomplete 4f-shell. Their electronic properties are difficult to explain

using existing concepts. These substances are intermediate between magnetic
and nonmagnetic materials, as well as between metals and dielectrics,
because most of their electrons are found among localized and free states.
Studies of these compounds help to understand many properties of metals
and magnetics, to extend conceptions of band theory for metallic and dielectric
states, as well as to investigate possible types of electronic states in crystals.

Some compounds and metals are known, in which electrons have the binary,
ambivalent nature: keeping largely localized (atomic) nature, they also can show
intention to collectivization. Systems with unstable valence (or intermediate
valence) belong to compounds of rare-earth metals and actinides, that is, the
elements that have incomplete 4f- or 5f-shells. These compounds have unique
physical properties and anomalous characteristics that explain formation of
heavy fermions—peculiar electrons that have effective mass 10%-10° times
greater than mass of free electron.

Heavy fermions arise in such a system where the proximity of valence instability
exists. Such fermions have large effective mass; the heaviest fermions are
observed primarily in compounds of cerium and uranium—the elements located
in beginning of 4f- and 5f-periods. Among compounds with heavy fermions,
there are magnetic materials, disordered in their normal state crystals, as well as
superconductors.

Superconductivity is one of “cooperative” effects in the ensemble of
conduction electrons, and it cannot be explained by simple models of
“independent electrons.” Superconductivity is interesting in the sense that
superconductors have no skin effect and can significantly reduce energy loss.
In superconductors, two effects were found by Josephson: (1) current that
flows indefinitely long time without any voltage applied across a junction
that consists of two superconductors, parted by weak link; (2) when external
voltage is applied, Josephson junction demonstrates effect of microwave
generation. Using these effects a variety of sensitive electronic devices are
elaborated.
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25. DC resistance of superconductor is zero: p =0; respectively, its conductivity is
the infinity: ¢ = oco0. This phenomenon was first discovered in mercury at
temperature T, ~4K, but in some metals and alloys, phase transition into
superconducting state is observed at higher temperatures: for lead T, ~7K,
for niobium 7, ~9K. In alloy Nb3Sn transition temperature is 7. ~ 18 K, while
alloy Nb;Ge shows highest observed temperature for metals: T. ~23 K.

26. The nonstationary Josephson effect arises if voltage V is applied to a weak
connection; in addition to constant component of current, the variable
component appears that is determined by frequency v connected with voltage by
ratio: v =2eV/h. This generation lies in ultrahigh-frequency range, and its
frequency is a linear function of applied voltage. Nonstationary Josephson effect
is used to generate microwaves in the GHz range.

27. Phase transition temperature of superconductors is their critical temperature T..
For cryoelectronics, among most prominent superconducting metals are lead
and niobium. Best (under normal conditions) metallic conductors, such as
copper, gold, and silver, whose resistance at temperature 300K is minimal
among other metals, cannot have superconducting state. At low temperatures,
they are only cryoconductors.

28. Discovery of high-temperature superconductivity (HTS) in polycrystalline
oxides, for example, in YBa,Cu;0,_, (T, =100K), becomes a basis for
new components of electronic equipment. At present (year 2017), the
“record” of superconductivity appearance is 203 K. Due to HTS the high-speed
memory devices for computers, microwave converters and generators, as well as
other electronic devices are constructed, cooling by liquid nitrogen (77 K).
Theoretically, the possibility exists to develop superconducting materials with
an operating temperature 300K.
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Magnetism is a special kind of physical interaction from a distance between moving
electrical charges (that creates magnetic moment), as well as the interaction between
particles and bodies with naturally existing magnetic moments. Magnetic interaction
is characterized by the magnetic field.

There is no complete symmetry between magnetic and electrical fields. The
sources of electrical field are electrical charges, but similar single “magnetic
charges” are absent in nature. That is why, the sources of magnetic field are also elec-
trical charges, but only the moving charges (even if this movement is hidden in ele-
mentary particles). Cyclically moving charges create magnetic moment, also called
the magnetic dipole.

Any material is magnetosensitive in its nature, that is, it interacts with an external
magnetic field and has certain magnetic property. In every matter, elementary circu-
lar current exists, such as the rotation of electrons around the nucleus (orbital mag-
netism) and fictitious rotation of electrons around their own axis (spin magnetism).
These movements lead to orbital and to spin magnetic moments, both created by the
electrons. Magnetic moment of electronic shells of atoms determines magnetic prop-
erties of any material, because this moment is 1000 times greater than the magnetic
moment of the atomic nucleus. That is why exactly the peculiarities in electronic
structures of atoms stipulate differences in magnetic properties of substances [1].

Magnetic materials are widely used in many areas of technologies: electronics,
electrical engineering, information, computing and measuring instruments, and
others. In recent years, a qualitative “jump” in the development of magnetic mate-
rials is seen, and on this basis, new types of electromagnetic and magnetoelectronic
devices with unique properties are created owing to scientific discoveries in the phys-
ics of magnetic materials and advanced technologies.

Electronic Materials. https://doi.org/10.1016/B978-0-12-815780-0.00006-2
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The current stage of magnetic device development is characterized by the tran-
sition from the use of discrete magnetic components to the application of homoge-
neous magnetic environments, when magnetopolarized charge carriers by their
directional movement create magnetic domains. Low-inertia reorientation of mag-
netic domains is widely applied in magnetic electronic devices. The small size of
magnetic domains together with their high mobility can create on their basis various
functional devices that have large memory (10°~10'° bits) and high density of infor-
mation (10°-10'° bits/cm?), as well as characterized by great speed of processing
(10°-108 bit/s) [2].

Further progress in the creation of materials with new properties is due to the
development of nanotechnologies for supersmall elements. This progress is associ-
ated with the changes in the structure of matter, thus affecting its fundamental prop-
erties. Currently, it has become possible to “manage” properties of substances by
decrease in their fragmentation (dimensions). At present, most technical implemen-
tations of nanoelectronic elements are observed only in the magnetic electronic
devices [3]. Based on microelectronics and nanoelectronics, one of the promising
areas of functional electronics is the development of magnetic electronics, which
is qualitatively new stage in the creation of components to build a broad class of log-
ical and storage devices, as well as various information-processing devices.

At present, magnetic materials with large magneto-optical effects are synthe-
sized, and they combine good transparency of the material in visible and near-
infrared regions of the spectrum. On this basis, many advanced magneto-optical
elements and devices are developed: magneto-optical drives, controlled banners,
printers, deflectors, integrated optics elements, various converters, and so on. Owing
to a variety of types of magnetic materials, their properties and manufacturing
methods promote the creation of new items and devices. Magnetic electronics
require the development of electronic equipment through the knowledge of physics
of magnetism, features of magnetic interaction in solids, getting control over
manufacturing technology materials with different properties, and exact understand-
ing of modern technology and trends.

This chapter focuses on the physical fundamentals of magnetism in solids, pro-
cesses that determine principles of magnetic electronic devices, as well as operation
characteristics, requirements, scope, and prospects of development of magnetic
devices.

BASIC DEFINITIONS

For quantitative description of magnetic phenomena in solids, the axial vectors are
introduced: magnetic field H, magnetic induction B, magnetic moment M, magnetic
flux @, and magnetization J.

The magnetic field is specified by its direction and strength; it characterizes mag-
netic effect, which is created by electrical currents or by internal magnetic properties
of materials. The symbols B and H are used for two distinct but closely related fields.
In ST units, the vector H is measured in amperes per meter [A/m], whereas vector B is
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measured in Newton per meter per ampere [N/(m-A)] =tesla [T]. Magnetic induction
B sometimes is also called as “magnetic field” (it is, most commonly, defined in
terms of Lorentz force, which acts on moving electrical charges).

The magnetization (magnetic polarization) is also an axial vector field that
expresses the density of permanent or induced magnetic dipole moments in a mag-
netic material. It can be compared with electrical polarization, which is the measure
of response of a material under an electrical field. Magnetic moment per unit volume
is represented by the vector M. Sometimes, during practical investigation of magne-
tism, the magnetic flux ® through surface is also used. This is the surface integral of
the normal component of magnetic field B, which passes through the surface; the SI
unit of magnetic flux is weber (Wb=V's), whereas the CGS unit for magnetic flux is
maxwell [1].

Magnetic field strength H, in a more specific description, is defined as a
certain distance / from the conductor through which current / flows, and it is given
by H=1/2xl. This ratio determines the field dimension in SI unit [A/m]. According to
this definition, magnetic field H is not dependent on the magnetic properties of a
medium. For example, in the center of a round loop of wire with radius R and circular
current /, the magnetic field H =1/2R regardless of the environment. The unit of mag-
netic field H in the CGS system is oersted (abbreviated as [Oe]), which is identical to
dyne/maxwell. The oersted is 1000/47~79.6 [A/m].

Magnetic induction B is the main characteristic of the magnetic field in the mate-
rial: it is the average value of the total intensity of microscopic magnetic fields gen-
erated by individual electrons and other elementary particles. In vacuum, magnetic
induction B is defined only by an external magnetic field: B=puoH. To make agree-
ment between dimensions of parameters that are used in magnetism, the SI system
uses po=1.25-10"" H/m (symbol [H] =“henry” is the unit of electrical inductance in
the International System of Units). In the Gauss system (GHS), the unit of magnetic
induction is [Gs] and includes a ratio: [T]= 10* Gs.

Magnetic moment M is one of the important characteristics of magnetic properties
of a body. The sources of magnetism are both macroscopic and microscopic electri-
cal currents. Magnetic moment vector is expressed by an analogy with electrical
dipole moment, only remembering not electrical dipoles, but magnetic dipoles
(formed by electrical currents in closed circuits). Magnetic moment has dimension
[A-m?*]=[J/T] (joules per tesla), and it is the sum of all elementary moments that are
induced in a substance under the influence of magnetic field (or it can be formed
spontaneously, as in ferromagnetics).

The magnetization J is the density of magnetic moment M, that is, magnetic
moment per unit volume of material: J=M/V. It corresponds to the macroscopic
description of the magnetic state of a body. In the SI system, the dimension of mag-
netization coincides with the dimension of field strength (J :A/m:Wb/mz) and
represents such magnetization, when 1m? of the material has a magnetic moment
of 1 A/m® (remember that Wb = “weber” is the SI unit of magnetic flux; hence flux
density is Wb/m?, that is, one weber per square meter, which is one tesla).

By formal analogy that is used for dielectrics, in polar electrical vectors
(D=¢peE=¢oE+P, e=1+y, where D is the electrical induction, E is the electrical
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field, P is the electrical polarization, ¢ is the permittivity, and y is the dielectric sus-
ceptibility), the axial magnetic vectors are joined by material tensors of second rank:
permeability p and magnetic susceptibility c:

B = popuH = poH +J,
J=poH,
pu=1+e.

The permeability and the magnetic susceptibility are relative values; therefore they
are dimensionless. In vacuum, relative permeability 4 =1 because in the absence of
a substance, magnetic susceptibility is zero: @ =0. Similarly, without any sub-
stance, relative dielectric permittivity of vacuum e =1 and dielectric susceptibility
x=0[3].

However, the analogy between electrical and magnetic phenomena is purely for-
mal. This follows, for example, from Fig. 6.1, which compares magnetic and elec-
trical dipoles. Electrical dipole is a system of two electrical charges separated in
space, with equal magnitude and signs opposite to each other. Conventionally, elec-
trical dipole is indicated by an arrow: it is the polar vector. Magnetic dipole is formed
by the movement of electrical charges, approximately representing circular electrical
current: it is the axial vector. For both types of dipoles (electrical and magnetic),

:
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(A) (B)
FIG. 6.1
Mirror-like reflection: (A) from electrical dipole; (B) from magnetic dipole.
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the potential of corresponding fields decreases with distance as 1/r2. However, by
this factor, they become dissimilar.

Significant differences between electrical and magnetic dipoles can be seen by
reflecting them in mirror, as shown in Fig. 6.1. Electrical dipole changes its direction
to opposite, whereas reflected magnetic dipole maintains its direction [4]. On the
contrary, according to a mental operation called the inversion in time (when believed
that passage of time is reversed), electrical dipole remains unchanged, whereas mag-
netic dipole changes its sign to opposite.

In the macroscopic examination, magnetic dipole can be represented by electrical
current in a closed circuit, whereas in the microscopic processes, properties of mag-
netic matter might also be caused by the internal (hidden) forms of electrical charge
movement, which is possible to describe only in quantum mechanics.

Microscopic magnetic dipole can be created:

* by changing the orbital moment of the electronic shell of atom (ion or molecule),
it results in the diamagnetic component of magnetization;

* by “own rotation” of elementary particles represented by spins of electrons,
which leads to the paramagnetic of ferromagnetic components of magnetization;

» owing to the presence of magnetism in some atomic nucleus (it should be noted
that nuclear magnetism is weak).

Thus in the atomic scale, electrons can create two types of magnetic moments
(microscopic currents): the orbital moment that is due to electron rotation around
the atomic residue and the spin moment that is due to natural magnetic momentum
of the electron. Practically, magnetism is the characteristic of the orbital and spin
magnetic moments of electrons. Protons and neutrons also have their own magnetic
moments, but nuclear magnetism, compared with electronic magnetism, is very
small (around 1000 times weaker) because magnetic moments are related to the
mechanical moment and therefore is inversely proportional to the mass of particles.

In this way, the smaller the magnetic moment of a particle, the greater is the mass.
Therefore the magnetic properties of matter are determined mainly by electrons, as
electrons are lighter by nearly three orders in magnitude than the atomic nuclei—
proton, which is the lightest. However, in some cases (very rare but important for
special studies and applications in physics, chemistry, and biology), nuclear magne-
tism might have considerable interest. First, only the effect of nuclear magnetic res-
onance has applications in medicine and in solid-state physics; second, the effect of
nuclear demagnetization is used for deep cooling of matter to achieve experimentally
very low temperatures [5].

The energy of magnetic interaction of microscopic particles, although it is smal-
ler than the energy of electrical interaction, is still large enough to affect the structure
of matter. As any stable system tends to minimize its energy, internal magnetic
moments in substances strive for maximum compensation. For example, in the elec-
tronic spectrum of a crystal (see Section 4.6), electrons tend to occupy the lowest
possible energy levels; each level can be occupied only by two electrons with oppo-
site values of spin (Pauli principle).
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For instance, in basic energy state of the helium atom (state 1s%), both the spin and
the orbital electronic moments are zero; hence the magnetic moment induced by an
external field can only occur. The same is applicable to hydrogen molecule H,. Thus
in atoms or molecules with completely filled electronic shells, total spin moment and
total orbital moment are zero.

Summary spin magnetic moment in the completely filled orbitals (2, 6, 10,
14 electrons) is totally compensated. Therefore in most substances, electronic
orbitals of atoms and molecules, generally, are entirely filled (self-organized) with
the even number of electrons (filled s-, p-, d-, and f- shells contain 2, 6, 10, and
14 electrons, respectively). Nevertheless, there are some quite uncommon (but very
important for practical use) exceptions of stable but only partially filled d- and
f- shells of atoms, in which uncompensated total spin magnetic moment can exist.

The main effects of an external magnetic field that influence matter were discov-
ered in the 19th century by Faraday. First, according to the law of electromagnetic
induction, an external magnetic field creates induced microscopic electrical current
in a substance, whereas the magnetic field is directed opposite to the applied field
(such reaction of matter to the applied magnetic field always exists). Faraday iden-
tified this effect as diamagnetism. The prefix “dia-” means the opposition to an
externally applied field or deviation of magnetic field lines: external magnetic field
turns around the diamagnetic, as shown in Fig. 6.2A. That is why diamagnetic repels
with any pole of a permanent magnet (it is pushed out of the magnetic field but with a
small force because this effect usually is very small). Magnetic induction in the dia-
magnetic becomes smaller than that in vacuum [1].

Second, if atoms (or molecules) of a matter have particles with natural nonzero
magnetic moments (spin, or orbital, or both), an external magnetic field will orient
them along the field. The result is the appearance of an additional magnetic moment
that is collateral to the external field; Faraday called these materials as paramag-
netics. The prefix “para-” means “consistency” of magnetism in a substance with
magnetic field lines; magnetism in the paramagnetic becomes stronger than
that in vacuum. In Fig. 6.2B, the magnetic field draws into a paramagnetic.
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FIG. 6.2
Handling (A) diamagnetic (D) and (B) paramagnetic (P) in a magnetic field.
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The paramagnetic is attracted by any pole of a permanent magnet. As the diamag-
netism phenomenon exists always, this attraction indicates the preference for para-
magnetism over diamagnetism (almost in all cases when both effects take place).

The dependence of magnetization on the magnetic field (J = poeH) for some typ-
ical cases is shown in Fig. 6.3. Magnetic moment induced in matter by an external
field can be both positive and negative. Fig. 6.3A shows the comparison of magne-
tization under an external field for diamagnetic and paramagnetic. In both cases, to
obtain a noticeable effect, the applied magnetic field has to be large (hundreds of
[Oe] =oersted).

Significant magnetic properties, even under a small external magnetic field, can
be seen in substances that have a strong internal magnetic interaction between
particles—carriers of own magnetic moment (atoms, ions, and molecules). Through
this interaction, the involuntary ordering of internal magnetic moments might be
energetically favorable (without action of external magnetic fields). In these cases,
a strong magnetic effect usually can be seen. The dependence of magnetization,
induced by an external magnetic field in the ferromagnetic, can be seen in
Fig. 6.3B: even if an external magnetic field strength is only 1 Oe, the induced mag-
netization is thousands of times greater than that in the diamagnetic or paramagnetic
substances. Faraday has shown that a ferromagnetic is attracted to both poles of a
permanent magnet.

Therefore in the diamagnetic, any proper magnetic moments of particles are
absent: its magnetization is induced exclusively by the external field. Induced
diamagnetic moment disappears very fast on removal of external field—at time of
around 10™'*s. As to the paramagnetism, it is conditioned by the existence in a
material intrinsic (natural) magnetic moments, which are, however, completely dis-
ordered if an external magnetic field is absent, as shown in Fig. 6.4A. Magnetiza-
tion of a paramagnetic (similar to diamagnetic) is also induced by an external
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FIG. 6.3

Field dependence of magnetic moment induced in: (A) diamagnetic and paramagnetic,
(B) ferromagnetic.
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FIG. 6.4

Schemes of magnetic moment ordering in different lattices: (A) paramagnetic;
(B) ferromagnetic; (C) antiferromagnetic; and (D) ferrimagnetic.

magnetic field owing to the orientation of existing natural magnetic moments. How-
ever, the external magnetic field orients only a small part of natural moments and,
after switching off the magnetic field, magnetism induced in a paramagnetic disap-
pears, but not so fast as in a diamagnetic (at time of 107°-1072 s) [6].

In some solids, their magnetic structures can be characterized by different types
of spontaneous magnetic ordering. A crystal (or polycrystal), in which natural mag-
netic moments are oriented in parallel to each other, is a ferromagnetic (Fig. 6.4B).
Accordingly, antiferromagnetic has neighboring atomic magnetic moments oriented
in an antiparallel direction, as shown in Fig. 6.4C. Moreover, ferromagnetism and
antiferromagnetism can coexist in a single structure; such material is the ferrimag-
netic, in which compensation of atomic magnetic moments is incomplete, as shown
in Fig. 6.4D. Related substances are known as ferrites, and they are very important
for technical applications. Except for relatively simple collinear ferromagnetics,
atomic and electronic structures of antiferromagnetics and ferrimagnetics might
have more complicated and even noncollinear magnetic structures (i.e., spiral,
triangular, etc.).

Thus magnetic properties of a substance can be divided into weak magnetism
(diamagnetism and paramagnetism) and relatively strong magnetism (ferromagne-
tism, antiferromagnetism, and ferrimagnetism). The magnetization of materials dif-
fers significantly from polarization. For comparison, it should be pointed out that in
case of electrical polarization in dielectrics, static dielectric susceptibility is always
positive (y > 0); that is why, static permittivity of any material surpasses one (¢ > 1).
However, while a matter is magnetized, depending on the nature of magnetism, the
value of magnetic susceptibility @ can be positive or negative. Hence in a substance,
static magnetic permeability x4 can be both greater than 1 (#>1) and less than 1
(u < 1). The superconductor (in which electrical resistivity is zero, p =0) formally
is characterized by the value =0 (i.e., it has @=—1) being supposedly the
“ideal” diamagnetic.

The complexity of the atomic structure of matter, constructed from a wide variety
of particles, leads to many forms of magnetic structures. While considering the prop-
erties of solids, usually the general term “magnet” is used. The association of mag-
netic properties of substances with their nonmagnetic properties (electrical,
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mechanical, optical, etc.) enables the investigation of magnetic properties as the
source of information on the internal microscopic and macroscopic structures of
materials.

DISORDERED MAGNETICS

Magnetic materials can be divided into magnetically ordered and magnetically dis-
ordered structures. Magnetic properties of ordered materials usually are strongly pro-
nounced, in particular, this causes widespread use of such materials in electronics
and electrical engineering. Magnetically disordered solids, as a rule, show weak
magnetism, but sometimes they also demonstrate useful properties for application
in instrumental technique and in medicine. As already noted, in the cryogenic tech-
nology, weak paramagnetism is used to achieve very low temperatures. Similarly, in
experimental physics (as in medicine), methods such as electronic paramagnetic res-
onance and nuclear magnetic resonance are very important for research and diag-
nostics, although these methods use weak magnetism [5].

Therefore the terms “weak” and “strong” magnetism are conventional and might
be used here only in understanding the engineering of these phenomena. For most
calculations related to electromagnetic wave spreading, slowing, or absorption in
a material, weak magnetism can be neglected because both diamagnetic and para-
magnetic have magnetic permeability 4 ~ 1, which is only slightly different from
vacuum value y=1. At the same time, in strong magnets, the value of y usually
is rather high and can even be very large (sometimes, it reaches thousands).

Diamagnetism. Electrons, which move around the nucleus in their closed orbit,
under the influence of an external magnetic field, change its trajectory, so that a new
trajectory of their movement becomes helical rotation. Exactly, this phenomenon is
related to the diamagnetism in atoms. According to classic representation, the phys-
ical nature of diamagnetism lies in the induction of nondamped microscopic currents
by a magnetic field owing to the helical rotation of an electron in its closed orbit with
variable angular velocity.

As a rule, diamagnetism represents a very weak response of substances to the
applied magnetic field: its contribution to magnetic susceptibility is very small:
@=—(10""-10"°). The sign “~” indicates that the induced diamagnetic moment
is directed opposite to the applied field H. The small magnetic induction B that
appears in matter can be compared to the magnetic induction in vacuum:
up=0.99999 ... =~ 1. As already is shown in Fig. 6.2, any diamagnetic “pushes”
out the magnetic field.

Temperature dependences of magnetic susceptibility in various types of weak
magnetism are shown in Fig. 6.5.

In any matter, the Larmor diamagnetism is a common mechanism that occurs due
to the precession of electronic orbitals of atoms, ions, and molecules. In an external
magnetic field H, this precession always occurs as the manifestation of fundamental
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Temperature dependence of magnetic susceptibility in case of “weak” magnetism:
P1—Curie law for Lanzheven type of paramagnetic; P2—paramagnetism of electronic gas
in metals; P3—Van Vlack paramagnetism; D1—Larmor diamagnetism; and
D2—diamagnetism in fullerites and nanotubes [3].

(A) (B)
FIG. 6.6

Larmor precession of electronic orbit in a magnetic field, which leads to diamagnetism:
(A) electronic orbit is perpendicular to the magnetic field H, electron moves with velocity v;
(B) electronic orbit is tilted to the field, so that the effect of the magnetic field causes
precession of the orbit.

properties of electrons moving in their orbits, as shown in Fig. 6.6. In a magnetic
field, the angular velocity w of an electron decreases by Aw. In an orbital plane,
the electron moves in a cone around the magnetic field vector H with constant angu-
lar velocity of precession.

Thus, diamagnetism is associated with the orbital movement of electrons and
occurs in all atoms and ions (inasmuch as the orbital movement of electrons exists



6.2 Disordered magnetics 231

in any atomic core). Diamagnetism causes a slight deceleration of angular velocity of
orbital movement when the atom is placed in a magnetic field. This effect can be
explained on the basis of the following general considerations. The movement of
an electron in its orbit can be considered as a closed current. In case when a circuit
with current is placed in a magnetic field, according to Faraday’s law of electromag-
netic induction, an additional electromotive force (EMF) arises. As a result, current
in a circuit changes, and this modifies the magnetic moment. According to the well-
known Principle of Le Chatelier in physics, this current should be directed as coun-
teracting to the external field, and this results in counter induction. This means that
the induced magnetic moment is directed against the applied field that, by definition,
is the key feature of diamagnetism. From Le Chatelier principle, it follows that dia-
magnetism is manifested in materials by repulsion out of the magnetic field.

As the size of the electronic shell of an atom or ion is almost independent of tem-
perature, the diamagnetic susceptibility (that has a negative value), only slightly var-
ies with temperature because of the decrease in material density, as shown in Fig. 6.5,
curve D1. In this sense, the diamagnetism induced by the external magnetic field H
reminds the electronic polarization of dielectrics, which is also explained by a dis-
tortion and shift of electronic orbital under an external electrical field E. Indeed, in
case of electronic polarization, dielectric susceptibility y,. (as diamagnetic suscepti-
bility) practically is independent of temperature, but the y, always has a positive
value (unlike negative diamagnetic susceptibility @ ;). However, it should be noted
that electronic dielectric susceptibility in different crystals lies within y,=0.8...4,
that is, 1000 times higher than the diamagnetic susceptibility ;.

In metals, in addition to Larmor diamagnetism, another mechanism of diamag-
netism exists (Landau diamagnetism) [1]. This diamagnetism is conditioned by con-
duction of electrons moving under the external magnetic field. By Lorenz force, the
magnetic field compels electrons to move in a spiral, but not in straight, trajectories.
Landau proposed quantization of the energy of electrons in metals (when Landau
energy levels occur). It is necessary to note that this mechanism is also characterized
by a very small value of magnetic susceptibility (@, ~—107).

Substances with pronounced diamagnetic properties include the following:

« all matters (atoms and ions) that have no natural magnetic moments;

+ organic compounds with nonpolar bonding, in which molecules or radicals have
no intrinsic magnetic moment (when the paramagnetic effect in them is less than
the diamagnetic effect); hence magnetic susceptibility @, ~—(107°-10"°) and
shows significant anisotropy;

 crystalline substances such as certain metals (Zn, Au, Hg, etc.), some metallic
alloys, and chemical compounds with prevailing diamagnetism in the ionic cores
(ions, similar to atoms of inert gases: Li*, Be**, CI™, etc.).

Thus, diamagnetism is peculiar to all substances, being a preferred type of magne-
tism in the materials with completely filled electronic shells (many dielectrics, semi-
conductors, and certain metals). For example, among materials important for
electronics, many semiconductors are diamagnetics (in germanium, @ = —8-1076,
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and in silicon, @ =— 3-10*6), as well as many metals (in copper, &= —6-107% in
silver, @ =—22-10"% and in gold, @ =—30- 10_6) and most dielectrics.

There are, however, some solids, in which diamagnetism is relatively strong: bis-
muth, antimony, graphite, and other semimetals. For example, in the bismuth, dia-
magnetic susceptibility is not only increased but also anisotropic: in the main
crystallographic directions, in Bi, @, = —220-10"° and @, =—310-10°. It is found
that difference @, — @, periodically changes in the dependence on magnetic field H
(Van Alphen effect).

Increased value of diamagnetic susceptibility (— ) is observed also in the graph-
ite and other (recently discovered) modifications of carbon and in the fullerenes and
carbon nanotubes. It is noteworthy that in these substances, “— @” increases signif-
icantly when temperature decreases, as shown in Fig. 6.5, curve D2. The strength-
ening of diamagnetism in the semimetals may indicate a tendency of these
materials to have superconducting transition. Indeed, the superconductors absolutely
push out the magnetic field (their magnetic susceptibility formally equals @ = —1).
Such behavior of superconductors is caused by the electrical currents flowing in a
thin surface layer of superconductor (thickness of this layer is around 10> cm). This
surface current in superconductor shields external magnetic fields; hence in the bulk
of superconductor, magnetic field is zero. Except superconductors, there are other
cases of “giant” diamagnetism in some materials.

Therefore a relatively weak effect of diamagnetism is inherent in all matter, but if
a more strong effect—paramagnetism—exists (which is usually characterized by a
higher magnetic susceptibility), total magnetic susceptibility turns to the positive
value (@ > 0); hence it is considered that these substances belong to paramagnetics.

Paramagnetism is a property of materials whose structural units (atoms, mole-
cules, ions, and cores) have natural magnetic moments. However, without external
magnetic field action, these moments are oriented randomly; hence the overall mag-
netization of a paramagnetic is zero (/=0 if H=0).

When the external magnetic field H is switched on, magnetic moments of atoms
in a paramagnetic become partially oriented toward the field, and with increase in
applied field, magnetization increases, at first—linearly (see Fig. 6.3A). If external
magnetic field would be large enough, then most magnetic moments of paramagnetic
particles will become already oriented strictly in the direction of field. Therefore,
dependence of J(H) becomes nonlinear; as a result, magnetic saturation is observed,
as shown in Fig. 6.7 [7]. Knowing the value of magnetic moment at saturation and the
concentration of paramagnetic particles in a matter, it is possible to determine the
magnitude of elementary magnetic moment (e.g., total spin moment is “3/2” for
Cr**, ©5/2” for Fe®*, and “7/2” for Gd**). Paramagnetic susceptibility is positive
within the values @=-+(10"*~10""). This means that the permeability of paramag-
netic is higher than one (x> 1), unlike diamagnetic in which y<1.

Magnetic field, as shown in Fig. 6.7, is large enough to reach almost complete
orientation of magnetic dipoles (overcoming the impact of disordering by thermal
chaotic motion). This is possible because there are no individual magnetic charges
that would be accelerated in the magnetic field. It should be noted that in similar
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FIG. 6.7
Magnetic moment in paramagnet dependence on magnetic field: I—chromium-potassium
alum, ll—iron-ammonium alum, and Ill—gadolinium sulfate [1].

cases of dipole-type dielectrics, usually it is impossible to orient majority of dipoles
because under the strong electrical field existing electrons are necessarily acceler-
ated and cause the electrical breakdown much ahead of the orientation of most
dipoles.

Magnetic moments of atoms or ions that cause paramagnetism are conditioned by
the spin moments of electrons (spin paramagnetism) or by the movement of electrons
in atomic shells (orbital paramagnetism). It should be noted that magnetic moments
of atomic nuclei also lead to nuclear paramagnetism, but usually this effect is neg-
ligible (the smaller the magnetic moment of particle, the greater is the particle mass).
As aresult, total magnetic moments of atoms, ions, and molecules are created mainly
by electrons that have a magnetic moment thousands of times greater than that of
atomic nuclei.

There are several mechanisms of electronic paramagnetism: temperature depen-
dence of paramagnetic susceptibility, as shown in Fig. 6.5, points to three most
important mechanisms. According to the Lanzheven-Curie mechanism, when a
crystal is cooled, its paramagnetic susceptibility increases according to Curie law:
@ ~K]/T, where K is the Curie constant. In case of Pauli paramagnetism, magnetic
susceptibility is practically independent of temperature. This is also seen for the
Van Vlack paramagnetism (typical in some molecular compounds): in this case,
magnetic susceptibility is small and almost independent of temperature.
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Table 6.1 Electronic Construction of d-Orbitals in Transient Metals

K
Element (n=1) L({n=2) M (n=3) N (n=4)
Atomic
Symbol Number 1s 2s 3s 3p 3d 4s 4p
K 19 2 2 6 2 6 1
Ca 20 2 2 6 2 6 2
Sc 21 2 2 6 2 6 1 2
Ti 22 2 2 6 2 6 2 2
\ 23 2 2 6 2 6 3 2
Cr 24 2 2 6 2 6 5 1
Mn 25 2 2 6 2 6 5 2
Fe 26 2 2 6 2 6 6 2
Co 27 2 2 6 2 6 7 2
Ni 28 2 2 6 2 6 8 2
Cu 29 2 2 6 2 6 10 1
Zn 30 2 2 6 2 6 10 2

The Lanzheven-Curie paramagnetism. One reason for the existence of the own
magnetic moment in an atom (or ion) might be electronic spins, which are not com-
pensated in the noncompletely filled d-shells or f-shells. For example, in the transi-
tion metals, listed in Table 6.1, noncompensated atomic magnetic moments are due
to some of the 3d-electrons.

Table 6.1 shows that 3d-orbital is empty in atoms K and Ca, whereas in atoms Cu
and Zn, 3d-orbital is completely filled (spin magnetic moments of electrons in this
case are totally compensated). This means that aroms K, Ca, Zn, and Cu are not para-
magnetic. In other atoms, listed in Table 6.1, their 3d-orbital is not completely filled.
The exact calculations of 3d-electron distribution are complicated, but the manner of
these electron distribution is expressed by Hund’s rules, following which 3d-
electrons are arranged in the 3d-shell according to their magnetic spins [1].

The conception of multiplicity is introduced: it equals to 2S5+ 1, where S is the
total spin angular momentum for all electrons. Applied to electronic shell filling,
Hund’s rules determine the character of energy level filling by electrons in an atom,
under which the ground state must follow such requirements:

+ term with maximum multiplicity has the lowest energy (the maximum value of
full spin § is in accordance with Pauli principle);

« term with the largest value of total orbital angular momentum L has the lowest
energy (the maximum value of L is consistent with the value of S);

« full angular momentum J (total angular momentum) meets |L — S|, if electronic
shell is filled less than half, and | L + S|, if electronic shell is filled more than half.
(When in shell, exactly half of levels are filled; then using the first rule leads to
L =0, and hence to equality J=S.)
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The first Hund’s rule is based on Pauli principle and on Coulomb repulsion between
electrons. Pauli principle does not allow two electrons to exist in one energy state
with the same spins. Thus electrons with the same spin direction should be separated
in space. However, because of Coulomb interaction, the energy of electrons with the
same spin directions is reduced. Thus the average potential energy of parallel spin
orientation in might be less than that in the antiparallel spin orientation.

For example, the Mn** ion may be considered. The 3d-shell of this ion has five
electrons; hence this shell is filled exactly half. Spins of electrons can be oriented
parallel, if electrons occupy different states; in the 3d-shell, exactly five different
states are allowed, which are characterized by the orbital quantum number m=2,
1,0, —1, and —2. Each of these states can be occupied by one electron. In this case,
it might be expected that the total spin will be equal to: § =5/2, and because Y .m= 0,
the only possible value is L =0, which is observed experimentally.

Orientation of spins in the first period of transition metal is shown schematically
in Fig. 6.8. The limiting number of 3d-electrons is 10; hence in the d-shell, up to five
electrons may have the same spin orientation (as it is seen in the case of manganese
and chromium) before filling these states by electrons with an opposite orientation.
Quantum mechanical calculations show that for transition metals, a convergent ori-
entation of electronic spins in the d-shell corresponds to the minimum energy (as the
more stable state). In case of chromium, for example, the configuration 3d°4s! exists,
but not 3d*4s>. Similarly, copper atom has the electronic configuration 3d'°4s' but
not 3d°4s* as one might expect.

As magnetic properties of atoms are due, primarily, to spins of electrons, the
uncompensated spin orientation, as shown in Fig. 6.8, enables to evaluate the mag-
netic moment of the atom. For example, single titanium atom has a magnetic moment
of two spins (two Bohr magnetons, 2 ug), whereas single cobalt atom has an own
moment of three spins (3 pp). Up to five 3d-electrons in atoms can be placed with

7 1525°2p%35°3p° 3d 4s
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20 Ca Ooooo00d m
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2 Ti O N
23 \% DOoDnOoQd m
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26 Fe AN Eya]
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28 Ni 0] 0 [ ] m
29 Cu [ [ [ [ E ]
30 Zn mm e

FIG. 6.8

Location spins of electrons in orbitals in transition metals: 3d-electrons in atoms can be
arranged with the parallel orientation of spins.
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FIG. 6.9
Distribution of 3d spins of electrons in two-valence and three-valence iron ions.

a parallel orientation with spin preservation. The second electron in each state should
be oriented antiparallel.

To date, mostly, magnetic moments of atoms are considered. The ions of
3d-metals, generally, have varying valence, and depending on this, they can have
different number of uncompensated spin moments. This fact is significant for mag-
netic material synthesis for various purposes. A very important example is shown in
Fig. 6.9: the distribution of spins in the 3d-shell for two different iron ions: Fe** and
Fe* compared with the atom of iron (Fe). It is seen that the two-valence iron ion has
a total magnetic moment of 4 up, whereas the three-valence iron ion might be char-
acterized by 5 up.

It should be noted that in Fig. 6.9 only simplified models are shown because it
does not consider the spin-orbital interaction. Considering this interaction (and
according to experiments), the magnetic moment of Fe** is dependent on a given
crystal; for the first case, it might have 4.4 ug, whereas for the second case, Fe*
can have 6.9 pp.

Atoms and ions of the rare-earth elements with valence “+3” also might have
uncompensated spin moments, but in the 4f-orbital. Location of spins in the 4f-shells
for lanthanides was shown previously in Table 5.2. The maximum nonpaired elec-
trons (seven!) in the 4f-shell can be seen for gadolinium (Gd), where, instead of
14 possible electrons, only partial filling is observed: 4f'.

The ions of various rare-earth elements have quite similar chemical properties as
their outer electronic shells should be identical: they all have the configuration
5525p° (similar to that of the neutral xenon atom). The radius of trivalent ion, when
transition from one element of this group to the other, gradually reduces from 1.11 A
in cerium to 0.94 A in ytterbium. This phenomenon is the lanthanoid compression.
This fact enables to manage properties of crystals that contain rare-earth elements by
selecting lanthanide ion with the required radius for a given crystal.

Experimentally found values of magnetic moments of rare-earth element ions are
shown in Table 6.2. Magnetic properties of rare-earth ions are very appreciable. In
lanthanum (La), which is the starting element of rare-earth metal group, the 4f-shell
is empty, but in cerium atom, the 4f-shell already has one electron. Further, the num-
ber of 4f-electrons consistently increased in each next element of up to ytterbium
(Yt), which has 13 electrons in its 4f-shell, and lutetium (Lu) in which 14 electrons
completely fill the 4f-shell. It is obvious that the ions La** and Lu’* are diamagnetics,
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Table 6.2 Experimental Data as to the Number of Bohr Magnetons in
Lanthanides

RE lon La®| ce* | Pr*t| Nd®* | Pm®* | sm® | Eu®* | Gd* | Tb® | Dy** | Ho* | Er** | Tm® | Yb3* | Lu®*

Moment, ug| O 2.4 35| 35 - 1.5 3.4 8.0 9.5 106 | 104 | 9.5 7.4 4.5 0

whereas all other ions of rare-earth elements (from Ce® to Yb*) belong to
paramagnetic [8].

The difference between the magnetic properties of rare-earth (4f) metals and
those of transition (3d) metals is that the radius of 4f-shell equals only ~0.3 A,
and this shell is hidden under the outward electronic shells. Therefore, the metals
widely used in engineering ferrimagnetic materials (ferrites) that are synthesized
with rare-earth elements have the highest electromagnetic quality factor Q (i.e.,
small loss of electromagnetic energy at microwaves). In rare-earth ferrites, there
is rather weak connection of deep-seated active magnetic 4f subsystem with lattice
thermal movement (phonons) that mainly touches external electronic shells. The
external electromagnetic field excites exactly the 4f magnetic subsystem, which
being partially screened from phonon losses less energy: under microwaves, rare-
earth ferrites have much higher quality factor than ferrites based on transition metals
in which the 3d-shell is not shielded from the thermal movement of ions.

Magnetic susceptibility of paramagnetics can be quite different. If paramagne-
tism of “electronic gas” in metals (Pauli mechanism) prevails over the diamagnetism
of electrons (Landau mechanism), the magnetic susceptibility of metals is @ ~+10">
(in sodium, & =+16- 10_6; in barium, w:+20-10_6; and so on). But in metals with
unfilled 3d- or 4f-shells, paramagnetic susceptibility shows increased values: in the
range of az~+(1074—1073). For example, in titanium, & =+ 160~1076; in uranium,
a,’:+400-1076; and so on, as shown in Fig. 6.10.

@, 10° Fe, Co, Ni
700 Mn
Cr
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FIG. 6.10
Paramagnetic susceptibility in transition metals, z is the element number.
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Paramagnetism conditioned by d-electrons in transition metals and by f-electrons
in lanthanides agrees with the Langevin-Curie mechanism. It should be noted that
transition metals, such as those shown in Fig. 6.10, demonstrate a significant increase
in paramagnetic susceptibility, if their serial number approaches to the “iron triad”
(Fe-Co-Ni). In some chemical compounds, based on d- and f-metals, paramagnetic
susceptibility is comparatively high and reaches the value @~ 10", for example,
the crystal MnCl, has susceptibility @ =14,350-10"°, whereas the crystal CoCl,
shows @=122,000-10"°.

Temperature dependence of magnetic susceptibility in paramagnetic (see
Fig. 6.5, curve P1) is well described by the classic Lanzheven theory: magnetic sus-
ceptibility is determined by the formula @ = NmZ/3kzT, where N is the concentration
of paramagnetic atoms in a substance; T is the temperature, kp is the Boltzmann con-
stant, and m, is the magnetic moment of an atom. This formula is obtained by
methods of statistical physics for a system of interacting dipoles that are placed in
a magnetic field at relatively high temperatures (when m H < kgT).

Thus in case of constant field and with temperature increase, the thermal motion
grows up and results in magnetic moment disorientation; hence the susceptibility of
paramagnetic reduces according to the Curie law: @~ K/T. It is interesting to
note that a similar temperature dependence is seen also for electrical susceptibility
(y ~K/T) in the system of noninteracting electrical dipoles. It should also be noted
that temperature dependence of conductivity in metals also follows the dependence
o~K]/T due to electron scattering by lattice thermal vibrations that, consequently,
reduces the mobility of electrons. Thus, the similar temperature dependence of elec-
trical and magnetic parameters (decrease in @, y, and ¢ by law K/T) is explained by a
growth in the intensity of lattice thermal vibrations (phonons) with increasing tem-
perature. Phonons disorder magnetic and dielectric dipoles and reduce the mobility
of electrons [9].

However, Curie law holds true only for relatively weak magnetic fields. In strong
magnetic fields, as well as at low temperatures (when m H > kpT), magnetization of
paramagnetic nonlinearly approaches m H (this is the “saturation,” when almost all
magnetic moments become oriented, as shown in Fig. 6.7). Possible deviations from
the Curie law, in particular, deviations from the Curie-Weiss law for @ (and y), which
is also seen above phase transition in ferromagnetic (and in ferroelectric: it is caused
by the interaction between magnetic (or electrical) dipoles).

Paramagnetism may be observed in some chemical compounds whose ions have
no magnetic moment in the ground state. This kind of paramagnetism is associated
with quantum-mechanical characteristics due to the admixture of excited states with
magnetic moment (Van Vlack paramagnetism, as shown in Fig. 6.5). In this case,
magnetic susceptibility does not depend on temperature, as well as in the case of
paramagnetism in electronic gas.

Paramagnetism is widely used in experimental methods such as electronic para-
magnetic resonance (EPR). This method in solid-state physics enables to determine
magnetic moments of individual atoms, ions, and molecules, to promote investiga-
tion of complicated structures of molecules, and to perform fine structural analysis of
materials used in engineering. Paramagnetic substances are also applied in cryotech-
nology to achieve extremely low temperatures (paramagnetic cooling).
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The Pauli paramagnetism in metals. As an electron has its own magnetic
moment that is approximately equal to that of Bohr magneton, it would be expected
that conduction electrons in metals would make great contribution to the paramag-
netic properties of metals, described by the Curie law: @ =Nu3/3kzT, where N is the
concentration of electrons (in metals, it equals N ~ 10*?2cm ™3 ). However, experimen-
tal studies show that magnetic susceptibility of normal (nonferromagnetic) metals
does not depend on temperature, and its value can be estimated as only around
102 compared to a value defined by the Lanzheven mechanism. As a result, the
paramagnetism of conduction electrons is quite small that in many metals the Landau
diamagnetism present within them dominates.

As it was shown by Pauli using the quantum theory, the weakness of paramag-
netism of free electrons in metals can be explained by Fermi-Dirac statistics. Wave
functions of conduction electrons are quite different from electrons located in the
atomic shells (where any level of valence electrons has two spin states). For most
electrons in a metal, the probability of an event that under the influence of an external
field their spins can change their direction is zero because most energy states are
already occupied by the electrons with opposite spins. Indeed, in the valence band
of metal, all “deep” levels (which are located significantly below the Fermi level) are
completely filled with electrons with opposite spins; hence these electrons cannot
orient their spin moments according to the applied magnetic field. Only for a small
fraction of electrons, located near the Fermi level (whose energies are in the range of
kpT), their spins are able to follow the direction of the applied magnetic field. How-
ever, Fermi energy is much greater than the heat energy: Er> kgT. Thus only a little
part of the total quantity of conduction electrons (in proportion to kzT) contributes to
paramagnetic susceptibility.

For this reason, it would be expected that paramagnetic susceptibility @p,
(Fig. 6.5) must increase along with temperature increase in proportion to 7.
However, the opposite effect also works: owing to temperature fluctuations of
the crystal lattice (that intensity is also proportional to kzT), the contribution of
“free” electrons to paramagnetism @p, should decrease with increasing temperature
as 1/T. As a result, Pauli paramagnetism shows temperature constancy of @p,, as
shown in Fig. 6.6. Free electrons in a metal usually behave as in diamagnetic, hence
it is possible a paramagnetic contributes to magnetic susceptibility; typically, the
paramagnetism of free electrons is larger than their diamagnetism; hence the total
contribution of free electrons to magnetic susceptibility usually has a paramagnetic
nature.

Thus paramagnetism of conduction electrons in most metals makes contribution
to paramagnetic susceptibility, which is not subjected, with the Curie law being prac-
tically independent of temperature.

The spin of electron. If a primary physical cause of diamagnetism is the orbital
motion of electrons in atoms and ions, the paramagnetism is conditioned by the spin
moments of particles. The value of spin is denoted by the letter s, particle with spin Y2,
and electrical charge e has a magnetic moment g =eh/2mc. This value (called as
Bohr magneton) equals ~10 2 erg/Gs. It should be noted that electronic magnetic
moment is an unusual vector because it can be oriented in space only by two ways:
either on the field or against it.
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The ratio of magnetic moment of particle to its mechanical moment is the con-
stant “y” that is magnetomechanical ratio (or gyromagnetic ratio). Its unit in SI is
“radian per second per tesla”: [rad/(s-T)]. However, very often, another term gyro-
magnetic ratio is used for different but closely related quantity, namely, the g-factor,
which unlike y is dimensionless [9].

Magnetic moment of an atom is expressed by the formula u,, =yiJ = gugJ, where
#iJ is the total angular momentum, which is the sum of the orbital moment AL and spin
moment %S. Bohr magneton is determined as pg = efi/2m, which is very close to the
spin of free electron. The value of g-factor for an electron is defined as g =—y#h/ug,
and it is also called the spectroscopic splitting factor. For electrons, g =2.0023, but
usually the value g =2 is used.

The nuclear magnetism. For better understanding, the nature of particle interac-
tions, which examines not only electrical but also magnetic properties of materials, is
necessary. According to experiments, the “classic” size of nucleus is around
10~"%cm, which is negligibly small compared with the size of an atom (10~ cm).
As the mass of cores in four orders of magnitude is greater than the mass of electron,
it might be considered (while electronic processes are studied) that atomic core is
“infinitely heavy.” This approach is so-called adiabatic hypothesis, when the con-
densed matter theory is applied to justify electronic spectrum. Electrical fields in
atomic nuclei are very large, and it is determined by the number of protons in the
nucleus. However, nuclear magnetism is 1000 times weaker than electronic magne-
tism; hence in technical applications, as a rule, magnetism of cores can be ignored.

It is necessary to mention that, in general, magnetic interactions are much weaker
than electrical interactions. Actually, the energy of magnetic interaction in an atom is
appreciated as Up,g ~ /ﬁg/a3, where up is the Bohr magneton and a is the average
distance between electrons. Energy of electrostatic interaction between two electrons
under the same conditions equals Uelec =€*/a. The ratio of these two energies is

~ 2
Umag/Uelec ~az

where a,= e>/hc ~ 1/137 is the Sommerfeld constant (fine structure constant), char-
acterizing the strength of electromagnetic interaction between charged elementary
particles. Thus the magnetic interaction of electrons is much weaker than their elec-
trostatic interaction. In physics of magnetism, it is important because small “fine
structure constant” results in a small value of diamagnetic susceptibility. It can be
shown that this susceptibility is estimated as @g;, ~ a% = (1/137)2 ~ 5-107°, which
is well consistent with experimental data [8].

FERROMAGNETISM

Magnetic crystals and polycrystals with high ordering of spin and orbital magnetic
moments demonstrate the so-called strong magnetism. In this case, permeability is
large and corresponding materials can be the sources of strong magnetic fields that
are widely used in engineering.
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When considering paramagnetics, it was shown that some atoms, whose elec-
tronic shells are not completely filled, have their own magnetic moments and behave
as small permanent magnets. The degree of magnetization of such crystal is deter-
mined by the total magnetic moment, which is the vector sum of the magnetic
moments of atoms.

Natural magnetic moment involves atoms and ions of transient groups of Men-
deleev’s periodic table because they are characterized by unfilled inner electronic
shells that are available to hold the spin of unpaired electrons. An example
(Table 6.1) is the iron atom, in which 26 electrons move around the nucleus;
18 of them fill the inner orbitals (as well as in the argon atom). However, in the
3d-shell of the iron atom, only 6 of the possible 10 electronic states are occupied;
hence the 3d-shell in iron is not filled completely, as there are four empty states
(see Fig. 6.9). Moreover, four magnetic moments of electrons in the 3d-shell of
Fe atom are self-ordered, thus making a system with uncompensated magnetic spins.
Such feature of the 3d-shell, which determines big intrinsic magnetic moment of an
atom, is peculiar to several elements of the iron group.

If a crystal is formed from atoms that have natural magnetic moments (such as
iron), different ways of magnetic moment orientation may be realized. The simplest
types of regulation in two-dimensional case are shown in Fig. 6.4. The tip of the
arrow shows the north pole of a magnet linked to an atom. If magnetic moments
are oriented randomly, as shown in Fig. 6.4A, then the total magnetic moment of
the crystal is zero (this corresponds to paramagnetic). When one applies a magnetic
field to such a crystal, the forced ordering of magnetic moments occurs with their
overwhelming focusing according to a field that creates deposit in total magnetic
moment (paramagnetism). In Fig. 6.4B, the ordered structures are shown very
simplistic—only as a comparison with disordered structures.

Different ordered structures are shown in a more detailed way in Fig. 6.11. In the
simplest ferromagnetic structure (Fig. 6.11A), all magnetic moments of atoms are
directed equally. Examples of such ferromagnetics are metals: Fe, Ni, Co, Gd,
and Dy. These strictly magnetically ordered metal crystals can behave like perma-
nent magnets (if they have a single-domain structure).

Simplest-ordered antiferromagnetic structures might also be collinear, but mag-
netic moments in them are directed oppositely; hence they are totally self-
compensated, as shown in Fig. 6.11B. Axis, at which all these moments are directed,
is the antiferromagnetic axis. Typical representatives of crystals with antiferromag-
netic structure are some oxides of transition metals (Mn, Ni, Co, and Fe) and many of
their fluorides, chlorides, sulfides, selenides, and others [8].

Crystallographically, all magnets that have a structure with a similar direction
of their magnetic moments might be presented as magnetic sublattices. In an illus-
trated case, shown in Fig. 6.11B, some of the magnetic moments of atoms are
directed “up,” thus forming one sublattice, whereas atoms with a direction opposite
of their magnetic moments form another sublattice. These two sublattices consist
of atoms that are located in the equivalent positions (two equivalent magnetic
sublattices).
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Different types of ordered magnetic structures: (A) ferromagnetics structure,

(B) antiferromagnetics structure; (C) ferrimagnetics structure; (D) weak ferromagnetics
structure; (E) weak antiferromagnetics structure; (F) strongly noncollinear ferrimagnetics
structure.

In general, a magnetic structure may contain several sublattices, formed by atoms
that are crystallographically located in nonequivalent positions. Magnetic sublattice
is a set of all atomic magnetic moments that can be obtained using parallel transla-
tions at distances that are divisible to the period of unit cell. In the collinear ferri-
magnetic structure (Fig. 6.11C) the neighboring atoms also show antiparallel
orientation, but the foral magnetic moment of elementary cell of a crystal is different
from zero. Therefore this structure has spontaneous magnetization, as magnetic
moments of ions that belong to different sublattices are noncompensated.

Partial compensation of magnetic energy may be conditioned by several ways.
First, elementary magnetic cell may account different numbers of ions belonging
to two sublattices (magnetic moments of ions in this case might be the same). Sec-
ond, magnetic moments of ions of two different sublattices may have different size.
Most often, both causes are observed, as shown in Fig. 6.11C. Ferrimagnetism usu-
ally is called as noncompensated antiferromagnetism, which better reflects the nature
of this phenomenon.

The types of magnetic structures that belong to collinear magnetic structures are
shown in Fig. 6.11A—C. There are also different types of noncollinear magnetic



6.3 Ferromagnetism 243

structures, and some of them are shown in Fig. 6.11D-F. Weakly noncollinear mag-
netic structure (Fig. 6.11D) is inherent to the weak ferrimagnetics, and they are char-
acterized by small resultant magnetic moment (in Fig. 6.11D it is directed upward).
This causes a slight slanting of antiferromagnetic ordering of magnetic moment sub-
lattices. Weakly noncollinear magnetic structure is seen in Fe,O5 (hematite); in the
crystals FeBO; and FeF;; in the carbonates MnCOj3;, CoCOs3, and NiCOs; in the
orthoferrites RFeO,, as well as in the orthochromites RCrO, (R is a rare-earth
element).

There are also such weakly noncollinear antiferromagnetic structures
(Fig. 6.11E) that have no resultant moment. Triangular (corner) structures shown
in Fig. 6.11F belong to strongly noncollinear magnetic structures. In this case, mag-
netic lattice is formed by blackened atoms, divided into two sublattices, whose mag-
netic moments are directed at an angle to each other; as a result, magnetic moment
can be created, and it is antiparallel to the moment of the third sublattice. All these are
very special cases of ferromagnetic structures. There are also more complicated
cases of “screw” and “helical” magnetic ordering, which is not considered here.

The physical nature of ferromagnetism. It is necessary to consider why in some
materials (ferromagnetics) natural magnetic moments of individual atoms become
spontaneously ordered, whereas in other materials (paramagnetics) no ordering is
observed.

When a permanent magnet is placed in a constant magnetic field, then its mag-
netic moment tends to take a position, coincident with the direction of the applied
field. In the majority of crystals, which contain d- and f-atoms, each structural unit
has its own magnetic moment that creates around itself a magnetic field. If this field
would be large enough, it can force magnetic moments of the nearest neighboring
ions to be oriented in parallel. This happens in case when the energy of interaction
of magnetic moments of neighboring ions is larger than the energy of thermal fluc-
tuations (kp7T) in crystal lattice. It is determined that two types of interaction between
magnetic moments of neighboring ions might exist: dipole interaction and exchange
interaction. Exchange interaction is a purely quantum effect, and usually, it is stron-
ger than dipole type of interaction.

The main ferromagnetics are listed in Table 6.3. In most of them, carriers of fer-
romagnetism are uncompensated ion spins associated with orbital moments of elec-
trons belonging to crystal lattice. As known, electronic magnetism is manifested as
spin with orbital moments. Magnetization of a ferromagnetic summarizes magnetic
moment M consisting of ordered magnetic moments of electrons and appropriate
mechanical moment P. Ratio M/P equals —qu/2m, if magnetization is caused by
the orbital magnetic moments of atoms, but equals —qu/m, if magnetization is
caused only by spin magnetic moments [4].

There are some important experiments related to these assumptions:

1. Magnetomechanical effect (mechanical moment arising at magnetization) was
studied by Einstein and de Haas. The iron rod was hung on elastic string inside a
solenoid; when magnetized, the rod turns and twists the string. If the direction of
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Table 6.3 Curie Temperature and Magnetic Saturation Induction
of Ferromagnetics

Matter Tc (K) 47Bs (Gs)
Fe 1043 21,580
Co 1604 17,900
Ni 631 6084
Gd 293 -

Dy 87 -

CrTe 339 3100
FeCo 1243 24,000
MnBi 633 7800
NiMn 733 9000
EuO 97 -

EuH1 g6 24 -
MnAs 318 8400
MnB 533 1850
GdFe, 803 5000

the magnetic field changes, the direction of rod rotation also changes. From this
experiment, the value of gyromagnetic ratio is determined as M/P = — qu/m,
which implies that this effect is caused by the spins of electrons.

2. In the reciprocal experiment, the magnetization of iron rod occurs in case of its
rapid rotation. This means electron aspiration (representing the so-called
whipping tops with angular momentum) to be oriented in the direction of the axis
of rod rotation. Along this experiment, mechanical and magnetic moments of
electrons were oriented. This also confirms the spin model of magnetization.

3. In another experiment, a previously magnetized rod was subjected to rapid
heating above the Curie point. As a result, previously oriented “whipping tops”
acquire a random direction; hence the demagnetization stimulated rotational
momentum of the rod that can be directly measured in the experiment. In this
case, also the gyromagnetic ratio indicates that ferromagnetism is due to the spin
momentum of electrons.

However, convincing calculations show that only spin interaction cannot provide
their parallel orientation, which is the main characteristic of ferromagnetic at tem-
peratures below the Curie point. Theory is obliged to assume (F.R. Weiss) that stable
orientation of spins can be caused by the molecular field, which is nonmagnetic by its
nature. It was first shown by Y. Frenkel that the forces that compel orientation of
magnetic moments have an electrostatic nature. The spontaneous orientation arises
as a result of the exchange interaction of spins and orbital moments of electrons in a
crystal lattice.
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Exchange interaction is repeatedly considered in quantum mechanics, for exam-
ple, to describe constitution of a hydrogen molecule. In case of small particles that
have magnetic moment (such as electrons), their arrangement in the magnetic field is
determined by a fact that projection of spin vector on the magnetic field direction can
take only two values: (1/2)up. For two-electron system in the H, (as example), it
cannot be specified which of the two electrons has a definite state. However, follow-
ing Pauli principle, two electrons cannot be located on a single energy level with the
same spin quantum number. In quantum mechanics, this is considered by introducing
the antisymmetric wave function, that is, two electrons that interchange their wave
function must change their sign.

Exchange interaction has an electrostatic nature; however, it is not a simple
Coulomb-type, but a quantum interaction. During mechanism of exchange interac-
tion, the direction of electronic spins of neighboring atoms is coordinated. Such inter-
action 1is titled as “exchange” because in the process of interaction between
neighboring electrons, magnetic atoms appear as if their places are changing. The
result of exchange interaction is the establishment of electronic spin moment orien-
tation in parallel to each other; hence spontaneous magnetization arises without any
external field.

As both spin and orbital moments of electrons are interrelated, it can be argued
that spontaneous magnetization is created by the ordering of magnetic moments of
atoms. While heating to the Curie temperature lattice, thermal motion destroys
orderly setting of atoms, established by exchange interaction. It follows that the
greater the exchange interaction in ferromagnetic, the higher should be its Curie tem-
perature at which magnetic ordering becomes destroyed.

In the exchange integral, both positive and negative members are included; hence
it might have both positive and negative signs. This sign identifies what kind of spin
orientation of electrons is involved in the bonding exchange and is energetically
more favorable: parallel (corresponding to ferromagnetism) or antiparallel (corre-
sponding to antiferromagnetism). Thus, exchange interaction characterizes the dif-
ference in Coulomb energy between parallel and antiparallel orientation of spins. For
ferromagnetics and antiferromagnetics, exchange integral has an opposite sign.

As exchange interaction occurs only in case of overlapping orbitals, it follows that
this interaction has a short-range nature: between adjacent orbitals. Conversely, spin-
type interaction (between own magnetic dipoles in the lattice of magnetic ions) is
called as long-range dipole-dipole interaction. Thus the main magnetic interactions
are exchange interactions (short range) and dipole-dipole interactions (long range).

Results of exchange integral calculation in dependence on the ratio of lattice con-
stant @ and radius r of the 3d-shell for different metals of the iron group are shown in
Fig. 6.12. It can be seen that only for ferromagnetic metals—iron, cobalt, and
nickel—exchange integral is positive, that is, parallel location of spins for neighbor-
ing atoms appears energetically favorable [9].

The value of exchange integral correlates with the Curie temperature: that is, the
greater the exchange energy, the higher the ordered structure of spins can resist to
action of thermal phonons. Indeed, the greatest value of exchange integral is
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Calculated data for exchange integral for different metals of the iron group in ferromagnetics.

observed in the cobalt with a Curie point of around 1400K. Exchange integral is
smaller in iron (T¢ = 1040 K), whereas the lowest in nickel (T~ =509 K). The density
of electronic states (partially filled orbitals) in the ferromagnetic must be big enough
so that kinetic energy cannot exceed exchange energy.

Interestingly, manganese (and other representatives of 3d-metals, in which the
ratio of a/r <1.5) is not ferromagnetic, but the value of exchange integral in Mn
is very close to Fe, as shown in Fig. 6.12. Therefore, if lattice constant of manganese
would be slightly increased so that the ratio of a/d will be >1.5, it would be expected
that manganese will become ferromagnetic. Experiment confirms this expectation:
ferromagnetism in Mn occurs after its doping by a small amount of nitrogen, which
causes the increase in manganese lattice parameter. Similarly, many manganese-
based alloys are also ferromagnetics despite not having components that are ferro-
magnetics in pure crystal. For example, the alloy Mn-Si-Al is very important for
application, as well as the compounds MnSb, MnBi, and some others that contain
manganese atoms at distances larger than those of pure manganese atoms.

Apparently, for ferromagnetism emergence, it is important to have certain
“optimum” in the atomic distance in the crystal lattice. When atoms approach very
close to each other (Ti and Cr), then significant dispersal appears in electronic energy
band with a rapid increase in kinetic energy, and ferromagnetism is absent. The point
is that atoms are located very far from each other, and exchange interaction becomes
insufficient for ferromagnetism. In the iron group of metals, only spin interaction
(i.e., dipole-dipole attraction) is not large enough for ferromagnetism formation.

Thus the presence of unfinished internal electronic shells in some atoms, as well
as the positive sign of exchange integral (which results in parallel orientation of
spins), is the necessary and the sufficient conditions when ferromagnetism exists.

Temperature characteristics of ferromagnetics. It needs to be recalled that mag-
netization J (density of magnetic moment M in a sample) is defined as the total
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magnetic moment per unit volume, induced by an external field H (in which mea-
surement is performed). Magnetic “response” of crystal to an applied field H is char-
acterized by magnetic susceptibility @ because J=puowH. However, in the
ferromagnetic materials, @>>1, and therefore magnetic susceptibility practically
equals to permeability that follows from ratio B =puouH, so that in ferromagnetics,
e~ pand B ~J.

Permeability temperature dependence. While cooling from high temperatures
(i.e., cooling from the disordered paramagnetic phase), permeability (and magnetic
susceptibility) of ferromagnetic increases and reaches the maximum at the Curie
temperature T, as shown in Fig. 6.13. In the paramagnetic phase, above phase tran-
sition point, the Curie—Weiss law is fair: @ ~ u=C/(T — @), where C is the Curie—
Weiss constant and 6 is the Curie-Weiss temperature [3].

Once a crystal is ferromagnetic, then spontaneous internal magnetic field Hy,
appears; hence it is measured in a small external magnetic field @ ~ u below its sharp
maximum and rapidly decreases with temperature lowering due to saturation process
occurring in Hy,. (However, in strong measuring magnetic field u ~ @ continues its
smooth increase, hence the sharp maximum u(7¢) is seen only in a small magnetic
field.) As it follows from temperature dependence of the inverse magnetic suscep-
tibility, near phase transition, the increase in @(7T") becomes a little slower, and there-
fore 8 # T¢.

Temperature dependence of spontaneous magnetization. Magnetization that
arises below the Curie point is spontaneous: J, =~ Bg,. Temperature dependence
of spontaneous magnetization in iron, nickel, and cobalt is shown in Fig. 6.14. On
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FIG. 6.13

Temperature dependence of magnetic susceptibility and inverse susceptibility for various
magnetic materials (@ is the Curie-Weiss temperature, T¢ is the Curie temperature, Ty is the
Neel temperature): 1—ferromagnetic, 2—antiferromagnetic; 3—paramagnetic.
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Temperature dependence of spontaneous magnetization for different magnetic materials:
®—iron, o—nickel, and +—cobalt.

the vertical axis, the relative value of magnetization is designated. Dependence of J,
on T/0 is depicted by the same curve for these three ferromagnetics. As temperature
increases, magnetization decreases, and the Curie point (as well as above it) becomes
zero [1].

The temperature at which phase transition occurs from ferromagnetic ordered
state into paramagnetic disordered state is ferromagnetic Curie point, T¢. Above this
temperature, a substance ceases to be ferromagnetic and behaves similar to many
other paramagnetic solids. Afterwards, when cooling to temperature below critical,
spontaneous magnetization occurs again, and dependence J,(T) is restored. In other
words, spontaneous magnetization of the material decreases with increasing temper-
ature and vanishes at the critical point.

The value of saturation in J,(T) curve depends on the fundamental properties of
ferromagnetic. As this value corresponds to magnetization inside domain, it does not
depend on the method of preparation of the ferromagnetic sample. This feature of
spontaneous magnetization temperature dependence is explained by F.R. Weiss:
in ferromagnetic, an internal (molecular) field exists, which orients all elementary
magnets along one direction.

This field is directly proportional to existing magnetization. Thermal fluctuations
seek to destroy orientation of elementary magnets, and the more intense, the higher is
the temperature. The violation in ordering means less spontaneous magnetization,
but, for its turn, it decreases the field that organizes magnetic dipoles. Thus there
is a kind of “positive feedback”: the aspiration for magnetization to zero as temper-
ature increases is progressively increasing with decreasing magnetization. On the
contrary, when temperature decreases, magnetization gradually increases.

To explain internal (or molecular) Weiss’s field existence, it is insufficient to
consider only magnetic forces, acting between elementary dipoles. Calculations
show that magnetic forces between the spins cannot play a vital role for internal
forces; according to Weiss’s theory, these forces have around three orders of
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magnitude smaller than it is necessary to overcome the action of heat disordering.
That is why as it is considered before, the electrical forces also act between electrons
that stipulate for their exchange interaction.

Heat capacity of ferromagnetic. Temperature behavior of spontaneous magne-
tization resembles a melting process. When solid melts, the crystalline ordering of
atoms suddenly disappears, and the solid turns into a liquid (disordered) state.
The intensity of thermal vibrations of atoms becomes large enough to overcome
the forces that seek to maintain atoms in the ordered state. The process of overcom-
ing the strength of bonds between atoms at melting temperature results in the large
heat capacity anomalies in melting point [5].

The analogy between heat capacity temperature dependence in the point of spon-
taneous magnetization disappearance and critical temperature of crystal melting is
confirmed in ferromagnetic. Heat capacity of ferromagnetic shows a similar behav-
ior, namely, the sharp maximum at critical temperature. Still heat capacity maximum
in T¢ is not “infinite” because temperature does not remain constant when heat is
admitted.

Dependence of specific heat on temperature in a typical ferromagnetic is shown
in Fig. 6.15 in comparison with the heat capacity of a nonferromagnetic metal. In a
nonmagnetic metal, as shown in Fig. 6.15A, lattice heat capacity (curve 1) domi-
nates, whereas electronic contribution to heat capacity is small and increases linearly
with temperature (curve 2). In the ferromagnetic, a sharp maximum of heat capacity
is observed at the Curie temperature caused by excess energy, necessary for disor-
dering magnetic moments, as shown in Fig. 6.15B.

Moreover, in heat capacity behavior of ferromagnetic, another significant prop-
erty is seen—pronounced deviation of C(T') dependence, which is quite different
from the smooth curve with saturation at high temperatures, observed in nonmag-
netic metals. It means that inherent to ferromagnetic destruction of spin, ordering
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Temperature dependence of heat capacity for lattice (1) and electronic (2) contributions in
metal: (A) nonmagnetic metal; (B) ferromagnetic metal (iron).
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adds some energy throughout the temperature range. Therefore heat capacity of fer-
romagnetic, as shown in Fig. 6.15B, is significantly increased in comparison with
usual metals. A particular noticeable effect of increased heat capacity is seen in
the range of fast decrease of spontaneous magnetization with temperature.

Thus peak-type anomaly of specific heat in the critical point is caused by disor-
dering of elementary magnet orientation, which occurs at a narrow temperature inter-
val. The energy of magnetization approximately equals thermal energy required to
destroy spontaneous magnetization. That is why in the case of Fe, Co, and Ni, in
which Curie temperature equals ~1000K, magnetization energy is of around
0.1eV per atom, or 2000kcal/mol. When energy is applied to the lattice of ferromag-
netic while temperature increases from absolute zero, the heat capacity of a ferro-
magnetic crystal looks bigger than the heat capacity of a nonferromagnetic
crystal. The point is that contribution to specific heat of magnetic materials is made
not only by phonons but also by magnons (see Section 4.3). Therefore heat capacity
of ferromagnetic metals in a wide temperature range substantially surpasses the heat
capacity of conventional metals. Effect of increased heat capacity is especially
noticeable at temperatures just below the Curie point because at this temperature
the magnetization decreases faster.

Domain structure of ferromagnetic. Experiments show that magnetic moment of
bulk ferromagnetic materials at temperatures below the Curie point is much lower than
its theoretical prediction for a case, when all magnetic moments would be directed
equally. This is due to the formation of domains in the structure of a ferromagnetic.

Domain is a region in a magnet, in which all magnetic moments of atoms are
directed equally; hence in each domain, its magnetization reaches saturation, that
is, takes a maximal possible value at given temperature. However, in different
domains of crystal (or polycrystal), vectors of magnetization are not parallel to each
other. Thus total magnetization of a ferromagnetic sample appears much lower than
in the case of complete ordering of atomic magnetic moment orientation [4].

Simplified examples of domain structure are shown in Fig. 6.16. These structures
are formed because they reduce external magnetic energy of a pattern in the process
of domain formation. Suppose that ferromagnetic crystal totally consists of one
domain, then, under the influence of exchange forces, electronic spins of all atoms
are lined up, parallel to each other. Consequently, the crystal creates a magnetic field
in the surrounding. However, this situation is not sustainable because it corresponds
to the maximum energy of magnetic interaction.

More stable is such configuration of domains, at which the magnetic field of
neighboring areas is partially compensated, that is, their magnetization is directed
opposite to each other (Fig. 6.16A in the top shows two neighboring domains). Dur-
ing further crystal division on domains, the energy of the magnetized crystal
becomes more reduced, but to a certain limit. The fact is that there are walls between
domains, which lead to some stresses in a crystal. Such transitional layer between
domains is the “Bloch wall,” as shown in Fig. 6.17. This transitional layer wall sep-
arates two domains that are magnetized in different directions.

The conception of Bloch walls is due to the fact that change in spin direction
when transition from one domain to another (having different directions of
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Examples of ferromagnetic domain structure (A) and domain structure change; (B) domain
walls shift and domain growth under magnetic field influence.

FIG. 6.17
Structure of transition layer between domains (Bloch wall).

magnetization) cannot occur abruptly at one atomic plane. This changing takes place
only gradually and captures many atomic planes. The exchange energy would be
lower if these directions will be distributed between many spins than the change that
occurs abruptly. In ron, thickness of the transition layer—domain wall—is around
300 lattice constant (~1000 A).
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Thus without an external magnetic field, a ferromagnetic crystal usually is com-
posed of many small individual plots, magnetized to saturation—domains. Domains
are separated by the layers—domain walls—in which spins change their orientation
inherent in one domain to orientation inherent in the neighboring domain.
The resulting size of domains depends on many factors, but usually their size is
no more than several micrometers.

Magnetization curve of ferromagnetic. Spontaneous magnetization is an aniso-
tropic property, and therefore it is turned, first, to the direction of “easy
magnetization.” Without external field action, all domains are oriented relatively
to each other by such a way, at which the total magnetic moment of the ferromagnetic
would be zero, as it meets the minimum free energy of the system. When external
field H increases, ferromagnetic becomes magnetized, gaining nonzero magnetic
moment. The following physical phenomena are observed in a ferromagnetic when
magnetization can be divided into three stages.

1. Process of domain boundaries displacement. Let us put the crystal, as shown in
Fig. 6.16B, into an external magnetic field H. Magnetic vector orientation in
different domains relative to H initially is not similar. If the field H increases, the
growth of the most favorably oriented domain is energetically more
advantageous as compared with other domains. This increase is due to a shift in
domain walls. Hence the first step in the magnetization process is the
displacement process. The shift in domain walls takes place until all favorably
oriented domains would extend to the entire crystal

Magnetization curve B of a ferromagnetic crystal is shown in Fig. 6.18. The process
of domain wall displacement corresponds to section a on this curve. At small values
of H, magnetization B increases slowly, but in case of a stronger magnetic field, this
process occurs abruptly, thus causing the Barkhausen effect—fast jumping domain
walls that are accompanied by a noise.

B,u

u

0 H
FIG. 6.18

Magnetic induction B and magnetic permeability 4 dependence on the magnetic field.
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2. Next is the process of domain rotation. With further increase in field H,
spontaneous magnetization changes its direction toward the field. Here, the
magnetization process runs much slower than that in the first stage, and it ends
when vector By, acquires its location along the vector H; hence magnetization
reaches technological saturation, as shown in Fig. 6.18, section b.

3. The paraprocess. After reaching technological saturation, the increase in
magnetization with field H slows down, but not terminated. The reason is that at
given temperature (over absolute zero), the spins of not all electrons are
spontaneously magnetized and oriented in parallel to each other: thermal motion
of atoms partially disorients spontaneous orientation of spins. However, creating
a strong magnetic field can cause more complete orientation of all spins.
Magnetization, corresponding to the paraprocess, is shown in Fig. 6.18 in
section c.

As it follows from the ratio B = uguH, magnetic permeability depends on the rate of
magnetization change in magnetic field: u ~dB/dH. In the region of sharp increase in
magnetic induction, permeability reaches its maximal value, as shown in Fig. 6.18.
Next, when the rate of B(H) dependence slows down, permeability p(H) decreases.
In different ferromagnetic materials, the initial value of permeability is = 10-10°,
but in its maximum permeability, it reaches up to values of u=10"-10°.

Magnetic hysteresis. A complete cycle of magnetization is shown in Fig. 6.19.
During magnetic field increase, magnetic moment M first increases to its maximum
(i.e., to the spontaneous magnetization M), but when magnetic field decreases, mag-
netization remains behind; hence when magnetic field becomes H =0, magnetic
moment does not disappear, but its value gains to the residual value M,.

The phenomenon of magnetization backlog when magnetic field is changing is
the magnetic hysteresis. To destroy residual magnetism, it is necessary to apply the
counter field H. that can reverse magnetization in ferromagnetic. This field is the

FIG. 6.19
Magnetic hysteresis.
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coercive field (retentive force) [9]. As shown in Fig. 6.19, the closed curve, describ-
ing the reversal cycle, is the hysteresis loop. The area of this loop is proportional to
the energy that an external field spends to reverse polarization in the unit volume of
ferromagnetic. During the reversal process, this work turns into heat and character-
izes the hysteresis losses. Therefore, in case of repeated reversal magnetization, fer-
romagnetic becomes heated, and the more intense, the bigger is the area of hysteresis
loop. Heating is a result of the internal friction that occurs at continuous reorienta-
tions of magnetic domains. At higher frequencies, ferromagnetic is heated addition-
ally: due to Foucault currents arising in a ferromagnetic that usually is a good
conductor.

Depending on the shape and area of hysteresis loop, ferromagnetic materials are
divided into “soft” materials (small coercivity) and the “hard” (high coercivity)
materials. Different application of magnetic materials requires different types of
magnetization curve. Materials used in the electrical transformers and electrical
machines should show a quick response to magnetic field because they have to
change their magnetization many times per second. This might result in a partial loss
of efficiency and material heating, especially, if the ferromagnetic is rather “hard”
(with increased coercive field).

That is why many applications require ferromagnetics with a very low coercive
force that reduces the area of hysteresis loop—magnetically soft materials (with
small coercive field and large permeability). The value of magnetic permeability
of the best iron-nickel alloys (permalloys) reaches 10> with high induction of satu-
ration: By ~ 1T (tesla) while their coercive force is only 0.3 A/m. Hysteresis loop in
the permalloy is quite narrow that its reversal losses are around 500 times smaller
than those in iron.

Permanent magnets are used to create large permanent magnetic fields; they
must have increased coercive force that corresponds to a very wide hysteresis loop.
They do not need any reverse magnetization—on the contrary, they must consis-
tently hold the maximally magnetized state: these are the magnetically hard mate-
rials. They also need high values of saturation in magnetization. The example is
the alloys of Al-Ni-Fe type, whose coercive force reaches to around 10° A/m,
whereas saturation of induction is near 1.5T. In alloys with cerium, samarium,
and yttrium, the coercive field of permanent magnets can reach a value
~10° A/m. In alloys with rare-earth metals, a very large coercive fields is achieved,
for example, HL.:2-106 A/m in the SmCo alloy [2].

Anisotropy of magnetic properties. Magnetic and, in particular, ferromagnetic
phenomena in a single crystal are anisotropic, although in conventional polycrystal-
line materials, this phenomenon is imperceptible. The anisotropy of magnetization is
caused by different forces of spin-orbital interaction in a structure, which are found in
a ferromagnetic single crystal.

Owing to the features of spin-orbital interaction in electrons, along a peculiar
axis, magnetization occurs most easily and magnetic saturation can be achieved at
much lower values of an external magnetic field. These axes are the easy-
magnetization directions. In iron crystal, for example, this direction is [100] type,
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FIG. 6.20
Anisotropy of magnetization in crystals of iron (A) and nickel (B).

as shown in Fig. 6.20A, whereas in directions [110] and [111], magnetization of iron
is more difficult, and magnetic saturation is achieved at much higher fields.

In the nickel crystal, by contrast, the direction of easy magnetization is axis of
[111] type, whereas the hardest directions of magnetization are [100] type, as shown
in Fig. 6.20B. Essential differences in magnetic anisotropy in Fe and Ni crystals
result in the frustration (uncertainty) of easy magnetization selection in the Fe-Ni
alloy (permalloy) that leads to magnetically soft properties.

Magnetostriction. The magnetization of a ferromagnetic sample by all means is
accompanied by the change in size and shape. This phenomenon is called the mag-
netostriction. The cause for this effect (which is now widely used in engineering) is
large spin-orbital coupling in ferromagnetic materials. Fig. 6.21 schematically
shows longitudinal deformation (expansion) of ferromagnetic in the magnetic field,
accompanied by its transverse deformation (compression). The sample of polycrys-
talline ferromagnetic with length /, placed in the magnetic field, can either lengthen
or shorten on a value Al induced by magnetic field relative deformation x=Al/l is
proportional usually to the square of an applied magnetic field: x~ H*. Nickel
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FIG. 6.21

Mechanical and thermal effects in ferromagnetics: (A) magnetostriction; (B) invar effect
(coefficient of thermal expansion of nickel/iron alloys).
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sample is characterized by shortening in the direction of the applied field
(x~—4-10"%); conversely, iron and steel samples in a weak magnetic field become
slightly elongated, but in a strong field, they shorten; cobalt sample in a weak field
shortens, but in a strong field, it elongates [3].

There are some special ferromagnetic alloys, in which magnetostriction is very
large. This effect is used in the magnetostrictive vibrators and produces ultrasonic
oscillations with high frequency (up to several megahertz). These vibrators are used,
for example, in ultrasonic processing of solids and cleaning them from dirt, in the
sonars that are designed to measure the depth of water, and many other facilities
and appliances including household.

Thus any process of ferromagnetic magnetization is accompanied by the magne-
tostriction; it becomes apparent in the orientation of magnetic moments of atoms
under magnetic field influence. This process resembles the magnetization of a para-
magnetic, hence it is the paraprocess. Magnetostriction is particularly strong near the
Curie point where it reaches the maximum value. In the ferromagnetics of hexagonal
structure, for example, in the rare-earth metal gadolinium (Gd), the paraprocess
occurs; hence the magnetostriction is anisotropic.

The anisotropic magnetostriction accompanies the magnetization processes in
the weak magnetic fields (whereas paraprocess is seen in strong fields only).
The components x;; of strain tensor are different in their size and sign. The charac-
teristic feature of anisotropic magnetostriction gives rise to the change in shape of
the studied sample with a very small change in its volume. In recent theories,
two mechanisms of anisotropic magnetostriction are considered: magneto-dipole
and one-ion.

The magneto-dipole mechanism supposes the interaction of atomic magnetic
moments; these moments resemble magnetic dipoles (elementary magnets). Aniso-
tropic magnetostriction in the 3d-metals (Fe, Ni, and their alloys) and in some ferrites
can be described only by the magneto-dipole mechanism. However, this mechanism
makes small contribution to the anisotropy of magnetostriction.

The one-ion mechanism is more suitable to describe the phenomenon of aniso-
tropic magnetostriction. According to the quantum theory, in this case, orbital elec-
tronic cloud of ions acquires nonspherical (anisotropic) configuration. When such
ellipsoid-like atoms rotates in the magnetic field, magnetostriction might be very
large and anisotropic; this is peculiar in some rare-earth metals.

Giant magnetostriction. If the magnet has large magnetostriction, it can be used
in various sensors and actuators. However, almost all ferromagnetic materials have
only small magnetostriction with deformation of around 0.001%; hence their prac-
tical application is difficult. By contrast, the giant magnetostriction is 100-fold
greater than the usual magnetostriction; it is first found in Terfenol-D (Tb-Dy-Fe
alloy) and later in the rare earth ferromagnetic alloy TbCo,-DyCo,.

Magnetoelastic effect. According to the Le Chatelier principle (when a system is
disturbed in its equilibrium, this system will adjust itself in such a way that any
change should be minimal) such mechanical deformation of ferromagnetic, which
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causes the change in shape or size, obviously leads to magnetization. This change in
magnetic properties of the ferromagnetic in case of its deformation is observed
experimentally: this is the magnetoelastic effect. Some ferromagnetic materials
are quite sensitive to external influences that this property is used for strain and ten-
sion measurements.

Thermal expansion and invar effect. It is known that thermal expansion of solids
at their heating is caused by the vibration of atoms or ions near their equilibrium posi-
tions in anharmonic lattice. In the weak magnets (diamagnetic and paramagnetic),
this anharmonicity is the only reason of their size change during heating. As a result,
these substances mostly show only expansion with temperature increase.

However, in ferromagnetics, during their thermal deformation, another very
important (and unique) phenomenon is observed: compression while heating in a
certain temperature range. The point is that thermal deformation is essentially
connected with spontaneous magnetization. Conditioned by exchange interaction,
magnetostriction depends not only on the external magnetic field but also depends
on the internal magnetization that in the ferromagnetic is changed with
temperature (without any external field). This appears as “thermally induced
magnetostriction,” which sometimes is called spontaneous thermostriction (as it
occurs when an external magnetic field is not applied). This effect is particularly
large in the vicinity of the Curie point, that is, when phase transition to magnetically
ordered phase occurs.

The effect of spontaneous magnetostriction (with coefficient ay) affects total ther-
mal expansion coefficient of ferromagnetics because it compensates the usual
(anharmonic) lattice effect having a positive coefficient a,. Thermostriction has a
sign opposite to that of the regular thermal expansion coefficient; thus the resulting
thermal expansion coefficient in ferromagnetic materials can be both positive and
negative and even might be close to zero in a certain temperature range, as shown
in Fig. 6.21B. The group of ferromagnetic materials, in which total thermal expan-
sion coefficient is practically zero (a=a, +ay~ 0), assumes the term invar alloys.
The phenomenon of thermal expansion coefficient compensation by spontaneous
magnetostriction is the invar effect. The term “invar” comes from the word invari-
able, which reflects their ability not to expand and not shrink when the temperature
changes. Invar materials are used when high-dimensional stability is required in the
precision instruments.

Invar-type metallic alloys (which practically do not change their size while heat-
ing or cooling) have long been used in industry. At present, there are many alloys
such as “invars,” but always the nature of small coefficient of thermal expansion
is magnetic. For example, note that Invar H-36 is the alloy of iron and nickel
(36%); Kovar is the alloy of iron, nickel (29%), and cobalt (17%); and others.
The a-values in them may be dependent on combinations of components. In the gad-
olinium crystal, the invar effect is anisotropic, that is, it is diverse in different axes of
Gd hexagonal crystal; this opens additional opportunities for technical applications
of gadolinium.
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Thus in the ferromagnetic alloys, the coefficient of thermal expansion is
“manageable,” including, if necessary, a@ = 0. Such alloys are widely used in tech-
nologies: both in electronics and instrumentation, as well as in the aviation and
constructions.

The magnetocaloric effect consists in changing of the material’s temperature
(cooling; interesting, of course) during magnetic adiabatic demagnetization or
magnetization.

There is thermodynamic explanation of the magnetocaloric effect. In the adia-
batic condition (when there is no heat energy exchange with the environment),
the magnet does not absorb or return heat (dQ =0), and therefore the entropy § is
constant: dS=dQ/T = 0. Therefore under this condition (dS=0) and constant pres-
sure (p = const), the entropy is considered as a function of temperature T and external
magnetic field H: S=f (T, H). Temperature change in ferromagnetics, that is, its
cooling (0T <0) or heating (9T >0), depends on the sign of derivative and on the
change in external magnetic field: when AH >0, magnetization occurs, and if
AH <0, the demagnetization occurs.

Magnetocaloric effect also occurs in the paramagnetic, and it is caused by an
increase (or decrease) in the amount of equally oriented atomic magnetic moments
(spin or orbital) when the magnetic field is switched on (or off ). This effect is studied
and applied for a long time. The effect of adiabatic demagnetization of a paramag-
netic is used to achieve extremely low temperatures. Specific heat at low tempera-
tures is very small (C,, y ~T 3); therefore, the method of paramagnetic cooling is very
effective, if initial temperature is sufficiently low.

At normal temperature, another magnetocaloric effect can be applied—in the
vicinity of ferromagnetic phase transition (in gadolinium, this transition occurs at
a temperature of 260K). In ferromagnetic on a stage of paraprocess, a strong mag-
netic field can orient the magnetic moments that were not yet oriented because of
thermal motion. Classic ferromagnetics (Fe, Co, Ni, Gd, and their alloys) are char-
acterized by negative derivative (0M/0T < 0); hence if one increases magnetic field,
heating will be observed (0T > 0), but when the field is turned off, magnetic cooling
causes 0T <0 (as AH <0). Predefined by the paraprocess, the magnetocaloric effect
can show rather high values in the vicinity of the Curie point.

Therefore in the ferromagnetic with paraprocess participation, not only positive
but also negative magnetocaloric effect occurs. This can be explained by an example
of ferromagnetic compounds of rare-earth metals with iron, where magnetic atomic
structure is represented by two sublattices, in which magnetic moments are oriented
in antiparallel: sublattice of iron ions (labeled M) and sublattice of rare-earth ions
(M>). At the temperature of compensation T, the magnetization M; of iron sub-
lattice is equal to the magnetization M, of rare-earth ions. If T < T, then M, > M,
whereas if T > T.,m, then M, <M. It means that the total magnetocaloric effect is
negative.

Magnetic refrigerator can work at room temperature; the low T¢ of magnetic
materials (such as gadolinium) or various alloys of rare-earth elements can be
applied. The operating temperature range is sufficient for the application of the
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magnetocaloric effect in devices such as home refrigerators, air conditioners, and
devices for cooling products or electronic equipment. Recently, the giant magneto-
caloric effect was discovered in the intermetallic compounds based on rare-earth ele-
ments in the system silicide-germanide Gds(Ge-Si),. This kind of materials provides
promising application of magnetocaloric cooling.

ANTIFERROMAGNETISM AND FERRIMAGNETISM

Antiferromagnetic interaction. In case of the negative sign of exchange integral, the
antiparallel orientation of spins in the lattice sites of the crystal is more profitable, as
shown in Fig. 6.12. Spins are ordered, but no spontaneous magnetization occurs
because magnetic moments of neighboring spins compensate each other, as shown
in Fig. 6.4C. Such crystal has two magnetically opposite sublattices that are interpe-
netrated. The well-known antiferromagnetics are listed in Table 6.4.

The structure of antiparallel arrangement of spins is formed spontaneously at
temperature below the Neel temperature (Ty) in competition with chaotically disor-
dered thermal motion. When an antiferromagnetic is heated above the Neel point
(T > Ty), uncompensated spins that partially fill d- or f-shells form something similar
to a paramagnetic system that is characterized, however, by a special temperature
dependence of magnetic susceptibility: @ =C(T +86), where C is the Curie-Weiss
constant, € is the characteristic temperature, which in contrast to the paramagnetic
phase of ferromagnetics is located in the negative range of Kelvin temperature scale,
as shown in Fig. 6.13, curve 2.

As examples of antiferromagnetics, some d- and f-metals are to be mentioned: Cr
with Neel temperature Ty =311K, Mn with Ty = 100K, and numerous other com-
pounds. Antiferromagnetics are also many oxides of d- and f-metals: MnO with
Tn=122K, FeO with Ty=198K, NiO with Ty=650K—this is the highest Neel
temperature [9].

Temperature dependence of magnetic susceptibility of an antiferromagnetic indi-
cates a sharp anisotropy in their magnetic properties at temperatures below phase
transition, as shown in Fig. 6.22.

Table 6.4 Neel Temperature of Some Antiferromagnetics

Crystal Tn (K) Crystal Tn (K)
MnO 122 KCoF3 125
FeO 198 MnF, 67.34
CoO 291 FeF, 78.4
NiO 650 CoF, 37.7
RbMnFj 54.5 MnCl, 2
KFeF3 115 VS 1040
KMnFs 88.3 Cr 311
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FIG. 6.22
Typical temperature dependence of susceptibility of an antiferromagnetic.

It should be noted that antiparallel spontaneous orientation of electronic
spins in the closely located ions strongly reduces electrical conductivity—an anti-
ferromagnetic below the Neel temperature is converted from conductors to
semiconductors (or dielectric). In the disordered (paramagnetic) phase, an antifer-
romagnetic does not have any band gap in their electronic spectrum (as metal).
However, as temperature decreases and transition to antiferromagnetic phase
occurs (at Neel point), in the electronic spectrum of most antiferromagnetic
compounds, the energy gap opens. Therefore, Neel phase transition in antiferro-
magnetics might be simultaneously the “dielectric-to-metal” phase transition.
Electrical conductivity in the antiferromagnetic phase is 1000 times lower than that
in magnetically disordered (conducting) phase.

However, the permeability of antiferromagnetics is small (¢ ~ 1), which is obvi-
ously insufficient for their technical application as magnetic materials. The small-
ness of permeability is a consequence of the fact that at low temperatures (in the
antiferromagnetic phase), atomic magnetic moments of sublattices totally compen-
sate each other; thus the resulting magnetic moment is zero.

When temperature increases and antiparallel orientation of spins become disor-
dered, the value of magnetic susceptibility @ increases and reaches maximum at the
Neel point, as shown in Fig. 6.22, whereas disordering of spins occurs in a manner
similar to that in a paramagnetic. Simultaneously, movement of valence electrons
(which in antiferromagnetic phase are constrained by strongly ordered opposite
spins) becomes free; hence with a transition into disordered (paramagnetic) phase,
the crystal turns into conductor.

Ferrimagnetism. In addition to totally magnetically compensated antiferromag-
netics, there are many crystals and polycrystals in which magnetic moments of the
sublattices, although being directed opposite to each other, have significant differ-
ence in their magnetization, as shown in Fig. 6.4D. These materials have rather
complicated structures with varying kinds of atoms that form them and with variable
number of uncompensated electrons in the d- shells (or f-shells). These magnets show
properties similar to those of ferromagnetic materials because they hold spontaneous
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Table 6.5 Curie Temperature T; and Magnetic Saturation Induction Bsat 4K
in Some Ferrimagnetics

Crystal Tc (K) 47zBs (Gs)
Fesz0,4 (magnetite) 858 6400
CoFe,0,4 793 6000
MgFe>04 713 1800
CuFex04 728 2000
MnFes04 573 7000
YsFesOqo 560 2470
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magnetization, and the total magnetic moment in their lattice is nonzero [3].
These ferrimagnetics are very important for application of substances; some of them
are listed in Table 6.5.

Therefore magnetic moments of ferrimagnetics are directed in antiparallel orien-
tation, but they are noncompensated. Electronic interaction in such lattices is known
as the indirect exchange interaction, at which there is no direct overlap of magnetic
ion wave functions. However, the overlap of wave functions of diamagnetic anions
(e.g., 0?") with the wave functions of magnetic cations (e.g., Fe®*) enables the
exchange interaction through the virtually excited state, as shown in Fig. 6.23.

The 2p-shell of the oxygen ion in its main state is completely filled, as shown in
Fig. 6.23A, and despite the overlap with iron ion wave functions (p-orbitals of 0>~
and two d-orbitals of Fe*), any exchange interaction between them is absent. How-
ever, in the excited state, as shown in Fig. 6.23B, one of the p-electrons of oxygen
transfers to the 3d-shell of the iron ion. In compliance with Hund’s rules, this electron
has to move, whose spin is antiparallel to the spins of electrons in the half-filled shell
of the Fe** ion. Leaving 2p-shell, the electron, because of negative exchange inter-
action, orients spins of neighboring iron ions, as shown in Fig. 6.23B.
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FIG. 6.23

Diagram illustrating indirect exchange interaction in the system Fe3* — 0%~ — Fe3*: (A) basic
state; (B) excited state.
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The intensity of indirect interaction increases with the extension of overlapping
of electronic shells, that is, with the strengthening of covalent bond. Because cova-
lent bonds are noncentral, the indirect exchange interaction reaches maximum when
three interacting ions are not collinear. Therefore, the compensation of magnetic
moments is not complete in the complex structure of antiferromagnetic.

Permeability of ferrimagnetics, being less than the values of permeability in typ-
ical ferromagnetics, nevertheless, is rather big for successful technical applications:
1~ 10%-10°. With regard to other physical properties (hysteresis, nonlinearity, and
domain structure), the ferrimagnetic is close to ferromagnetic, but its magnetization
decreases with increase in temperature nonmonotonically (as in the case of ferromag-
netics), sometimes passing through a zero before reaching the final Curie tempera-
ture, as shown in Fig. 6.24.

Several different sublattices that exist in a ferrimagnetic make temperature
dependence of spontaneous magnetization rather complicated compared with that
in a conventional ferromagnetism, as shown in Fig. 6.14. This is because temperature
dependence of spontaneous magnetization may be different for various sublattices of
a ferrimagnetic.

It is necessary to recall that most of the ferromagnetics are metals (with high con-
ductance), and therefore they cannot be used at increased frequencies owing to high
losses (conditioned by Foucault currents). Therefore even for electrotechnical appli-
cations (at a frequency of 50 or 60 Hz), and especially for mobile (transport) electri-
cal engineering (a frequency of 400Hz), the iron, permalloy, or any ferromagnetic
metal should be divided into the separate plates (or even into a thin foil) with the
electrical insulating layers between the plates (or foil).

One of the possible ways of using ferromagnetic metal at radio frequencies is to
reduce losses from Foucault current by using micron-sized ferromagnetic particles
pressed together with polymer (magneto-dielectric composites). Nevertheless, this
technology cannot prevent losses from Foucault currents in the microwave range
(where magnetic materials are widely used, particularly in information and comput-
ing technique).
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FIG. 6.24
Different possibilities of ferrielectrics magnetization.
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However, insulating properties that are extremely necessary are achieved in the
ferrimagnetics by the combination of depressed conductivity with rather strong mag-
netism in the elementary crystal cell. Therefore, the main advantage of ferrimag-
netics is rather high permeability with significant manifestation of magnetic
properties, combined with high adequate electrical resistance. This is especially
important in microwave technology because of the provided small loss of electro-
magnetic energy [5].

In technologies, ferrimagnetics usually are called ferrites, and the most important
representative among them is the magnetite Fe;0, =FeO-Fe,0s. Its unit cell is ferros-
pinels that has a cubic lattice formed of eight molecules of FeO-Fe,Os. In this mineral,
the negative oxygen ions form face-centered lattice, in which the compound Fe;O,4 has
one divalent (Fe>) and two trivalent (Fe>") iron ions. As shown in Fi 2.6.9, the Fe atom
and Fe** and Fe** ions have different number of uncompensated spins. One sublattice
of ferrite contains one half of trivalent iron ions, and another sublattice—the second
half of trivalent iron ions and divalent iron ions (or metal that replaces iron). Magnetic
moments of sublattices are antiparallel. Therefore magnetic moments of trivalent iron
ions are compensated, but spontaneous magnetization is caused by magnetic moments
of divalent iron ions (or any other metal that replaces iron).

In various ferrites with a structure of magnetite, the divalent iron ions Fe?* can be
substituted by the divalent ions of other metals such as Mg?*, Ni**, Co**, Mn?*, and
Cu®". The general formula of ferrites with spinel-type structure is MeO-Fe,Os, where
Me is the divalent metallic ion. Only the divalent metal ions cause spontaneous mag-
netization of many ferrimagnetics. Some ferrites (manganese and nickel ferrites)
have rather high permeability: up to several thousands. In other ferrites, usually
1~ 100 (however, ferrites based on zinc and cadmium are not ferrimagnetics).

Ferrites based on rare-earth elements. Magnetic materials based on the rare-
earth elements have gained considerable scientific and technological interest. It is
necessary to remember that rare-earth elements (or lanthanides) are the elements
of the third group with numbers 57-71 (La, Ce, Nd, Sm, etc.). The elements scan-
dium Sc and yttrium Y are attributed to this group owing to similar properties. Alloys
and compounds of these elements have pronounced magnetic properties. Their dif-
ference from magnets of iron type (3d-metals) lies in the fact that the magnetic
moment of lanthanides (4f-metals) is determined mainly by the spin properties of
electrons, whereas the importance of orbital moment is smaller (nevertheless, orbital
moment also has some influences on their magnetic properties).

From 14 rare-earth elements, ferromagnetism is observed only in six of them
(gadolinium, erbium, dysprosium, holmium, thulium, and terbium) but in most of
them (except gadolinium) at a certain temperature, the ferromagnetism gets con-
verted into antiferromagnetism. In the gadolinium, similar to iron, the ferromagnetic
state occurs directly from the paramagnetic state (at a temperature of 290K). Five
rare-earth elements (cerium, praseodymium, samarium, europium, and promethium)
are antiferromagnetics. Magnetic moments of lanthanum and lutetium are zero (they
are diamagnetics). Thus magnetic properties of rare-earth metals are quite different
and complicated.
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Permanent magnets based on rare-earth alloys. These ferrites have very large
magnetic anisotropy (from two to three orders of magnitude greater than that in the
iron group) that allows the manufacture of permanent magnets. Of particular interest
are the intermetallic compounds of RCo type, where R is the rare-earth metal. For
example, coercive force of samarium-cobalt alloy (SmCo) is ~20,000 A/m (coercive
force of conventional ferromagnetics is less in order of magnitude). The RCo type
alloys are widely used in engineering as permanent magnets: very high coercivity
with a large magnetic induction can essentially reduce the weight and size of mag-
netic systems.

In recent years, some alloys based on NdFe have found important applications;
their parameters exceed the parameters of SmCo magnets. However, as a record of
the properties of hard magnets, a single crystal of terbium-cobalt alloy is considered.
At low temperatures, the coercivity of the TbCo compound surpasses the NdFe and
SmCo magnets by seven times.

Rare-earth microwave ferrites. In the microwave range, the properties of ferrites
that make them possible to create the nonreciprocal devices are used, i.e., the
devices, having different specifications for different directions of energy spreading
(valves and circulators), as well as microwave devices with fast controlled parame-
ters (phase shifters and switches).

The microwave technique also widely uses the phenomenon of microwave mag-
netic resonance. Atoms in a magnet appear similar to mechanical “whippings”
(gyroscopes). Magnetic moment of such whipping is directed along the axis of rota-
tion. If an external magnetic field is applied directed at some angle to the axis of
whipping rotation, this axis will rotate around the direction of the applied field. This
phenomenon is called precession. The frequency of precession depends on the mate-
rial and on the field strength. If damping of such oscillation would be absent, this
precession will exist indefinitely and oscillator will be lossless. However, owing
to losses (energy dissipation on phonons and defects), this precession decreases,
and the direction of magnetic moment is set along the direction of the magnetic field.
If constant magnetic field and alternating field of some frequency are simultaneously
applied to the magnetic crystal, it can increase precession angle. This angle reaches
the maximum value, when frequency of the external field coincides with the fre-
quency of precession. This phenomenon is the gyromagnetic (or ferromagnetic)
resonance.

Gyromagnetic resonance finds technical application because, at the resonant fre-
quency, the energy loss in a magnet is maximal, which provides maximum selective
absorption. The higher the quality of the magnetic crystal, the bigger is the absorp-
tion of energy and the narrower is the band of magnetic resonance. The best results
are observed in case of the yttrium-iron garnet. The microwave filters are built based
on the magnetic resonance in yttrium-iron garnet (and in some other ferrites, the
magnetic resonance close to it). The quality factor of such filters reaches 10,000.
The rare-earth ferrites are used also as the terminators of microwave power. That
is the reason why properties of single crystals of ferrites are of particular interest
in the microwave technology.
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The monocrystalline ferrites are specially grown crystals that have remarkable
highly ordered crystalline structure. The feature of single-crystal ferrites is their
increased resistivity and high optical transparency. These properties enable to apply
them not only in microwave devices but also in magneto-optical devices. Properties
of ferrites depend on their crystalline structure. They might have cubic symmetry as
ferrogarnets with the general structural formula 3Me,03-5Fe,O3 (where Me*" is a
rare-earth element), and they might also have a rhombic symmetry such as
orthoferrites, with the general structural formula MeFeO3 (where Me is a rare-earth
element or yttrium).

The axis of easy magnetization in ferrites might be different in various crystals. In
crystals with cubic symmetry, the axis of easy magnetization is [111]. The cubic cell
has four diagonals; hence such crystals have four axes of easy magnetization. In the
crystals with thombic structure, the easy magnetization axis coincides with axis
[001]. In these crystals, the axis of easy magnetization is only one; hence they are
called the magneto-monoaxial.

Monocrystalline ferrites are light transparent materials, and this is their important
feature when they are used in optical spectrum. The value of absorption coefficient is
relatively small. For example, an orthoferrite plate with thickness of 1 mm in the
wavelength range 1.5-5 pm transmits 95% of light, whereas a 30-pm-thick plate
transmits 50% of red light (with a wavelength of 0.6pm). Such good properties
are peculiar to high-quality crystals only. If the raw material for ferrites is not very
clean or the ferrite plate is not polished properly, optical transparency will be much
less. Magneto-optical effect in ferrites has important application in the optoelectron-
ics and instrumentation.

Giant magnetostriction. Ferrimagnetic materials based on rare-earth elements
might have a very large coefficient of magnetostriction that makes them promising
for use in the area of actuators. The main point of magnetostriction effect is the
change in sample shape and size when it is placed in the magnetic field. Previously,
magnetostriction is considered as a very small effect (in ordinary ferromagnetics, the
possible strain is only 0.003%). However, in the rare-earth metals (terbium Tb, dys-
prosium Dy, and some alloys), the giant magnetostriction effect is discovered when
the strain is higher in two orders of magnitude: 0.5% for the alloy TbDyZn. Another
alloy, namely, terbium-iron (especially the TbFe single crystal) is the best magneto-
strictive material in modern engineering.

Application of magnetostrictors, based on rare-earth materials, makes it possible
to create power actuators (need, for instance, in the adaptive optics for large reflect-
ing telescope). They can also be used in radio engineering and telecommunications
as enormous power sound sources, superpower ultrasonic transducers, magnetostric-
tive highly microshift mechanisms, and screw devices to develop ultrasensitive
audio receivers [5].

Magnetic semiconductors and dielectrics. Magnetic materials, depending on the
type of chemical bond, are divided as magnetic metals, magnetic dielectrics, and
magnetic semiconductors. Previous sections dealt mostly with the magnetic metals
and alloys that are characterized by the special type of particle bonding: ionic lattice
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crowded by electronic gas. In the magnetic semiconductors and magnetic dielectrics,
their chemical bonds are mixed (ionic-covalent) and depend on anion and cation
affinity to electron. During chemical bond formation in magnetic semiconductors
and magnetic dielectrics, a significant role is played by spin magnetic moments
of electrons in unfilled d- or f-shells of ions.

Magnetic semiconductors and magnetic dielectrics are predominantly com-
pounds whose components are transition metals and rare-earth elements that show
ferro-, antiferro-, or ferrimagnetic ordering of their lattice. This arrangement signif-
icantly affects optical and electrical properties of a material. Magnetic controlling by
optical properties (magneto-optics), peculiar exactly to dielectrics and wide-band
semiconductors, is needed in high optical transparency.

It is evident that for magnetic controlling properties by semiconductors, a strong
relationship between unfilled 3d- and 4f-shell magnetic ions with free charge carriers
is necessary. Owing to spin ordering in a lattice, its magnetic ions affect the move-
ment of free charge carriers in a crystal, and these carriers, in turn, can affect the
magnetic ordering in a lattice.

It is well known that to change magnetic moment orientation in local parts of
magnetic substance, an external magnetic field should be applied. This is the basis
of traditional magnetic memory, which is widely used in computers. The necessity to
increase the density of memory cells in devices strikes against a problem of smallness
of managing magnetic fields. Therefore a possibility of magnetic material local
reversing by a beam of spin-polarized electrons (during the time of their passing
through this local area) looks as very important. Some magnetic semiconductors
can introduce the spin-polarized electronic current between p- and n-type areas.
In case when the spins of charge curries are preliminary ordered by an external field,
this current creates spin-ordering in the adjacent semiconductor, which can be pre-
served awhile even at room temperature. Significance of this method is the possibil-
ity to control spin orientation by the electrical field instead of the magnetic field.

Magneto-optical phenomena. Telecommunications, instrumentation, electron-
ics, and computing—all these technologies now use optical frequency range of elec-
tromagnetic waves. In optical devices, mainly the transparent medium should be
used: magnetic dielectrics and wide-gap semiconductors (metals strongly reflect
electromagnetic waves but magnetically tunable reflection also can be used). Phys-
ical phenomena, applied in the magneto-optics, are highly varied. They are based on
the dependence of optical properties on the direction of light propagation (anisot-
ropy) and light beam controlling using magnetic semiconductors and dielectrics.

Next, the optical phenomena that are caused by the influence of a magnetic field
on a light-transparent magnet will only be considered. This area of science and tech-
nology (called the magneto-optics) studies and uses the change in the optical prop-
erties of a matter under the influence of a magnetic field. Magnetic materials, which
are utilized in functional magneto-optical devices, can be divided into two groups.

The first group includes materials with relatively low optical absorption, which
are applied for spatial-temporal modulation of light in the amplitude or phase. To
elaborate magneto-optical functional devices, the essential importance for material
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selection is their optical absorption. Among various magnetic materials, relatively
small absorption in the visible and near-infrared parts of the spectrum might be
expected only in nonmetallic materials. These are the following ferrimagnetics:

+ ferrite-garnets of the general formula R;FesO,;
+ orthoferrites of the general formula RFeO; (R—rare-earth ion);
+ ferrites with a spinel structure, for example, CdCr,Se, and CuCr;Tesl.

To choose the most transparent magneto-optical materials, one should be guided by
the fact that the intensity of absorption is caused by electro-dipole transitions in the
3d-ions (usually Fe**); this absorption can be reduced by the decrease in nonequi-
valent positions of iron ions in the structure of a magnetite.

The second group of magneto-optical materials includes thin magnetic films,
based on intermetallic compounds with rather high absorption coefficient in the vis-
ible and infrared ranges. Magnetic amorphous film designed for magneto-optical
devices and film composition follows the general formula R-Me-Z, where R is
the rare-earth ion, Me is the transition metal (Mn, Ni, Fe, and Co), and Z is the non-
magnetic metal (Mo, Cu, and Au).

The fundamental cause of the magneto-optical effect is the splitting of energy
levels of atoms in the magnetic field. During isolated atoms study, this splitting
was found, which was termed as the Zeeman effect. However, in crystals, the
magneto-optical effects are also a result of the Zeeman effect. Magneto-optical
effects, first, change light polarization characteristics, and, second, can control the
distribution of polarized light in the dispersion medium.

In addition to ordinary optical anisotropy that occurs in medium under the influ-
ence of an electrical field or mechanical strain, circular anisotropy occurs in the
magnetic field, which is caused by nonequivalence of polarization rotation in a plane
perpendicular to the field. This important fact is the result that the magnetic field is
axial. Because of absorption, the left-hand and the right-hand polarized light become
different; hence amplitudes of output components can be various. This is the mag-
netic circular dichroism. Its existence leads to the fact that after light passage through
the medium, the linearly polarized light turns into the elliptically polarized light.

In the absorbent medium, the magnetic linear dichroism also appears, and this is a
difference between absorption coefficients of two linearly polarized waves while
they pass through the magnetized medium. The presence of dichroism leads to
the rotation of orientation angle of ellipse during propagation.

When light spreads perpendicular to the direction of magnetization J, then in the
magnet, a linear double refraction is observed, called the Cotton-Mouton effect. It is
caused by a difference in refractive index of two linearly polarized components of
light waves, polarized parallel and perpendicular to J. Appeared phase change gives
rise to elliptically polarized light at the exit of a medium. The Cotton-Mouton effect,
in contrast to Faraday effect, is even: its value is proportional to the square of
magnetization.

Along with magnetic optical effects that occur during the passage of light through
a magnetized medium, there are some effects that are due to light reflection from the
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surface of the magnetic sample. Therefore optical anisotropy that is acquired in the
magnetic field can be detected not only in transmission characteristics but also by
light reflection from the magnetic surface. When magnetization of the active
medium changes the polarization of reflected light, the nature and extent of this
effect depends on the relative position of sample surface on incident light polariza-
tion and on magnetization vector. This effect is observed mainly in the ferromag-
netics; it is the magneto-optical Kerr effect. Depending on the relative orientation
of magnetization J, on the direction of light propagation &, and on the normal n to
surface, there are three types of Kerr effects: polar, equatorial, and meridional.

The polar effect is the rotation of polarization plane with the appearance of ellip-
ticity during the reflection of linearly polarized light from the surface of the magnetic
material when magnetization is parallel to normal: J||n.

The equatorial effect is observed in the absorption of a magnetic material, and it
involves change in intensity and phase shift of linearly polarized light, reflected from
the magnetized medium, when magnetization is perpendicular to J and to the plane of
incidence: J L n.

The meridional Kerr effect is the rotation of polarization plane and appearance of
ellipticity as a result of linear polarized light reflection from magnetic surface, when
magnetization J is perpendicular to normal n and located in the plane of light
incidence.

To control light transmission, magnetization of the working medium should be
changed by an external magnetic field. To do this in transparent ferromagnetic, first,
the displacement of domain walls should be used, and, second, the rotation of mag-
netization vector in a magnetic field is necessary. In magneto-optical modulators that
use the first process, optically transparent active medium often is applied: ferrite-
garnets R3FesO4, and orthoferrites RFeO5; (where R is the rare-earth ion). In ortho-
ferrites, abnormally large Faraday rotation is observed, although the saturation of
magnetization in orthoferrites is significantly less than that in ferrite-garnets.

Faraday’s rotation is proportional to sample thickness, and it can be observed
only when light extends along the optical axis of orthoferrite. The magneto-optical
quality Q in Ndy gPro ,FeO; reaches 14 degrees/dB, exceeding the value of merit for
all known magnets. In YFeO;, the magneto-optical Q factor is lower. The main fea-
ture of orthoferrites is the high mobility of domain walls that make them promising to
create high-speed magneto-optical devices.

NANOMAGNETIC MATERIALS

Apparently, the possibilities of volumetric materials used by engineers already
reached their maximum. It is believed that it is barely possible to get any significant
improvement in their performance only through a more thorough technology or by
changing in components. Therefore it might be assumed that a subsequent creation of
materials with new properties should be associated with fundamental changes in the
structure of substances, thus affecting properties that are necessary for contemporary
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applications. It is considered that one of most promising and relatively new
research areas in the field of material science is the creation of materials that are
condensed from very small crystals, clusters, and fragments that consist of around
10%-10° atoms.

The main reason for the difference between nanomaterials and conventional
materials is that the ratio of surface to volume in nanomaterials is rather big. The
smaller the size of nanocluster, the greater is the influence of its surface properties
compared to its bulk properties. In a certain sense, the nanostructure transforms prop-
erties of the crystal surface into the volumetric properties of condensed nanomaterial.
In other words, the properties of nanoformed substance depend on the ratio of the
number of atoms located on the surface of nanocluster to the number of atoms located
in its volume, and this ratio might be quite different. Therefore, by controlling the
size and the shape of clusters, the properties of a nanomaterial can be purposefully
changed.

Nanostructurization of magnetic materials enables to operate in a wide range of
their characteristics. Nanotechnology can be used, primarily, to create a material
with adjusted type of magnetization curve: both for extremely magnetically soft
materials and for extremely magnetically hard materials. Fundamental magnetic
properties of a matter in their nanostate vary considerably owing to correlation in
the interaction of spin and orbital moments in lattice cells, located on the surface
of the nanoparticle. The properties of ferromagnetics and ferrimagnetics in their
nanostate can be changed, especially strongly. In the magnets formed from nanoclus-
ters, the nature of short-range ordering becomes different; that is why new properties
appear (sometimes, very important for technical application).

Some examples of atomic magnetic moment dependence on the size of nanopar-
ticles in the main ferromagnetics are shown in Fig. 6.25. Magnetic moment of atoms
in bulk ferromagnetic usually is less than the number of uncompensated spins in
atoms (which are 2 up for nickel, 3 up for cobalt, and 4 up for iron). Owing to the
spin-orbital interaction, the effective magnetic moment of atoms in bulk ferromag-
netic is much smaller (0.6 up for nickel, 1.8 uz for cobalt, and 2.2 ug for iron).
Changing the number of atoms in the nanoparticles leads to a significant increase
in effective magnetic moment with decrease in particle size (finally, it becomes very
close to the magnetic moment of a single atom). This effect significantly increases
the permeability of magnetic nanocomposites and causes a number of other effects.

Thus the effect of nanostructuring on ferromagnetic characteristics is very signif-
icant, particularly, the effect of nanoparticle size that is used in the composed form of
nanoparticle magnetic materials. Therefore, in modern materials technology, it is
possible to “design” their properties particularized for various fields of technology
by changing the size of grain structure.

Soft magnetic nanomaterials. The change in orientation of magnetic domains or
clusters under an externally applied magnetic field influence might be possible even
under small magnetic fields: these are soft magnetic materials. For example, very soft
magnetics are the films of amorphous alloys, made with the compound Fe;q
Si;3Nb3Cug and obtained by rapid cooling of melt that is poured on the cold copper
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Magnetic moment per atom for nanostate ferromagnetics Niy, Cop, and Fepy depending on
the particle size in the Angstrom unit scale (1A=0.1nm).

rotating drum: the prepared alloy consists of disordered 10-nm nanoparticles. Having
a large saturated induction (1.2T), this alloy shows small coercive force (0.5 A/m).

One reason for the increase in magnetic softness and therefore the appearance of
huge magnetic permeability (4 ~ 5-10%) is the light orientation of spins. The point is
that the concentration of structural defects in the nanoparticles is small (in them, any
defects easily diffuse on the surface); as a result, the orientation of spins in the exter-
nal magnetic field becomes much easier. Nanomagnetic cluster can have its magnetic
moment orientation such as that shown in models given in Fig. 6.26 [10].

As shown by an experimental study with magnetically soft materials (nanosized
powders of amorphous alloy of the compound Fe;oNiO;oCO, with a grain size of
10-15nm), the hysteresis loop coercivity is practically absent, as shown in
Fig. 6.27B, because each of the nanoscale grain constitutes only one domain. (In
common ferromagnetics, hysteresis is caused by the orientation of big domains.)

Magnetic materials of this type, showing no hysteresis, are the superparamag-
netics. This term means that at temperatures below the Curie point and in wide
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FIG. 6.26

Different orientation of magnetic moments in ferromagnetic nanoparticles.
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Typical magnetic hysteresis (A) magnetization M and coercive field H.; (B) nonhysteresis
magnetization curve for the nanomaterial Ni-Fe-Co.

temperature range, superparamagnetics are similar to paramagnetics. In typical fer-
romagnetic (or in ferrite), their spontaneous magnetization, occurring below the
Curie point, is accompanied by the internal force that strongly maintains spins in
their oriented state; hence to change their direction, one needs to overcome the coer-
cive field (H,. as shown in Fig. 6.27A). In this case, in a ferromagnetic, a sufficiently
large energy of anisotropy exists, which makes magnetic moment to choose one or
the other direction. However, in the nanoparticles, owing to significant violations in
the structural bonds of atoms, energy of anisotropy is practically absent; hence the
direction of orientation of electronic spins can be easily changed even under a very
weak magnetic field. Therefore during the reversal of magnetization, there is no
hysteresis.

The more pronounced the magnetic softening, the smaller is the nanoparticle size.
However, unlike conventional paramagnetic (whose susceptibility at low tempera-
tures demonstrates the Curie law: @ ~ K/T), in case of superparamagnetics, the lim-
itative temperature exists, below which the possibility of “soft” (noncoercive)
orientation of magnetic moments is limited. The reason of this restriction is that ori-
entation of magnetic moments in nanoparticles is supported by thermal motion in a

.
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lattice, which at low temperatures becomes insufficient. The temperature, at which
this movement is blocked, depends on the size of nanoparticles.

Magnetically hard nanomaterials. Nanotechnology enables to also control the
coercive field that is very important to achieve a great H.. With traditional (bulk)
materials, some powerful permanent magnets are made from the alloys of neodym-
ium, iron, and boron. Among them, a very big residual induction is reached (1.3 T)
with a coercive force value of 10° A/m, which is more than a million times higher
than that in magnetically soft alloys. However, nanotechnology can significantly
improve even these data. Some results of grain size have an influence on the prop-
erties of the alloy Nd,Fe 4B as shown in Fig. 6.28A. From this figure, it follows that
residual magnetization increases significantly if the grain size becomes smaller than
40nm (the coercive field becomes three times higher). Another approach on how to
change parameters of magnetization curve for this material is to create a mixture of
nanoscale particles of the magnetically hard compound Nd,Fe 4B and the magnet-
ically soft a-phase of iron.

The study of soft iron particles influence on magnetically hard matter confirms
that coercive field can be further increased. This is due to the exchange interaction
between hard and soft nanoparticles, which turns magnetization of soft phase parti-
cles exactly in the direction of hard particle magnetization. By size reducing of nano-
particles, the granular magnetic material can be significantly improved [2].

Nanomagnetic films for computer memory devices. The study of magnetic mate-
rials, mainly the films produced by nanotechnology, aims to increase the capacity of
magnetic information drives—such as the hard drive of a computer. The unit of stor-
age information is bit; to reach the density of 10Gb (10'° bits) per square inch, the
single bit should have a length of ~1 pum and width of ~70nm. The thickness of the
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Residual magnetization M, dependence on particle size (A); scheme of double potential
well, which shows energy dependence on magnetic moment orientation in external
magnetic field absence (solid line) and presence (dotted line). 1—thermally activated
switching, 2—tunneling (B).
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magnetic layer in this case should be around 30nm. Magnetic storage medium such
as hard drives can be realized by using small crystals of chromium-cobalt alloy.
Problem of bit size diminution <10nm is the “self-erasing” of memory because mag-
netization vector of microarea can change its direction under the influence of thermal
fluctuations. One solution to this problem requires the use of nanoscale grains with
high values of saturated magnetization.

Another example: using nanotechnology, magnetic FePt nanograins that have
higher magnetization than their analogs are obtained. Particles of FePt are formed
by heating the solution of platinum acetylacetonate and carbonyl iron with addition
of areducing agent. After spraying this solution on the substrate, it evaporates leaving
passivating particles. The thin film, obtained as a result of these operations, consists
of ahard carbon layer containing FePt particles with a size of around 3 nm. This kind of
magnetic nanoparticles enables to achieve a density of 150 Gb per square inch, which
is 10 times greater than that of most existing commercially available medium.

When the size of magnetic nanoparticles is very small, magnetic vectors of atoms
are oriented by a magnetic field equally within a grain, avoiding difficulties that arise
in other cases (when the adjacent domain walls exist with different directions of mag-
netization). The reason is a peculiarity of nanoclusters: the reducing defects concen-
trate within cluster (defects easily diffuse to the surface).

Typically, a magnetic medium uses elongated magnetic grains. Dynamic prop-
erties of such magnetic particles can be described by a model, which assumes that
without applying magnetic field the ellipsoidal grains have only two possible direc-
tions of their magnetic moment: “up” or “down,” relative to the long axis of magnetic
elongated particles, such as those shown in Fig. 6.28B.

Magnetic energy dependence on magnetic moment orientation is characterized
by symmetric potential well with two minima, divided by a potential barrier. Under
the influence of thermal fluctuations, the elongated particle can change orientation of
its magnetic vector. This particle can also (but far less likely) change its magnetic
orientation by means of quantum-mechanical funneling. This occurs when heat
energy kgT is much less than the height of barrier. Tunneling is a purely
quantum-mechanical effect, which arises from the fact that there is a probability
of magnetic state changing from the direction “up” to the direction “down.” In
the external magnetic field, the potential, which divides minima, changes, as shown
in Fig. 6.28B, by a dotted line; in case when the magnetic field is equal to coercive
force, one of the levels becomes unstable.

This model explains many magnetic properties of small magnetic particles, for
example, the shape of hysteresis loop. However, this model has a limitation with
coercive field value because it allows only one way for reorientation. Magnetic
energy of a particle is assumed as a function of collective orientation of spins in mag-
netic atoms and a function of an external magnetic field. This model considers only
simple (linear) dependence of magnetic energy of particle on its size. However, when
the size of particle becomes approximately 6 nm, most atoms are located on the par-
ticle surface. This means that they can have magnetic properties that significantly
differ from those of larger particles.
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It is shown that replacement of magnetically soft a-iron in a variety of chemicals
substances leads to change in coercive force up to 50%, thus indicating the impor-
tance of particle’s surface in the formation of magnetic properties in a grain. Thus,
the dynamic behavior of very small magnetic particles is more complicated than it
follows from considered model.

Nanomagnetic particles in the interstices. An interesting research in the field of
nanomagnetism is to create porous material crowded by magnetic nanoparticles. In
nature, there are substances with molecular cavities filled with nanoscale magnetic
particles. One example might be ferritin—a biological molecule that contains 25%
iron by weight, whereas its shape is a symmetric protein shell. It has a hollow sphere
with inner diameter of 7.5 nm and outer diameter of 12.5nm. In biological systems,
this molecule plays a part of “repository” of iron Fe** in an organism. One quarter of
iron in human organism is contained in molecules of ferritin and 70% in hemoglobin.

Under normal conditions, the cavity of ferritin is filled by quasicrystalline iron
oxide: SFe,03-9H,0. This iron oxide solution can enter from outside into a cavity,
in which the number of iron atoms can vary from a few to several thousand. Magnetic
properties of this molecule depend on the number and type of particles in a cavity. It
can be both ferromagnetic and antiferromagnetic.

In ferritin at low temperature, the quantum tunneling can be observed. Even when
magnetic field is absent, the magnetization demonstrates tunneling between two
minimal positions. Resonant frequency of this tunneling depends on the total mag-
netic moment; frequency dependence on the number of iron atoms in the ferritin mol-
ecule is shown in Fig. 6.29B. It is seen that resonant frequency decreases with the
increase in atom quantity in a cluster. Under external magnetic field, this resonance
disappears because the symmetry of double-well potential becomes broken.

The magnetoelectronics (spintronics). In recent years, a new science and tech-
nology has developed—magnetoelectronics, or as it is now called the spintronics that
deals with the study and application of some effects and devices that use electronic
spin. Spintronics studies magnetic and magneto-optical interactions in metallic and
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Magnetic properties of ferritin: (A) magnetization curve; (B) resonant frequency dependence
on number of iron atoms in the cavity of molecule.
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semiconductor structures, as well as quantum phenomena in the magnetic structures
of nanometer size [5].

Thus spintronics is a new research direction of nanoelectronics, in which, in addi-
tion to electron’s charge, its spin is used for information processing. In the modern
electronics, many devices already exist based on spin phenomena. This is, for exam-
ple, the capping (manufactured by IBM) that reads information from magnetic disks,
and new type of magnetic memory—magnetic random access memory (MRAM).
These devices operate using giant magnetoresistance effect (GMR).

Giant and colossal magnetoresistance. The magnetoresistance effect is caused
by electrical conductivity change in the magnetic field. In metals and semiconduc-
tors, this phenomenon is long time known: electrical resistance is caused by scatter-
ing of electrons during their collision with lattice. Under magnetic field, conduction
electrons should move on helical trajectories. The elongation of trajectory increases
the number of collisions and hence resistance increases. However, in ordinary
metals, the effect of magnetoresistance is small: increase in resistance occurs only
on part of percent (that is why this effect in ordinary metals is rarely used in practice).
Nevertheless, this positive magnetoresistance effect is more noticeable in strong
magnetic fields and at low temperatures, when electron trajectory is characterized
by much bigger free path.

In ferromagnetic materials, magnetoresistance effect is negative and reaches
already several percent. The point is that in the absence of an external magnetic field,
a ferromagnetic divides on magnetic domains, in which magnetic moments have dif-
ferent orientation; domain boundaries lead to additional scattering of conductive
electrons. Under external magnetic field, the influence of domain boundaries disap-
pears; hence the entire sample becomes close to a single domain that is completely
magnetized, and its resistance decreases. It is noteworthy also that electrical resis-
tance of magnetic materials depends on the angle between magnetic field and cur-
rent. This phenomenon is anisotropic magnetoresistance. This effect, despite
relatively small size, is used in some devices to measure magnetic field in automation
systems and in alarm information devices.

Recently, the application of magnetoresistance effect becomes wider owing to
GMR discovery. It is seen in materials created artificially by the deposition on a sub-
strate some alternating ferromagnetic and nonferromagnetic layers of nanometer
thickness. The scheme of such layered structure with magnetization vector direction
in layers is shown in Fig. 6.30A.

The GMR effect was first observed in the films with alternating layers of iron and
chromium, but later many other combinations of layers are discovered. In films com-
posed of cobalt and copper layers, magnetoresistance is much larger than that in the
Fe-Cr films. The simplest device may consist of two ferromagnetic layers placed par-
allel to each other, in which electrical resistance depends on the relative orientation
of spins in magnetic layers. If magnetic moments in ferromagnetic layers are found
as parallel, the device has smaller resistance; if magnetic moments are found as anti-
parallel, the resistance increases greatly. Electrical current can flow both perpendic-
ular and parallel to segments. In both cases, the change in resistance is sufficiently
big (~40%).
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FIG. 6.30

Three structures that show giant magnetoresistance: (A) layers of nonmagnetic material with
ferromagnetic layers, magnetized in opposite directions; (B) randomly oriented ferromagnetic
cobalt nanopatrticles (large circles) in nonmagnetic copper matrix (small circles); and

(C) mixed system consisting of silver layers with cobalt nanoparticles and magnetic layers
of alloy Ni-Fe.

The effect of constant magnetic field on the resistance of multilayer iron—
chromium system is shown in Fig. 6.31A. The degree of resistance change depends
on the thickness of iron layers and reaches the maximum at thickness of 7nm, as
shown in Fig. 6.31B.

This effect occurs from electron scattering dependence on the direction of their
spin relatively magnetization vector. The electrons whose spins are directed opposite
to that of magnetization B scatter more intense than electrons whose spins are
directed equally with B. Application of constant magnetic field along layers orients
magnetization vector of all layers in one direction. Conduction electrons whose spins
are directed opposite to magnetization are scattered on metal-ferromagnetic bound-
ary more strongly than electrons whose spins are oriented in the direction of mag-
netization. As both channels operate in parallel, the channel with less resistance
determines the impedance of a film.

The effect of magnetoresistance in layered materials is used in sensitive detectors
of magnetic field, and this effect is the basis for creation of new highly sensitive
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Magnetoresistance in Fe-Cr multilayered structure: (A) magnetic field applied parallel
to surface layers; (B) dependence on magnetic layer thickness.
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magnetic head (capping for disk) that reads information. Until this effect discovery in
magnetic storage devices, the induction coil was used for operation with magnetic
small cells: such as in recording mode and for information reading. Giant magneto-
resistive reading head is much more sensitive than the induction one.

Compound materials, consisting of single-domain ferromagnetic nanoparticles
with randomly oriented magnetization, being placed in the nonmagnetic matrix also
show GMR. A scheme of such system is shown in Fig. 6.30B. Unlike layered struc-
tures, magnetoresistance in this system is isotropic. Magnetization vectors of ferro-
magnetic nanoparticles are oriented in the magnetic field, which reduces electrical
resistance. The influence of magnetic field on resistance increases with increase in
field strength and with decrease in size of magnetic particles. Typical measurement
results with film consisting cobalt nanoparticles in the copper matrix are shown in
Fig. 6.32A. A hybrid system, composed of metallic nanoparticles in matrix, placed
between two ferromagnetic layers (Fig. 6.30B) demonstrates similar properties.

The GMR effect is used in the heads of hard disks. On the basis of such magnetic
structures, many sensors, switches, and nonreciprocal devices are elaborated. Low
cost and low-power consumption promote high competitive ability of these devices.
Magnetic storage devices based on GMR devices can compete with conventional
semiconductor storage devices by the integration density, speed, and cost.

Some materials have even much higher magnetoresistance effect, as shown in
Fig. 6.31, and this phenomenon is called the colossal magnetoresistance. Corre-
sponding materials also have many opportunities for use, for example, in magnetic
recording heads or sensitive magnetometer elements. These materials have perov-
skite structure, such as LaMnQj3, where manganese, similar to lanthanum, has a
valence of “+3.” If La®* ions are partially replaced by bivalent ions such as Ca,
Ba, Sr, Pb, or Cd, then, in accordance to electroneutrality law, some manganese ions
should change their state from Mn* to Mn**. The result is a system with mixed
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Dependence of magnetoresistance change on applied magnetic field: (A) for thin film of
cobalt nanoparticles in copper matrix; (B) for La-Ca-Mn-0 near the Curie point (250K).
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valences of Mn**/Mn**, in which large number of mobile charge carriers exists. It is
found that this system shows very large magnetoresistance. For example, resistance
of the Lag ¢7Cp 33MnO, system at magnetic inductance of 6 T can be changed in hun-
dreds of times. The dependence of the resistivity of thin film made up of this material
on the applied magnetic field is shown in Fig. 6.32B.

Tunneling magnetoresistance is the effect of spin-dependent electron tunneling
through the nanometer layer of dielectric or semiconductor, located between two fer-
romagnets. This structure has a construction similar to that as shown in Fig. 6.30B,
but instead of the copper layer, a dielectric layer (A1,03) or semiconductor layer is
used. As in the case of giant magnetoresistance, electrons show tunneling, thus cre-
ating current from one ferromagnetic to another, if they have parallel magnetization.

Because the magnetization of ferromagnetics is antiparallel, probability of
tunneling greatly reduces, and hence current through a structure decreases sharply
owing to significant increase in resistance. At room temperature, the change in resis-
tance is around 30%, which enables to apply this effect in devices. As in the case of
giant magnetoresistance, soft and hard ferromagnetics are used. The state of magne-
tization is stored up to new magnetic switching; that is why, the switching can be
used as a transfer of bit of information in electronic memory. New computer mem-
ories are developed based on the tunnel magnetoresistance effect. Such devices use
very small currents; hence they have low power consumption. The imperfection of
these devices is that currents are directed perpendicular to layers. As a result,
decrease in the area of layers increases electrical resistance of device.

Development of spintronics significantly increases the operation speed and the
density of processed information.

SUMMARY

1. In addition to electricity, magnetism is the manifestation of electromagnetic
interaction. This interaction becomes apparent as moving electrical charges
influence each other at a distance from the magnetic field. Microscopic sources
of electrical field are electrical charges (electrons or protons). Microscopic
sources of magnetic field are orbital and spin magnetic moments of elementary
particles, atoms, and molecules. At the macroscopic scale, magnetic field is
created by electrical current or permanent magnets.

2. Classic statistical physics proclaims that electronic systems cannot have
thermodynamically stable magnetic moment, but this assertion contradicts
experiments. Quantum mechanics, which explains the stability of atom, account
for magnetism in atoms and in macroscopic bodies. In atoms and molecules,
magnetism is caused by the following:

spin magnetic moments of electrons (spin magnetism);
moving electrons in shells of ions and atoms (orbital magnetism);
spin magnetism of some nucleons (nuclear magnetism).
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Nuclear magnetism is very small compared to electronic magnetism, but it is
still used in instrumentation as a method to study matter by the nuclear magnetic
resonance method and to obtain very deep cooling by the nuclear
demagnetization method.

. All substances, but in varying degrees, respond to external magnetic fields;
hence they can be characterized by a certain magnetic susceptibility.
However, usually only those substances are called as magnetics, in which
ions or atoms without any external magnetic field influence have unpaired
electronic spins. Existence of noncompensated spin magnetic moments in
some atoms or ions is caused by partially filled 3d- or 4f-shells.

. Interaction of orbital and spin magnetic moments in atoms with many electrons
follows from the law of space quantization; the resulting magnetic moment M is
determined by the total angular quantum number j and equals to M; = g; [(j

+ Dug]"?, where gj is the Lande factor (factor of magnetic splitting) and up is
the Bohr magneton—unit of magnetic moment, caused by electronic spin:
up=el*/2m,c. Factor of magnetic splitting, or g-factor, describes important
magneto-mechanical ratio that shows how orbital and spin moments of
individual electrons are put together. In case of purely orbital moment g=1,
whereas for pure spin moment g=2.

. Magnetic moment of atom in a crystal may differ significantly from the
magnetic moment of the same atom that is in a free state because of spin-to-spin
or spin-to-orbital interactions. These differences are particularly large for
third group of d-metals (iron group), in which 3d-shell has larger radius.
Interaction of magnetic electron in shells with their surroundings not only
affects the size of atomic magnetic moment but also causes the exchange
relationships between all magnetic atoms of a crystal. However, magnetic
moment of the rare-earth element crystals is determined by the deep-laid
4f-electrons; hence it is approximately equal to the magnetic moment of a
free atom.

. The energy of magnetic interactions between atoms in crystals can be estimated
through the ferromagnetic Curie point or the antiferromagnetic Neel point,
above which magnetic ordering becomes thermally destroyed and the crystal
turns into a disordered paramagnetic state. Typically, these temperatures do not
exceed 1000K, and therefore magnetic interactions are much smaller than
electrical interactions in crystals.

. According to the nature of interaction with magnetic field and the
nature of internal structure, all magnetic materials can be divided into
several types.

The disordered magnetic materials:

diamagnetics, magnetically neutral materials (in which atoms and molecules
have no intrinsic magnetic moment); magnetic behavior of the material is
determined by law of Faraday electromagnetic induction, whereby
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8.

9.

10.

molecular currents in matter vary to compensate change in magnetic flux
through matter;

paramagnetics, in which particles have their own nonzero magnetic
moments that can be oriented along the applied magnetic field.

The substances with magnetic ordering of different types:
ferromagnetics, in which owing to exchange interaction, the parallel
orientation of magnetic moments of atoms or molecules exists, which is
energetically favorable in macroscopic areas (domains);
antiferromagnetics, in which exchange interaction is such that two or more
sublattices of crystal are oriented antiparallel, which in sum shows zero
magnetization;
ferrimagnetics, which in contrast to antiferromagnetics cannot reach full
compensation of magnetic moments of sublattices; hence these materials,
generally, have nonzero spontaneous magnetization.
substances with special magnetic ordering: spin glasses,
superparamagnetic ensembles of particles, molecular magnets and clusters,
plasma, elementary particles (in solid-state physics, magnetic properties
of plasma and elementary particles are not considered).

For examples of magnetically disordered structures, the electronic and nuclear
paramagnetism in crystals can be considered. Magnetic ordering of different
degrees is seen in ferro-, antiferro-, and ferrimagnetics including nanoparticles.
At sufficiently high temperatures (when thermal motion in crystals obstructs
magnetically ordered structure), any substance becomes either diamagnetic or
paramagnetic.

Diamagnetism is explained by the precession of electronic orbits in atoms, ions,
and molecules, and therefore it is inherent to all substances. Diamagnetic
susceptibility of materials is negative and small (&~ —(10"°~10">) and almost
independent of temperature. Most elements listed in the Periodic System of
Mendeleev have nonzero magnetic moment (e.g., atoms of sodium and
chlorine are paramagnetics). However, most crystals consist of ions or
molecules. That is why the molecular crystal Cl, and the ionic crystal NaCl
are diamagnetics. One reason for molecule and crystal formation is that their
energy reduces through self-organization of “completely magnetically
compensated” electronic shells with zero magnetic moment. Thus in nature,
there are much more diamagnetics than it would be expected from
consideration of electronic shells of atoms in the Mendeleev Periodic System.

Paramagnetic susceptibility is positive (@~+(10"°-107"); typically, it
characterizes atoms and ions that have internal permanent magnetic moment.
This susceptibility depends strongly on temperature, usually, by Curie law:

@ ~K/T. However, for most metals, their paramagnetic susceptibility is
originated by “free electronic gas,” equals approximately @ ~+(10"°~107>) and
does not depend on temperature that is explained by Pauli mechanism of
paramagnetism.
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6.6 Summary

In most dielectrics that practically have no conductive electrons, the magnetic
moments of electronic shells of ions, atoms, or molecules are totally
compensated (magnetic moments, sometimes, might have some nucleus, but
nuclear paramagnetism is extremely small). Therefore dielectrics usually are the
diamagnetics. Only some dielectrics whose atoms or ions have uncompensated
spins in the 3d- or 4f-electronic shells show Lanzheven-Curie paramagnetism.

In most metals, diamagnetism or paramagnetism dominates. Paramagnetism of
metals might have spin nature, inherent to conduction electrons (Pauli
paramagnetism). Owing to large Fermi energy of electrons in metals, the
paramagnetism of conduction electrons practically is independent on
temperature. Therefore for example, in alkali and alkaline earth metals, in which
electronic shells of ions have no magnetic moment, the paramagnetism is solely
due to conduction electrons and characterized by positive (paramagnetic)
susceptibility that is independent of temperature.

Electrons in metals can also show diamagnetic effect (Landau’s diamagnetism),
as the movement of electrons in magnetic field is quantized: when external
magnetic field is absent (H=0), electrons in metal have no discrete stationary
states, but these states occur at H # 0. The fact that under the influence of
Lorentz force, moving electron revolves around H with cyclotron frequency
.= eH/[m,c; this complicated movement can be represented by oscillator whose
frequency can take only discrete values. This effect, called Landau’s
diamagnetism, often makes small negative contribution to magnetic
susceptibility of metals.

Most nondoped semiconductors are diamagnetics. Paramagnetic susceptibility
of doped semiconductors may be caused by conduction electrons; in the simplest
case, such magnetic susceptibility exponentially depends on temperature:
@=AT"?exp(—AE/2kgT), where A is the constant of a given substance and AE
is the band gap of semiconductor. However, semiconductor structure specifics
can greatly alter this general relationship. For example, at low

temperatures, semiconductors, typically, are diamagnetics, but at high
temperatures, they can manifest paramagnetism of electronic gas, which exceed
diamagnetic contribution to susceptibility.

Magnetic crystals and polycrystals with ordered spin and orbital magnetic
moments show “strong” magnetism—in sense that their permeability can be
large, and they can be a source of strong magnetic fields, which is widely used in
engineering. The degree of magnetization of these crystals is determined by total
magnetic moment, which is the vector sum of atomic magnetic moments. Proper
magnetic moment has atoms of transient group of periodic table of elements
because they are characterized by noncompletely filled inner electronic shells,
which are available to hold unpaired electron spin.

In simple ferromagnetic structures, all magnetic moments of atoms are directed
equally. Examples of such metals are the ferromagnetics Fe, Ni, Co, Gd, and Dy.
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These magnetically ordered metals behave similar to permanent magnets (in
case of single-domain structure). The simplest ordered antiferromagnetic
structures are also collinear, but their magnetic moments are directed oppositely,
and they are totally self-compensated. The axis, on which all these moments
are directed, is called antiferromagnetic axis. In collinear ferrimagnetic
structure, the neighboring atoms also show antiparallel orientation of
magnetic moments, but the total magnetic moment of elementary cell of
crystal is nonzero. Hence these structures have spontaneous magnetization,
inasmuch as magnetic moments of ions in different sublattices are
noncompensated.

The carriers of ferromagnetism are uncompensated electronic spins,
associated with electronic orbital moments in ions. In both cases, the electrons
have both spin and orbital moments. However, calculations show that only
spin-type magnetic interaction are not able to provide parallel orientation of
spins, which is the main characteristic of ferromagnetic at temperatures
below the Curie point. It is assumed (by Weiss) that stable orientation of
spins can be caused by a molecular field that has nonmagnetic nature. Forces that
coordinate magnetic moment orientation of ions have electrostatic nature.
They occur as a result of spin and orbital exchange interaction of electrons.

While cooling from high temperatures (i.e., cooling from disordered
paramagnetic phase), permeability of a ferromagnetic increases and reaches
the maximum at the Curie temperature T¢. In paramagnetic phase, above the
phase transition point, Curie-Weiss law can be implemented: @ ~ u=C(T —6),
where C is the Curie-Weiss constant and 6 is the Curie-Weiss temperature
(the latter is slightly different from the phase transition temperature T¢).

Sharp maximum of heat capacity is observed at the Curie temperature of
ferromagnetic; it is caused by excess energy necessary for magnetic

moments disordering. Moreover, in behavior of heat capacity of ferromagnetic,
another significant anomaly is seen: pronounced increase in heat capacity in
the ferromagnetic phase (differing from the smooth curve of saturation,
observed in nonmagnetic metals). Thus, the spin ordering is inherent to
ferromagnetic, and for its destruction, it is necessary to add energy
throughout the temperature range.

It is seen that the magnetic moment of bulk ferromagnetic materials at
temperatures below the Curie point is much lower than its theoretical
determination that can be defined for the case, when all atomic moments are
directed equally. This is due to the formation of domains: regions, in which all
magnetic moments of atoms are directed equally; hence in each domain,
magnetization corresponds to saturation, that is, it takes the maximum value.
However, in different domains of magnetic crystals (or polycrystal), vectors
of magnetization are not parallel to each other. Thus total magnetization of
ferromagnetic sample is lower than in case of complete ordering of atomic
magnetic moments. Therefore without external field, ferromagnetic crystal is
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6.6 Summary

composed of many small individual plots, magnetized to saturation—domains.
Domains are separated by layers—domain walls—in which spins gradually
change orientation, inherent in one domain, to orientation, inherent in the
neighboring domain.

At reversal operation (changing the direction of external field H), magnetic
moment M first increases to its maximum—to spontaneous magnetization
M,, With decrease in external field, magnetization remains behind; hence if
magnetic field again becomes zero (H =0), the induction is not zero, but its
value gains to residual value M,. Phenomenon of magnetization lateness
while magnetic field changes is the magnetic hysteresis. For residual
magnetism disappearance, it is necessary to apply the counter field H,. that
can reverse magnetization of ferromagnetic. This field is the coercive field
(retentive force). Depending on the shape and area of hysteresis loop,
ferromagnetic materials are divided into the “soft” (low coercivity) and the
“hard” (high coercivity).

Magnetization of ferromagnetic materials is accompanied by changes in the
size and shape of magnetic sample. This phenomenon is called magnetostriction.
The reason for this effect (which is widely used in engineering) is large spin-
orbital coupling in ferromagnetic materials. Change in magnetic properties

in case of ferromagnetic deformation is observed experimentally, and it is
called the magnetoelastic effect. Some ferromagnetic materials are quite
sensitive to internal stresses that this property is used for strain and tension
measurement.

Magnetization makes essential influence on ferromagnetic deformation—the
magnetostriction. Conditioned by exchange interaction, it depends not only
on the applied magnetic field but also on temperature change (without any
external field). The thermally induced magnetostriction (sometimes called as
thermostriction) is the spontaneous effect (as it occurs when an external field
is not applied), and it is the greatest in the vicinity of the Curie point, that is,
when transition to magnetically ordered phase occurs. Some ferromagnetic
materials assume the name invar alloys: in them, negative (ferromagnetic)
deposit to thermal expansion (@) compensates typical for all crystals positive
(anharmonic) thermal expansion coefficient (a,); hence total coefficient can be
practically zero (a=a, +ay =~ 0).

The magnetocaloric effect involves change in material temperature during
magnetic adiabatic magnetization or demagnetization. Under adiabatic
condition (when there is no heat energy exchange with the environment), a
magnet does not absorb or return heat (dQ =0), and therefore its entropy S does
not change: dS=dQ/T = 0. Recently, the giant magnetocaloric effect was
discovered in intermetallic compounds based on rare-earth elements, for
instance, in the silicide-germanide system: Gds(Ge-Si)4. This effect provides
application of magnetocaloric cooling. Another effect of adiabatic
demagnetization of paramagnetics is used for achieving extremely low
temperatures.
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The antiferromagnetic interaction occurs in case of negative sign of exchange
integral; hence antiparallel orientation of spins in lattice cells of crystal is
energetically more profitable. Spin locations are ordered, but no spontaneous
magnetization occurs because neighboring moments are directed antiparallel
and cancel each other. In such a crystal, two (or more) magnetically opposite
sublattices are interpenetrated.

The structure with antiparallel arrangement of spins is formed lower than the
temperature called the Neel temperature (Ty), when spin interaction surpasses
chaotic thermal motion. If the crystal is heated above this temperature, the
uncompensated spins form a kind of paramagnetic system that is
characterized by a very special temperature dependence of magnetic
susceptibility: @ =C(T +60), where C is the Curie-Weiss constant, @ is the
characteristic temperature, which in contrast to paramagnetic phase of the
ferromagnetic is located in the negative part of Kelvin temperature scale.

In addition to totally magnetically compensated antiferromagnetics, there are
many crystals and polycrystals in which magnetic moments of sublattices
(although being directed opposite to each other) have significant difference

in their size—the ferrimagnetics. They have complicated structures with varying
nature of atom location that forms some uncompensated electrons in 3d- or
4f-shells. Ferrimagnetics have properties similar to those of ferromagnetic
materials because they have spontaneous magnetization owing to total magnetic
moment of sublattices is nonzero.

The nanophysics represents scientific direction in the field of material
sciences that at present is one of the most promising fields. It dedicates the
creation and study of structures and properties of materials, condensed in the
form of very small crystals, clusters, and fragments that have around 10°-10°
atoms. The main reason for differences between nanomaterials and
customary materials is that in these substances the ratio of surface to volume
is rather big. The smaller the size of nanocluster, the more the surface
properties dominate over bulk properties. In some sense, the nanostructures
transform properties of crystal surface into volumetric properties.

The nanotechnology is a scientific and technical direction for creation of
materials, devices, and functional structures of nanometer size. Only because
of small size of units (particles, granules, and phases), the nanomaterials
exhibit unique mechanical, optical, electrical, and magnetic properties. The
nanostructured magnetic materials can operate with a wide range of
characteristics. Moreover, nanotechnology can be used to create materials
with the prescribed type of magnetization curve—both for record magnetically
soft materials and for extremely magnetically hard materials.

Such magnetic materials that show great ability to magnetization and, at the
same time, the lack of hysteresis are superparamagnetics. The essence of this
term is that for temperatures below the Curie point in a wide temperature
range, they exist as if they were in the paramagnetic phase.
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31. The magnetoresistance is the effect of electrical conductivity change in solids
while placing them in the magnetic field. Multilayered structures composed of
layers of nonmagnetic material alternating between oppositely magnetized
ferromagnetic materials show significant change in their resistance when putting
them in the magnetic field. This phenomenon is called as the effect of giant
magnetoresistance (GMR). This effect can be either longitudinal, when
electrical current flows in plane of layers, or transversal, if current is
perpendicular to layers.

32. Recently, new scientific and technology direction is under developing—
magnetoelectronics, or as it is now called—spintronics, which deals with the
study and practical application of such effects in devices that use electronic spin.
Spintronics studies magnetic and magneto-optical interactions in metallic and
semiconductor structures, as well as quantum phenomena in magnetic structures
of nanometer size.

33. Electrical current, passing through magnetic crossing, under certain conditions
can be accompanied by the transfer of polarized spins,